文档库 最新最全的文档下载
当前位置:文档库 › 基于导频的OFDM 信道估计及其改进技术的研究

基于导频的OFDM 信道估计及其改进技术的研究

基于导频的OFDM 信道估计及其改进技术的研究
基于导频的OFDM 信道估计及其改进技术的研究

LTE_信道估计(简介)

4.13 信道估计 4.13.1 信道估计简介 1.有哪些信道估计方法 (1) (1) 盲估计与半盲估计盲估计与半盲估计盲估计与半盲估计 (2) (2) 基于导频的信道估计基于导频的信道估计基于导频的信道估计 ((3)基于训练序列的信道估计基于训练序列的信道估计 2. 信道估计的作用 (1)(1)抵抗衰落抵抗衰落抵抗衰落,,用估计结果来抵消各个子信道衰落的影响用估计结果来抵消各个子信道衰落的影响,, 从而在接收端获得正确的解调从而在接收端获得正确的解调。。 (2)(2)在在OFDM 无线通信系统中一般采用多进制调制方式无线通信系统中一般采用多进制调制方式,,如MQAM 调制方式调制方式,,这就需要在接收端进行相干解调这就需要在接收端进行相干解调。。由于无线信道的传输特性是随时间变化的于无线信道的传输特性是随时间变化的,,因此相干解调就要用到信调就要用到信道的瞬时状态信息道的瞬时状态信息道的瞬时状态信息,,所以在系统接收端需要进行信道估计需要进行信道估计,,以获得无线信道的瞬时传输特性以获得无线信道的瞬时传输特性 (3)(3)信道估计还可以用来纠正频率偏移造成的信号正交性信道估计还可以用来纠正频率偏移造成的信号正交性的破坏的破坏 (4)(4)对于结合对于结合MIMO 技术的OFDM 系统来说系统来说,,空时检测或空 时解码一般要求己知信道状态信息时解码一般要求己知信道状态信息,,因此这时的信道估计及估计的准确性就尤为重要估计及估计的准确性就尤为重要 (5)(5)对于闭环系统对于闭环系统对于闭环系统,,如OFDM 自适应调制系统自适应调制系统、、 MIMO 一OFDM 自适应调制系统自适应调制系统、、结合信道信息采用改进空时编码发射机的MIMO 系统等系统等,,发射机端同样要求得到信道状态信息信息 3.各种方法的基本原理及准则 原理原理((1)盲估计盲估计::不需要发送辊发送特不需要发送辊发送特殊的训练序列殊的训练序列殊的训练序列,,但是 接收须接收到足够多的数据符号接收须接收到足够多的数据符号,,以得到可靠的信道估计道估计,,但有但有 很大的处理延时很大的处理延时。。 (2)基于导频基于导频::发送端适当位置插入导频发送端适当位置插入导频,,接收端利用 导频恢复出导频位置的信道信息导频恢复出导频位置的信道信息,,然后利用某种处理手段理手段((如内插如内插、、滤波滤波、、 变换等变换等))获得所有时段的信道信息信道信息。。 准则准则 (1) (1) (1) 最小平方误差准则最小平方误差准则最小平方误差准则(Least law (Least Square error law,,LS)LS) (2)(2)最小均方误差最小均方误差最小均方误差( Minimum Mean Square Error ( Minimum Mean Square Error law law,,MMSE)MMSE) (3)最大似然准则最大似然准则 主要用于盲估计主要用于盲估计主要用于盲估计 4.依据各种方法使用条件及优缺点来确定选用何种估计方法 (1) 盲估计盲估计::优点优点 盲估计可以大大提高系统的传输码率盲估计可以大大提高系统的传输码率盲估计可以大大提高系统的传输码率。。 缺点缺点缺点::很大的处理延时很大的处理延时

cdma信道解释

PN码 前向链路 前向链路由以下逻辑信道构成:导频信道、同步信道、寻呼信道和若干业务信道。如下图所示:表示由基站发送的前向链路逻辑信道。 各信道流程如下:

由此可以看出,CDMA系统前向链路是由PN长码(码长242-1码片)、Walsh码(码长64码片,共有64个不同的正交码)和PN短码(215)组成的三阶系统,分别完成数据扰码(数据编码、数据卷码功能)、信道识别(码分多址,即通过Walsh码正交相关处理,实现基站多路发射信号之间的理想分离)、基站识别(基站多址)功能。可以把前向链路信号归纳为由分配的无线频带、一对具有确定相位偏置的正交PN 码的四相调制信号、正交Walsh 函数二相调制信号、卷积编码、扰码信息综合组成的系统。 导频信道 o 基站在此信道发送导频信号供移动台识别基站并引导移动台入网 o 导频信道不传送任何信息,它在CDMA前向信道上是不停发射的。它用于使在基站覆盖区内所有移动台进行同步和切换。 o 使用零Walsh 函数(64个0),它不被信息所调制,只是由正交的PN 码对构成,每个基站就由这一对经过时间偏置的PN 序列来作为识别前 向连路的标志 o 采用Walsh 码和PN短码 同步信道 o 基站在此信道发送同步信息提供移动台建立与系统的定时和同步 o 同步信道传送的是一个经过编码、交织、扩频和调制的扩频信号,被本小区移动台用来捕获初始时间同步。未对同步信道数据进行扰码

o 采用Walsh 码和PN短码 寻呼信道 o 基站在此信道向移动台发送有关寻呼、指令以及业务信道指配信息 o 寻呼信道传送的是一个经过编码、交织、扩频和调制的信号,用来传送系统开销信息和移动台特定消息。对寻呼信道数据进行了扰码。 o 采用PN长码、Walsh 码和PN短码 业务信道 o 基站在此信道向移动台传送前向通信数据及信令 o 业务信道则用来传送用户信息和信令信息。在每个业务信道中,包含有向移动台传送的业务数据和功率控制的信息(功率控制子信道),功率控制子信道用于向移动台发送功率控制的信息。对业务信道数据进行了扰码 o 采用PN长码、Walsh 码和PN短码

基于导频序列的信道估计算法的研究

第一章绪论 1.1 研究背景和意义 现代社会已经进入了信息时代,在各种信息技术中,信息的传输即通信起着支撑作用。由于人类社会生活对通信的需求越来越高,世界各国都在致力于现代通信技术的研究与开发以及现代通信网的建设现代移动通信技二十世纪二十年代,但是一直到 20 世纪 70 年代中期才迎来了移动通信的蓬勃发展时期。美国贝尔实验室研制成功先进移动系统,建成了蜂窝状模拟移动通信网,大大提高了系统容量。从八十年代开始,数字移动通信系统进入了发展和成熟时期,欧洲首先推出了全球移动通信系统(GSM),随后美国和日本也相继制定了各自的数字移动通信体制。90年代初,美国Qualcomm公司推出了窄带码分多址(CDMA)蜂窝通信系统,这是移动通信系统发展中的里程碑。从此码分多址这种新的无线接入技术在移动通信领域占据了越来越重要的地位。这些目前正在广泛使用的数字移动通信系统是第二代移动通信系统。第二代移动通信系统主要是为支持语音和低速率的数据业务而设计的,但是随着人们对通信业务围和业务速率要求的不断提高,已有的第二代移动通信网将很难满足新的业务需求。为了适应新的市场需求,人们正在研究和设计第三代移动通信系统。尽管目前关于第三代移动通信系统的研究和标准化工作十分引人注目,但是目前第三代移动通信的方案实际只能是第二代移动通信方案的改进,算不上真正意义上的宽带接入网络。而且3G的核心网还没有完全脱离第二代移动通信系统的核心网的结构。目前,人们把越来越多的眼光投向三代以后的(beyond 3G/4G)移动通信系统中新一代移动通信(beyond 3G/4G)将可以提供的数据传输速率高达100Mbit/s,甚至更高,支持的业务从语音到多媒体业务,包括实时的流媒体业务,数据传输速率可以根据这些业务所需的速率不同进行动态调整。新一代移动通信的另一个特点是低成本。因此在有限的频谱资源上实现更高速率和更大容量,需要频谱效率更高的通信技术。MIMO技术充分开发空间资源,利用多个天线实现多发多收,在不需要增加频谱资源和天线发送功率的情况下,可以成倍地提高信道容量。OFDM技术是多载波传输的一种,其多载波之间相互正交,可以高效的利用频谱资源。另外,OFDM将总带宽分割为若干个窄带子载波可以有效的抵抗频率选择性衰落。因此充分研究开发这两种技术的潜力,将两者结合起来成为新一代移动通信核心技术的解决方案。信道估计是无线通信中的关键技术之一,对MIMO-OFDM系统的信道估计算法进行研究和改进,对MIMO-OFDM 系统技术的发展有着非同寻常的意义。

信道估计算法

LS 信道估计 假设OFDM 系统模型用下式表示: P P P Y X H W =+ (1) 式中H 为信道响应;P X 为已知的导频发送信号;P Y 为接收到的导频信号;P W 为在导频子信道上叠加的A WGN 矢量。 LS 为最小二乘(Least —Square)信道估计, LS 算法就是对(1)式中的参数H 进行估计,使函数(2)最小。 ????()()()()H H P P P P P P P P J Y Y Y Y Y X H Y X H =--=-- (2) 其中P Y 是接收端导频子载波处的接受信号组成的向量;??P P Y X H =是经过信道估计后得到的导频输出信号;?H 是信道响应H 的估计值。 ??{()()}0?H P P P P Y X H Y X H H ?--?=? 由此可以得到LS 算法的信道估计值为: 11,()H H P LS P P P P P P H X X X Y X Y --== 可见,LS 估计只需要知道发送信号P X ,对于待定的参数H ,观测噪声P W ,以及接收信号P Y 的其它统计特征,都不需要其它的信息,因此LS 信道估计算法的最大优点是结构简单,计算量小,仅通过在各载波上进行一次除法运算即可得到导频位置子载波的信道特征。但是,LS 估计算法由于在估计时忽略了噪声的影响,所以信道估计值对噪声干扰以及ICI 的影响比较敏感。在信道噪声较大时,估计的准确性大大降低,从而影响数据子信道的参数估计。 LMMSE 算法的实现流程: 首先我们得到LMMSE 算法的相关公式: 211??*((()()))P P P P H LMMSE H H H H W LS H R R diag X diag X H σ--=+ 其中=()P P H H H P P R E H H 为信道矢量H 的自相关矩阵, ?LM M SE H 代表采用LMMSE 算法时信道

信道估计

寒假信道估计技术相关内容总结 目录 第一章无线信道 (3) 1.1 概述 (3) 1.2 信号传播方式 (3) 1.3 移动无线信道的衰落特性 (3) 1.4 多径衰落信道的物理特性 (5) 1.5 无线信道的数学模型 (7) 1.6 本章小结 (7) 第二章MIMO-OFDM系统 (8) 2.1 MIMO无线通信技术 (8) 2.1.1 MIMO系统模型 (9) 2.1.2 MIMO系统优缺点 (11) 2.2 OFDM技术 (12) 2.2.1 OFDM系统模型 (12) 2.2.2 OFDM系统的优缺点 (14) 2.3 MIMO-OFDM技术 (16) 2.3.1 MIMO、OFDM系统组合的必要性 (16) 2.3.1 MIMO-OFDM系统模型 (16) 2.4 本章小结 (17) 第三章MIMO信道估计技术 (18) 3.1 MIMO信道技术概述 (18) 3.2 MIMO系统的信号模型 (19) 3.3 信道估计原理 (21) 3.3.1 最小二乘(LS)信道估计算法 (21) 3.3.2 最大似然(ML)估计算法 (23) 3.3.3 最小均方误差(MMSE)信道估计算法 (24) 3.3.4 最大后验概率(MAP)信道估计算法 (25) 3.3.5 导频辅助信道估计算法 (26) 3.3.6 信道估计算法的性能比较 (26) 3.4 基于训练序列的信道估计 (28) 3.5 基于导频的信道估计 (28) 3.5.1 导频信号的选择 (29) 3.5.2 信道估计算法 (31) 3.5.3 插值算法 (31) 3.5.3.1 线性插值 (31) 3.5.3.2 高斯插值 (32) 3.5.3.3 样条插值 (33) 3.5.3.4 DFT算法 (33) 3.5.4 IFFT/FFT低通滤波 (33) 3.6 盲的和半盲的信道估计 (34)

导频的OFDM信道估计

目录 摘要............................................................................................................................................. - 2 -第1章绪论............................................................................................................................... - 3 -OFDM技术发展历史............................................................................................................ - 3 -OFDM技术的优点................................................................................................................ - 3 -OFDM技术的缺点................................................................................................................ - 4 -第2章无线信道....................................................................................................................... - 6 -无线信道的衰落特性 ........................................................................................................... - 6 -多普勒效应 ........................................................................................................................... - 7 -无线信道的模型 ................................................................................................................... - 8 -高斯(Gaussian)信道模型................................................................................................... - 8 -瑞利(Rayleigh)信道模型.................................................................................................... - 8 -莱斯(Rician)信道模型........................................................................................................ - 8 -第3章OFDM系统的基本原理 ............................................................................................... - 9 -OFDM系统的基本原理........................................................................................................ - 9 -OFDM系统基本模型.......................................................................................................... - 10 -第4章基于导频的OFDM信道估计方法 ............................................................................ - 12 -OFDM 系统的信道估计模型............................................................................................. - 12 -导频结构 ............................................................................................................................. - 14 -基于块状导频的信道估计 ................................................................................................. - 15 -LS算法............................................................................................................................. - 15 -MMSE算法 ...................................................................................................................... - 17 -仿真结果及分析 ................................................................................................................... - 18 -参考文献................................................................................................................................... - 19 -附录........................................................................................................................................... - 20 -

无线通信系统信道估计技术研究现状

无线通信系统信道估计技术研究现状 摘要:信道估计技术是未来无线通信系统得以实际应用的关键技术。首先介绍了无线通信系统信道模型的特点以及信道估计方法分类,然后重点阐述了目前无线通信系统中非盲信道估计方法的研究现状,并对各种算法的优缺点和性能进行了分析和比较。关键词:信道估计;非盲信道估计;最大似然估计;最小均方;最小二乘 在无线通信系统中,当信号带宽超过信道的相关带宽时,信道就会在时域显示其色散效应,这将导致发射符号序列间产生干扰,即码间干扰。由于码间干扰使接收信号受损,当信道条件已知或者基于准确的信道估计时,由信道引起的失真效应通常可以在接收机得到补偿。若采用非相干检测则可以简化接收机复杂度,不需要进行复杂的信道估计。但对于高斯白噪声信道,非相干检测比相干检测有高达3 dB左右的性能损失,而且,如果延时扩展增加,性能损失将会更严重,这对功率受限系统(例如超宽带通信系统)尤其难以接受。因此,信道估计技术已成为未来无线通信系统的关键技术,也是国内外学者致力研究的热点方向之一。1 无线通信系统信道模型关于无线传播信道的研究已经进行了五十多年,迄今为止,已有大量的信道模型被提出。不同带宽下的无线通信系统的信道模型也各不相同,对于一个好的系统设计而言,理解这些差别和它们对不同系统的影响是非常重要的。一般而言,针对不同的信道模型,信道估计方法也各不相同。无线信道一般可以表示成两种形式:(1)基带信道被表示成抽头延时线的形式,该模型中L个信道抽头是等间隔分布的。该模型下需要估计的参数是L个信道幅度和一个延时参数。(2)基带信道模型中的延时值是任意的,每一径的幅度和延时都需要被估计。对于稀疏信道,第二种方法可能比使用等间隔抽头延时线模型估计的参数数量低得多,因此信道估计更加有效,但是一般不存在闭式解。方法(1)产生了更加容易的参数化信道模型,但是以过参数化为代价的。2 信道估计方法分类目前,无线通信系统的信道估计方法可分为三类:有辅助符号的非盲信道估计、无辅助符号的盲信道估计以及介于两者之间的半盲信道估计,其特点可归纳为:(1)非盲的信道估计:按一定估计准则确定各个待估参数值,或者按某些准则进行逐步跟踪和调整待估参数的估计值,特点是需借助参考信号。很明显,要想实现信道估计,估计理论是其数学基础。①贝叶斯估计:需要已知代价函数、待估计参量和观测数据的完整的概率描述,条件最苛刻;②最大后验概率(MAP)和最大似然(ML):需要代价函数是误差的偶函数,不需其详细形式,但仍需待估计参量和观测数据的完整的概率描述;③线性最小均方误差(LMMSE):只需知待估计量与观测数据的一阶或二阶统计特性;④最小二乘(LS):只需把估计问题作为确定性的最优化问题来处理。非盲估计方法的优点是可以获得较好的系统性能, 但是它降低了频带利用率并且无法适用于不可能在发送端提供训练序列的场合,例如在军事侦听过程中,无法获得敌人确定的训练序列。(2)盲估计:利用调制信号本身固有的、与具体承载信息比特无关的一些特征(比如恒模、子空间、有限字符集、循环平稳和高阶统计量等)或采用判决反馈的方法进行信道估计。盲估计方法的优点是提高了系统的频带利用率,适用于接收端无法确定训练序列的场合,具有自我恢复性,且可在未知数据调制和编码方式的情况下正常工作。缺点是估计性能差,且估计过程较非盲方法漫长。(3)半盲估计:在发射信号中插入导频,克服基于二阶统计量盲方法固有的模糊度问题,同时使用盲方法进行信道估计,从而结合了盲估计与非盲估计的优点。目前半盲方法可分为基于二阶统计量半盲方法和基于一阶统计量的半盲方法。3 非盲信道估计方法研究现状如前所述,根据目前无线通信系统信道模型的分类,目前的非盲信道估计方法可分为:信道幅度增益和径延时联合估计以及信道幅度增益的估计方法。下面就介绍这两种经典估计方法在窄带或宽带通信系统中的应用。 3.1信道幅度增益和径延时联合估计的方法由于CDMA系统能够分辨多径元,并经常使用Rake接收机(或其他更加复杂的检测方案)收集多径能量,以获得多径分集,所以需要对多径

CDMA信道分类及介绍

2.4.1.1 前向物理信道 前向链路包含的物理信道如图2-13 所示。 对于SR1 和SR3,前向链路包含的物理信道有所不同,表2-1、表2-2 分别指明了SR1 和SR3 下每种信道的有效信道数范围。 表2-1 SR1 的前向信道类型 信道类型数目 前向导频信道 1 发送分集导频信道 1 辅助导频频道无要求 辅助发送分集导频信道无要求 同步信道 1 寻呼信道7 广播信道无要求 快速寻呼信道 3 公共功率控制信道7 公共分配信道7 前向公共控制信道7 前向专用控制信道1/每个前向业务信道 前向基本信道1/每个前向业务信道 前向补充码道(只有RC1 和RC2)7/每个前向业务信道 前向补充信道(只有RC3 到RC5)2/每个前向业务信道 表2-2 SR3 下前向CDMA 信道的信道类型 信道类型数目 前向导频信道 1 辅助导频信道无要求 同步信道 1 广播信道无要求 快速寻呼信道 3 公共功率控制信道7

公共分配信道7 前向公共控制信道7 前向专用控制信道1/每个前向业务信道 前向基本信道1/每个前向业务信道 前向补充信道2/每个前向业务信道 下面简要介绍每个信道的作用: 1. 导频信道 前向链路中的导频信道包括前向导频信道F-PICH、发送分集导频信道F-TDPICH、辅助导频信道 F-APICH 和辅助发送导频信道F-ATDPICH,它们都是未经调制的扩谱信号。这些信道的用途是使基 站覆盖范围内的终端能够获得基本的同步信息,也就是各基站的PN 短码相位信息,终端以它们为依 据进行信道估计和相干解调。 2. 同步信道F-SYNC F-SYNC 用于传送同步信息,在BS 覆盖范围内,各终端可利用这种信息进行同步捕获,开机的 终端可利用它来获得初始的时间同步。由于F-SYNC 使用的PN 序列偏置与F-PICH 使用的偏置相同, 一旦终端捕获了F-PICH 获得同步,F-SYNC 也实现了同步。F-SYNC 的数据速率为固定的1200bit/s。3. 寻呼信道F-PCH 寻呼信道F-PCH 供BS 在呼叫建立阶段传送控制信息。通常,终端在建立同步后,就选择一个F-PCH(或在基站指定的F-PCH)监听由BS 发来的指令,在收到BS 分配业务信道的指令后,就转入分配的业务信道中进行信息传输。F-PCH 以固定的速率9600bit/s 或4800bit/s 传递信息。虽然有两种可选择的速率,但在一个给定的系统中,所有的F-PCH 都必须采用同样的速率。F-PCH 应被分为时长为80ms 的时间片,每个时间片含4 个帧,帧长为20ms。 4. 广播控制信道F-BCCH BS 用它来发送系统开销信息,以及需要广播的消息(例如短消息)。F-BCCH 可以工作在非连续 方式。当F-BCCH 工作在较低的数据速率,如4800bit/s 时,时隙周期为160ms,40ms 帧在每时隙内 重复三次,这时F-BCCH 可以用较低的功率发射,而终端则通过对重复的信息进行合并来获得时间分 集的增益;减小F-BCCH 的发射功率对于提高前向链路的总体容量是有帮助的。 5. 快速寻呼信道F-QPCH BS 用它来通知在覆盖范围内工作于时隙模式、且处于空闲状态的终端,是否应该在下一个 F-CCCH 或F-PCH 的时隙上接收F-CCCH 或F-PCH。使用F-QPCH 最主要的目的是使终端不必长时 间地连续监听F-PCH,从而延长待机时间。QPCH 每个时隙划分为寻呼指示符(PI)、配置改变指示 符(CCI)和广播指示符(BI)。 寻呼指示符(PI)用来通知特定终端在下一个F-CCCH 或F-PCH 上有寻呼消息或其它消息。当有 消息时,BS 将该终端对应的PI 置为“ON”,终端被唤醒;否则置为“OFF”,终端进入睡眠状态。 广播指示符(BI)只在第一个F-QPCH 上有。终端用于接收广播消息的F-CCCH 时隙上将要出现 内容时,BS 就把对应于该时隙的F-QPCH 时隙中的BI 置为“ON”,否则为“OFF”。 配置改变指示符(CCI)只在第一个F-QPCH 上有。BS 的系统配置参数改变后,经过一段时延, BS 把CCI 置为“ON”,以通知终端重新接收包含系统配置参数的开销消息。这样终端可以不必反复 解调重复的系统配置消息,降低功耗。 6. 公共功率控制信道F-CPCCH F-CPCCH 由时分复用的公共功率控制子信道组成,每个公共功率控制子信道控制一个R-CCCH 或R-EACH。 F-CPCCH 的一个公共功率控制组有2N 个公共功率控制子信道,编号从0 到2N-1,它们平均分 配到I 支路和Q 支路。在公共功率控制子信道没有数据发送时,相应比特位置的功率为0。 7. 公共指配信道F-CACH

信道及其对应关系

行物理信道-专用上行物理信道(UL-DPCH) Dedicated Physical Data Channel—DPDCH;Dedicated Physical Control Channel--DPCCH 功能:? 上行基本业务承载信道,用于UE在通信过程中传送话音, 数据和控制信息。UL-PDCH由两种信道组成:上行数据信道(UL-DPDCH)和上行控制信道(ULDPCCH)。内容:? 上行数据信道(UL-DPDCH):传输话音和低速数据;? 上行控制信道(UL-DPCCH ):传输物理层(Layer1)的控制消息。 帧长为10ms,分15个时隙,每时隙2560 chips,– DPDCH的扩频因子为4到256,–每个DPCCH时隙由Pilot,TFCI (Transport Format Combination Indicator),FBI (FeedBack Information),TPC (Transmit Power Control)构成。 上行物理信道-随机接入信道(PRACH)Physical Random Access Channel—PRACH –功能:属于上行公共物理信道,用于传送移动台的随机接入信息。它由两部分组成:? 前导部分(Preamble):4096chips,签名序列的256次重复。? 消息部分(Message): 10ms或20ms,话音和低速数据的接入请求消息。随机接入的传输方式:每两帧有15个接入时隙,每个接入时隙间隔为5120chips。 上行物理信道-物理公共分组信道(PCPCH)Physical Common Packet Channel--PCPCH –功能:属于公共物理信道,用于移动台传送快速和频繁的数据和控制信息。–内容:高速数据和控制信息。 下行物理信道-同步信道(SCH) Synchronization Channel – SCH 属于下行同步信道,用于给手机提供小区搜索导引,并区分不同的小区。 – SCH有两种类型:? 主同步信道P-SCH;? 辅同步信道S-SCH。 主同步信道(P-SCH) –功能:属于下行公共物理信道,在移动台接入系统时,为其提供搜索的同步基准 –内容:没有数据, 只有特定码组 –结构:? 一个无线帧的时长:10ms;? P-SCH由长度为256 chips的码组成,也称主同步码(PSC), 在每个时隙上发射;? 一个无线帧由15个时隙组成,每个时隙发送一次主同步码;? 主同步码具有良好的非周期自相关特性,便于移动台的捕获;? 所有小区的PSC均一样,手机里也有同样的码组; 辅同步信道(S-SCH) –功能:属于下行公共物理信道,在移动台接入系统时,为其提供获取该小区所使用的主扰码组信息 –内容:没有数据, 只有特定码组 下行物理信道-下行公共导频信道(DL-CPICH)Common Pilot Channel – CPICH属于下行导引信道, 在接收信号时的相位参考基准 – CPICH有两种类型:? 主用导频信道P-CPICH;? 辅用导频信道S-CPICH 主公共导频信道(P-CPICH) –功能:属于下行导引信道,作为UE在接收信号时的相位参考基准 –内容:全1码,通过加扰为UE提供接入某小区所使用的主扰码(Primary Scrambling Code )信息 –结构:? 一个无线帧的时长:10ms;? 数据传送速率: 30kbps;? 扩谱系数:256;? 使用固定的信道化编码Cch,256,0;? 扰码使用主扰码(PSC);? 每个小区仅有一个P-CPICH;

相关文档
相关文档 最新文档