文档库 最新最全的文档下载
当前位置:文档库 › 数列不等式复习小题卷

数列不等式复习小题卷

数列不等式复习小题卷

高三数学(理)小题卷

命题人:杨小月 时间:2015/11/17

一、选择题

2:,210 p x R ax x a ?∈++<∞∞∞1.已知命题“使得成立”为真命题,则实数的取值范围为()A.[0,1) B.(-,1] C.[1,+) D.(-,1)

11416,1,11

a b a b a b +=+--2.若正数满足则的最小值为( )

A.16

B.25

C.36

D.49

'2-(),()1cos ,(1)(1)0, f x f x x f a f a a =+-+

-

A.(0,1)

B.(1,

2,240,13240139

24

x x y x y z kx y k x y ≥??-+≥=+??--≤?4.已知实数满足约束条件若的最大值为,则实数等于( )

A.2

B.

C.

D.5

1

(1)2 33332222

n n a n a n

+-<+5.若不等式(-1)

对任意的正整数恒成立,则实数的取值范围是( )

A.[-2,)

B.(-2,)

C.[-3,)

D.(-3,)

221,1,2 ,,1010, 1010

,3)

33

x y x y x y z x y a b y x kx b a k +≥??-≤=-??-≤?-+=-6.已知变量满足约束条件若的最大值与最小值分别为且方程

在区间()上有两解,则实数的取值范围是( )

A.(-6,-2)

B.(-3,2)

C.(-,

-2) D.(-2200022

,2020a b ax x b x x R ax x b a b >++≥?∈++=+7.已知不等式对一切实数恒成立,又,使成立,则的最小值为( )

2(,1],1+2()40 1113

4422

x x x a a a ∈-∞+-?>∞∞8.已知不等式恒成立,则实数的取值范围为( )

A.(-2,)

B.(-,]

C.(-,)

D.(-,6]

{

}

22220(,)210,(,)(1),, 201 2 x y A x y x y B x y x y m A B m x y m m m m ?-+≥???

=-+≤=+-≤?????+-≤??

≥≥9.已知集合若则的取值范围是( )

A. B.

D.2''2

22

()(),,()()22

f x ax bx c f x x R f x f x b c =++?∈≥10.设二次函数的导函数为若对不等式恒成立,则的最大值为( )()(ln )(ln )2(1)0,111

,n m

f x R f f m n

n

f m

e e e e

∞+-<∞?+∞11.已知函数是定义在上的偶函数,且在区间[0,+)上是减函数,若则的取值范围是( )

A.(0,)

B.(,e)

C.(0,+)

D.(0,)()

2()ln(1),,,(1)(1)

1 f x a x x p q p q f p f q a p q

=+-≠+-+>-∞∞∞∞12.已知函数在区间(0,1)内任取两个实数和且若不等式

恒成立,则实数的取值范围是( )A.[11,+) B.[13,+) C.[15,+) D.[17,+)

二、填空题

2()1[,1],()0f x x mx x m m f x m =+-∈+<13.已知函数,若对于任意都有成立,则实数的取值范围是_______

22()(1), (2)(2) 4 R y f x y f x t

s t f s s f t t s s

==--≤--≤≤14.已知定义在上的函数是减函数,且的图像关于点(1,0)成中心

对称,若满足不等式,则当1时,的取值范围是______

240

,1014 1x y x y x y ax y a x +-≤??--≤≤+≤??≥?

15.当实数满足时,

恒成立,则实数的取值范围是______,0(),[12,21],[(1)][()],0

_______

x a x x f x x a a f a x x f x e x a π?≥?=∈--+-≥?

(浙江专用)2020高考数学二轮复习 专题三 数列与不等式 第3讲 数列的综合问题学案

第3讲 数列的综合问题 [考情考向分析] 1.数列的综合问题,往往将数列与函数、不等式结合,探求数列中的最值或证明不等式.2.以等差数列、等比数列为背景,利用函数观点探求参数的值或范围.3.与数列有关的不等式的证明问题是高考考查的一个热点,也是一个难点,主要涉及到的方法有作差法、放缩法、数学归纳法等. 热点一 利用S n ,a n 的关系式求a n 1.数列{a n }中,a n 与S n 的关系 a n =??? ?? S 1,n =1,S n -S n -1,n ≥2. 2.求数列通项的常用方法 (1)公式法:利用等差(比)数列求通项公式. (2)在已知数列{a n }中,满足a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求,则可用累加法求数列的通项a n . (3)在已知数列{a n }中,满足 a n +1 a n =f (n ),且f (1)·f (2)·…·f (n )可求,则可用累乘法求数列的通项a n . (4)将递推关系进行变换,转化为常见数列(等差、等比数列). 例1 (2018·浙江)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足 b 1=1,数列{(b n +1-b n )a n }的前n 项和为2n 2+n . (1)求q 的值; (2)求数列{b n }的通项公式. 解 (1)由a 4+2是a 3,a 5的等差中项, 得a 3+a 5=2a 4+4, 所以a 3+a 4+a 5=3a 4+4=28,解得a 4=8. 由a 3+a 5=20,得8? ?? ??q +1q =20, 解得q =2或q =1 2. 因为q >1,所以q =2. (2)设c n =(b n +1-b n )a n ,数列{c n }的前n 项和为S n . 由c n =? ?? ?? S 1,n =1, S n -S n -1,n ≥2,解得c n =4n -1(n ∈N * ). 由(1)可得a n =2 n -1 , 所以b n +1-b n =(4n -1)×? ?? ??12n -1 ,

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

数列与不等式专题练习[1]

数列与不等式专题练习 一、选择题 1.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( ) A .66 B .99 C .144 D .297 2.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( ) A .81 B .120 C .168 D .192 3.12+与12-,两数的等比中项是( ) A .1 B .1- C .1± D .2 1 4.已知一等比数列的前三项依次为33,22,++x x x ,那么2113 -是此数列的第( )项 A .2 B .4 C .6 D .8 5.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( ) A .513 B .512 C .510 D .8 225 6.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( ) A .4- B .6- C .8- D .10- 7.设n S 是等差数列{}n a 的前n 项和,若==5 935,95S S a a 则( ) A .1 B .1- C .2 D . 21 8.若)32lg(),12lg(,2lg +-x x 成等差数列,则x 的值等于( ) A .1 B .0或32 C .32 D .5log 2 9.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( ) A .15(0,)2+ B .15(,1]2- C .15[1,)2+ D .)2 51,251(++- 10.在ABC ?中,tan A 是以4-为第三项, 4为第七项的等差数列的公差,tan B 是以 13为第三项, 9为第六项的等比数列的公比,则这个三角形是( ) A .钝角三角形 B .锐角三角形 C .等腰直角三角形 D .以上都不对 11.在等差数列{}n a 中,设n a a a S +++=...211,n n n a a a S 2212...+++=++,n n n a a a S 322123...+++=++,则,,,321S S S 关系为( ) A .等差数列 B .等比数列 C .等差数列或等比数列 D .都不对 12.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log ...log a a a +++=( ) A .12 B .10 C .31log 5+ D .32log 5+

基本不等式完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则2 2 2 2 2 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 222 222 2 1 2311 23112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:222 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证: abc c b a 8)1)(1)(1(≥--- 5、已知,,a b c R + ∈,且1a b c ++=,求证: 1111118a b c ??????---≥ ??????????? 6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 2 2 3 3 22-≥- 题型二:利用不等式求函数值域 1、求下列函数的值域 (1)2 2 21 3x x y += (2))4(x x y -=

数列与不等式复习题

数列与不等式复习题(一) 1.数列 ,8,5,2,1-的一个通项公式为 ( ) A .43-=n a n B .43+-=n a n C .()43)1(--=n a n n D .()43) 1(1 --=-n a n n 2、在数列{}n a 中,122,211=-=+n n a a a ,则101a 的值为( ) A .49 B .50 C .51 D .52 3、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为( ) A .15. B .17. C .19. D .21 4.不等式01 31 2>+-x x 的解集是 ( ) A .}21 31|{>-x x D .}3 1 |{->x x 5.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( ) A.5 B.4 C. 3 D. 2 6.数列 ,16 1 4 ,813,412,21 1前n 项的和为( ) A .2212n n n ++ B .122 12+++-n n n C .22 12n n n ++- D . 2 2121 n n n -+- + 7.f x ax ax ()=+-2 1在R 上满足f x ()<0,则a 的取值范围是( ) A .a ≤0 B .a <-4 C .-<<40a D .-<≤40a 8.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( ) (A)1 2 2n +- (B) 3n (C) 2n (D)31n - 9.已知在等比数列{}n a 中,各项均为正数,且,7,13211=++=a a a a 则数列{}n a 的通项公式是_________=n a . 10.若方程x x a a 2 2 220-+-=lg()有一个正根和一个负根,则实数a 的取值范围是 __________________.

基本不等式(很全面)

基本不等式 【知识框架】 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则22 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 2 2b a b a ab +≤ +≤≤+

6、柯西不等式 (1)若,,,a b c d R ∈,则2 2 2 2 2 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 【题型归纳】 题型一:利用基本不等式证明不等式 题目1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 题目2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 题目3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥

高考专题数列与不等式放缩法

高考专题——放缩法 一、基本方法 1.“添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证143 <+<a b 。 例2. 已知a 、b 、c 不全为零,求证: a a b b b b c c c ac a a b c 22222232 ++++++++++>() [变式训练]已知* 21().n n a n N =-∈求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈ 2. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分 母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证:12<++<a b c b a c c a b +++。 3. 裂项放缩 若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。 例4. 已知n ∈N*,求n 2n 13 12 11<…+ ++ + 。 例5. 已知* N n ∈且)1n (n 3221a n +++?+?= ,求证:2 )1(2)1(2 +< <+n a n n n 对所有正整数n 都成立。 4. 公式放缩 利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。 例6. 已知函数1212)(+-=x x x f ,证明:对于* N n ∈且3≥n 都有1 )(+>n n n f 。 例7. 已知2x 1)x (f +=,求证:当a b ≠时f a f b a b ()()-<-。

数列与不等式知识点及练习

数列与不等式 一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n )③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) (2)在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足?? ? ≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足?? ?≥≤+0 1m m a a 的项数m 使得m s 取最小值.在解含绝 对值的数列最值问题时,注意转化思想的应用。 四.数列通项的常用方法: (1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①;②{}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:①;②(4)造等差、等比数列求通项:;②;③;④.第一节通项公式常用方法题型1 利用公式法求通项 例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 2.已知为数列{}n a 的前项和,求下列数列{}n a 的通项公式: ⑴ ; ⑵.总结:任何一个数列,它的前项和n S 与通项n a 都存在关系:???≥-==-)2() 1(11n S S n S a n n n 若1a 适合n a ,则把它们 统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项 例2:⑴已知数列{}n a 中,,求数列{}n a 的通项公式; ⑵已知为数列{}n a 的前项和,,,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“”; 迭乘法适用于求递推关系形如““;⑵迭加法、迭乘法公式:① ② . 题型3 构造等比数列求通项 例3已知数列{}n a 中,,求数列{}n a 的通项公式. 总结:递推关系形如“” 适用于待定系数法或特征根法: ①令;② 在中令,;③由得,. 例4已知数列{}n a 中,,求数列{}n a 的通项公式. 总结:递推关系形如“”通过适当变形可转化为: “”或“求解. 数列求和的常用方法

基本不等式完整版(非常全面)

2 8 基本不等式专题辅导 2 2 2、基本不等式一般形式(均值不等式) 若 a,b R ,则 a b 2 ab 3、基本不等式的两个重要变形 (1)若 a,b R *,则 2 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数 的和为定植时,它们的积有最小值; a b 6、柯西不等式 (1)若 a, b,c, d R ,则(a 2 b 2)(c 2 d 2) (ac bd )2 (2) 若 a 1, a 2, a 3, bi, b 2, b 3 R ,则有: 2 2 2 2 2 2 2 (a 1 a 2 a 3 )(柑 b ? b 3 ) (aQ a ?b 2 a s b s ) (3) 设a 1,a 2, ,a n 与 db, ,b 是两组实数,则有 2 2 2 p22 2 佝 a 2 a . )(0 b 2 b n )(日山 a 2b 2 a n b n ) 一、知识点总结 1、基本不等式原始形式 二、题型分析 题型一:利用基本不等式证明不等式 (1)若 a,b R ,则 a 2 b 2 2ab 1、设a,b 均为正数,证明不等式:、.ab 二 (2)右 a, b R ,则 ab a,b,c 为两两不相等的实数, (2)若 a, b R ,则 ab b 2 ab bc ca 4、求最值的条件:“一正, 二定,三相等” 5、常用结论 1 (1)若 x 0,则 x — 2 (当且仅当 x 1时取“=”) x 1 (2)若 x 0,则 X - 2 (当且仅当 x 1时取 “=”) X (3)若 ab 0,则-- 2 (当且仅当 a b 时取 “=”) b a 2 2 (4)若 a, b R ,则 ab ( 旦 b)2 a b 2 2 (5)若 a, b R ,贝U 1 . a ab b a 2 b 2 v ------ 1 1 2 2 (1 已知a a,b,c a )(1 1, 求证: b)(1 c) 8abc a, b, c R

2019高考数学二轮复习专题三数列与不等式第1讲等差数列与等比数列学案

第1讲 等差数列与等比数列 [考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.等差、等比数列的判定及综合应用也是高考考查的重点,注意基本量及定义的使用,考查分析问题、解决问题的综合能力. 热点一 等差数列、等比数列的运算 1.通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1 . 2.求和公式 等差数列:S n = n (a 1+a n ) 2 =na 1+ n (n -1) 2 d ; 等比数列:S n =????? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1),na 1(q =1). 3.性质 若m +n =p +q , 在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q . 例1 (1)(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .12 答案 B 解析 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4, 得3???? ??3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B. (2)(2018·杭州质检)设各项均为正数的等比数列{a n }中,若S 4=80,S 2=8,则公比q =________,a 5=________. 答案 3 162

数列和不等式的综合复习题新版

数列和不等式的综合复习I ?知识回顾 1. 等差数列的定义 (1) 文字语言:如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么 这个数列就叫做等差数列. — (2) 符号语言:a n +1 — a n = d(n € N). 2. 等差数列的通项公式 若等差数列{a n }的首项为a i ,公差为d,则其通项公式为 a n = a i + (n — 1)d . 推广:a n = a m + (n — m)d. 3. 等差中项 a + b 如果三个数a, A, b 成等差数列,贝U A 叫a 和b 的等差中项,且有 A= =+^ . 4. 等差数列的前n 项和公式 5. 等差数列的性质 (1) 等差数列{a n }中,对任意的 m n, p, q € N,若m+ n = p+ q,贝U a m + a n = a + a q .特殊的,若 m+ n= 2p ,贝U a m + a n = 2a p . (2) 等差数列{a n }中,依次每 m 项的和仍成等差数列,即 S m , Sm — S m , S 3m — S 2m ,…仍成等差数列. S 禺 a n +1 S (禺 6. 当项数为2n(n € N+),则S 偶一 S 奇=nd , = ------ ;当项数为2n — 1(n € N+),则S 奇一 S 偶=an,'= S t a n S 奇 n — 1 n ? 基础练习: 1. 已知等差数列{a n }的前n 项和为S n ,若a 1= 2, S= 12,贝U a 6= _____________________________ . 2. 在等差数列{a n }中, (1) 已知 a 4 + a 14= 2,贝U S 17=___________ ; (2) 已知 Sn = 55,贝U a 6 = _____________________ ; (3) 已知 S= 100, Si 6= 392,贝U S 24= ___________ . 3、 已知{a n }是公差不为0的等差数列,S n 是其前n 项和,若a ?a 3= a 4a 5, S= 1,则3的值是 ________________ 4、 设S n 是等差数列{a n }的前n 项和,若a 2= 7, S 7=— 7,则a ?的值为 _____________ . ? 判断或证明一个数列是否是等差数列 已知数列{a n }的各项均为正数,前 n 项和为S ,且满足2S = a 2 + n — 4. (1) 求证:{a n }为等差数列; (2) 求{a n }的通项公式. ? 等差数列的性质 1、 已知{a n }是等差数列,{S n }是其前n 项和.若a 1+ a 2=— 3, S 5= 10,则a g 的值是 _____________ 2、 在等差数列{a n }中,若 a 3+ a 4+ a 5+ a 6+ a ?= 25,贝U a 2+ a 8= ____________ ; 3、 已知等差数列{a n }的前n 项和为S ,且So= 10, So= 30,则So= _______________ . ? 等差数列中的最值问题) (1)若等差数列{a n }满足a ?+ a 8 + a g >0, a ? + ae<0,当n 取何值时,{a n }的前n 项和最大? 数列部分 (一)、等差数列 (1) S n = na 1 + n ( n —1)d . (2) S n (a + a n )

专题3.3 数列与函数、不等式相结合问题(解析版)

一.方法综述 数列与函数、不等式相结合是数列高考中的热点问题,难度较大,求数列与函数、不等式相结合问题时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数列中的恒成立问题、数列中的最值问题、数列性质的综合问题、数列与函数的综合问题、数列与其他知识综合问题中都有所涉及,本讲就这类问题进行分析. 二.解题策略 类型一数列中的恒成立问题 【例1】【安徽省毛坦厂中学2019届高三校区4月联考】已知等差数列满足,,数列满足,记数列的前项和为,若对于任意的,,不等式恒成立,则实数的取值范围为() A.B. C.D. 【答案】A 【解析】 由题意得,则,等差数列的公差, . 由, 得, 则不等式恒成立等价于恒成立, 而, 问题等价于对任意的,恒成立. 设,, 则,即,

解得或. 故选:A. 【指点迷津】对于数列中的恒成立问题,仍要转化为求最值的问题求解,解答本题的关键是由等差数列通项公式可得,进而由递推关系可得 ,借助裂项相消法得到,又 ,问题等价于对任意 的 , 恒成立. 【举一反三】已知数列{}n a 的首项1a a =,其前n 项和为n S ,且满足()2 142,n n S S n n n N -++=≥∈,若 对任意1,n n n N a a ++∈<恒成立,则a 的取值范围是( ) A .()3,5 B .()4,6 C .[)3,5 D .[)4,6 【答案】A 类型二 数列中的最值问题 【例2】【浙江省湖州三校2019年高考模拟】已知数列满足 , ,则使 的正整数的最小值是( ) A .2018 B .2019 C .2020 D .2021

高考数学复习专题14数列与不等式理

专题1.4 数列与不等式 总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______ 一、选择题(12*5=60分) 一、单选题 1.【2018届四川省成都外国语学校高三11 月月考】已知全集为R ,集合 2{|0.51},{|680}x A x B x x x =≤=-+≤,则C A B ?=R A. (],0∞- B. []2,4 C. [)()0,24,∞?+ D. ][() 0,24,∞?+ 【答案】C 2.在等比数列{}n a 中,151,4a a =-=-,则3a = A. 2± B. 2± C. 2 D. 2- 【答案】D 【解析】由等比数列的性质可得2 3154a a a ==,因为151,4a a =-=-,所以3 2.a =-选D. 3.【2018届天津市滨海新区大港油田第一中学高三上期中】若a 、b 、c∈R,则下列命题中正确的是( ) A. 若ac>bc ,则a>b B. 若a 2 >b 2 ,则a>b C. 若 11 a b <,则a>b D. 若a b >,则a>b 【答案】D 【解析】若ac>bc ,则c>0时 a>b ;若2 a >2 b ,则|a|>|b|;若11 a b <,则a>b 或a<0,则a>b ,所以选D.

4.【2018届山东省枣庄市第三中学高三一调】已知均为正实数,且,则 的最小值为( ) A. B. C. D. 【答案】 C 5.【2018届北京丰台二中高三上期中】若n S 是数列{} 2n 的前n 项和,则83S S -=(). A. 504 B. 500 C. 498 D. 496 【答案】D 【解析】83S S - 45678a a a a a =++++ 458222=+++L 163264128256=++++ 496=. 故选D . 6.关于x y 、的不等式组360, {20, 40, x y x y x y +-≥--≤+-≤则2z x y =+的最大值是( ) A. 3 B. 5 C. 7 D. 9 【答案】C 【解析】作可行域,如图,则直线2z x y =+过点A (1,3)取最大值7,选C.

2020高考数学专题复习----数列与不等式专题

数列与不等式专题 一.高考说明剖析 高考数学考试大纲,对于《不等式》一章的考试内容及考试要求为:(1)理解不等式的性质及其证明。(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。(3)掌握分析法、综合法、比较法证明简单的不等式。(4)掌握简单不等式的解法。(5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│。对于《数列》一章的考试内容及考试要求为:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。这同江苏省2004年高考数学考试大纲对这两部分内容的要求完全一样。据此我们判断:稳定是江苏省高考自主命题的指导思想之一。 传统的数学高考,重点考查的内容有五大块:函数与方程、不等式、数列、直线和平面、圆锥曲线。而新高考,重点考查的内容则有八大块:函数与方程、不等式、数列、导数、概率、平面向量、圆锥曲线、直线与平面。这是总的格局,再细化一下,看2004年高考关于不等式、数列的试题配置:江苏省2004年高考数学试卷中不等式与数列所占的权重都分别考了一个填空题和一个解答题(数列为第20题,不等式为第22题)。其它省份的数学试卷以及全国数学试卷也都

在不同程度上体现了数列与不等式的重点地位。由此可以看出,不等式和数列是传统高考考查的重点内容,也是新高考考查的重点内容。还应指出的是:数列、不等式也是《新课标》必修模块5的内容。因此,我们有理由相信:不等式、数列内容仍将是今年高考考查的重点。 二.高考试题研究 例1. 设无穷等差数列{a n }的前n 项和为S n 。 ⑴若首项a 1=32,公差d =1,求满足2 k S =(S k )2的正整数k ; ⑵求所有的无穷等差数列{a n },使得对于一切正整数k 都有2k S =(S k )2成立。 学生正确理解了有关符号,不难得出本题的正确结果。其中,第二句话具有高等数学的语言味道。 例2.(2004年江苏高考22题) 已知函数f(x)(x ∈R)满足下列条件:对于任意的实数x 1、x 2,都有λ(x 1-x 2)2≤(x 1-x 2)[f(x 1)-f(x 2)]和|f(x 1)-f(x 2)|≤|x 1-x 2|,其中λ是大于0的常数。 设实数a 0、a 、b 满足f(a 0)=0和b =a -λf(a)。 (Ⅰ)证明:λ≤1,并且不存在b 0≠a 0,使得f(b 0)=0; (Ⅱ)证明:(b -a 0)2≤(1-λ2)(a -a 0)2; (Ⅲ)证明:[f(b)]2≤(1-λ2)[f(a)]2。 本题具有高等数学背景,字母多,函数抽象,学生无从下手,得

数列与不等式压轴大题练习题和详细分析解答(1)

数列与不等式压轴大题练习题和详细分析解答(1) 1.已知数列{}n a 的前n 项积为n T ,{}n T 为等差数列,且1324a T ==,. (1)求n a ; (2)证明: 112233 1111 ln(1)n n n a T a T a T a T ++++ <+. 2.已知数列{}n a 满足11a =,点()11,1n n a a +++在直线2y x =上.数列{}n c 满足11c a =, 121 111n n n c a a a a -=++???+(2n ≥且n *∈N ). (1)求{}n a 的通项公式; (2)(i )求证:11 1n n n n c a c a +++=(2n ≥且n N ∈); (ii )求证:231115 1113 n c c c ??????+ +???+< ? ? ???????.

3.已知{}n a 是无穷数列.给出两个性质: ①对于{}n a 中任意两项,()i j a a i j >,在{}n a 中都存在一项m a ,使2 i m j a a a =; ②对于{}n a 中任意项(3)n a n ,在{}n a 中都存在两项,()k l a a k l >.使得2k n l a a a =. (Ⅰ)若(1,2, )n a n n ==,判断数列{}n a 是否满足性质①,说明理由; (Ⅱ)若1 2(1,2, )n n a n -==,判断数列{}n a 是否同时满足性质①和性质②,说明理由; (Ⅲ)若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列. 4.设数列{}n a 的前n 项的积为n T ,满足1n n T a =-,*N n ∈,记222 12n n S T T T =++???+ (1)证明:数列11n a ?? ??-? ?是等差数列; (2)记1n n n d a S +=-,证明:11 32 n d <<

练习-线性规划与基本不等式

线性规划与基本不等式 1.若222x y x y ????+? ≤,≤,≥,则目标函数2z x y =+的取值范围是( ) A.[26], B.[25], C.[36], D.[35], 2.已知x y ,满足约束条件5003x y x y x -+??+??? ≥,≥,≤.则24z x y =+的最大值为( ) A.5 B.38- C.10 D.38 3.若变量x ,y 满足约束条件30101x y x y y -+≤??-+≥??≥? ,则z =2x +y -4的最大值为( ) A .-4 B .-1 C .1 D .5 4.已知目标函数2z x y =+中变量x y ,满足条件4335251x y x y x --??+取得最大值的最优解有无穷多个,则a 的值为( ) A.14 B.35 C.4 D.53 8.已知0x >,0y >,且231x y +=,则23 x y +的最小值为( )

第049讲 总复习:不等式的综合应用(基础)知识梳理

不等式的综合应用 【考纲要求】 1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力; 2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式; 3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题; 4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力; 5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题. 6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.. 【知识络】 【考点梳理】 考点一:不等式问题中相关方法 1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰. 2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函 数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式 化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用. 4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形 →判断符(值). 5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维 等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择 不 等式的综合应用 解不等式问题 实际应用问题 不等式中的含参问题 不等式证明

专题07 数列与不等式相结合问题(第二篇)(原卷版)

6 / 6 备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第二篇 数列与不等式 专题07 数列与不等式相结合问题 【典例1】【2020届安徽省亳州市高三上学期期末教学质量检测】 记n S 为数列{}n a 的前n 项和.已知12n n S a +=. (1)求{}n a 的通项公式; (2)求使得22020n n a S >+的n 的取值范围. 【思路引导】 (1)根据11,1 ,2 n n n S n a S S n -=?=? -≥?计算可得; (2)由(1)可得2122n n a -=,21n n S =-,从而得到不等式解得. 【典例2】【2020届重庆西南大学附属中学校高三第五次月考】 已知等比数列{}n a 的前n 项和为n S ,且当*n N ∈时,n S 是12n +与2m 的等差中项(m 为实数). (1)求m 的值及数列{}n a 的通项公式; (2)令( )* 21log n n b a n N =+∈,是否存在正整数k ,使得1111 210n n n k b b b n ++???+>+++对任意正整数

6 / 6 n 均成立?若存在,求出k 的最大值;若不存在,说明理由. 【思路引导】 (1)根据等差中项的性质列方程,求得n S 的表达式.利用11,1 ,2n n n S n a S S n -=?=?-≥?,结合{}n a 是等比数列, 求得m 的值及数列{}n a 的通项公式. (2)由(1)求得n b 的表达式,将不等式 1111210 n n n k b b b n ++???+>+++左边看成()f n ,利用差比较法判断出()f n 的单调性,由此求得()f n 的最小值,进而求得k 的最大值. 【典例3】【2020湖北省武汉华中师大附中高三5月考试】 已知等差数列{}n a 中,公差0d ≠,735S =,且2a ,5a ,11a 成等比数列. ()1求数列{}n a 的通项公式; ()2若n T 为数列11n n a a +?? ????的前n 项和,且存在*n N ∈,使得10n n T a λ+-≥成立,求实数λ的取值范围. 【思路引导】(1)由题意可得()()()121 1176735,2410, a d a d a d a d ?? +=???+=++?解得1a d ,即可求得通项公式;(2) 1111 12 n n a a n n +=-++,裂项相消求和n T = ()112222n n n -=++,因为存在*N n ∈,使得10n n T a λ--≥成 立,所以存在* N n ∈,使得()()2022n n n λ-+≥+成立,即存在*N n ∈,使得() 222n n λ≤+成立.求出 () 2 22n n +的最大值即可解得λ的取值范围. 【典例4】【2020届江西省南昌市上学期期末考试】 已知{}n a 是递增的等比数列,若3520a a +=,且1235 4 a a a ,,成等差数列.

高中数学 数列与不等式练习题(含答案)

高中数学探究性试题汇编 课堂教学改革的目的,一是要打破传统教学束缚学生手脚的陈旧做法;二是要遵循现代教育以人为本的的观念,给学生发展以最大的空间;三是能根据教材提供的基本知识,把培养学生创新精神和实践能力作为教学的重点。数学探究性学习是以学生探究为基本牲的一种教学活动形式。具体是指在教师的启发诱导下,以学生独立自主学习和合作讨论为前提,以学生已有知识经验和生活经验为基础,以现行教材为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑尝试活动,自己发现问题、提出问题、分析问题、解决问题的一种教学活动形式。它可使学生学会学习和掌握科学方法,为学生终身学习和发展奠定基础。 探究性试题有助于数学思维的提高。 1.已知集合M 是满足下列性质的函数()x f 的全体:在定义域内存在0x ,使得 ()()()1100f x f x f +=+成立。 (Ⅰ)函数()x x f 1 = 是否属于集合M ?说明理由; (Ⅱ)设函数()M x a x f ∈+=1 lg 2,求a 的取值范围; (Ⅲ)设函数x y 2=图象与函数x y -=的图象有交点,证明:函数()M x x f x ∈+=2 2。 解:(Ⅰ)若()x x f 1= M ∈,在定义域内存在0x ,则 01111102 000=++?+=+x x x x , ∵方程0102 0=++x x 无解,∴()x x f 1 =M ?。 ( Ⅱ ) ()()()()012222lg 1lg 1 1lg 1lg 22 22=-++-?++=++?∈+=a ax x a a x a x a M x a x f , 2 =a 时, 2 1 - =x ; 2 ≠a 时,由 ≥?,得 [)(] 53,22,530462+?-∈?≤+-a a a 。 ∴[] 53,53+-∈a 。 ( Ⅲ )∵ ()()()()() [] 122)1(223212110102 02 01000000-+=-+=---++=--+-+x x x x f x f x f x x x x ,

相关文档
相关文档 最新文档