文档库 最新最全的文档下载
当前位置:文档库 › 齿轮故障分析 (DEMO)

齿轮故障分析 (DEMO)

齿轮故障分析 (DEMO)
齿轮故障分析 (DEMO)

齿轮故障分析

一、齿轮失效机理:

1.制造和装配不善造成的,如齿形误差、轮齿与内孔不同心,各部分的轴线不对中,大型齿轮的不平衡等;

2.齿轮在长期运行中形成的,由于轮齿表面承受的载荷很大,两啮合齿轮之间既有相对滚动又有相对滑动,而且相对滑动的摩擦力在节点两侧的方向相反,从而产生了力的脉动,在长期运行中导致齿面发生点蚀、胶合、磨损、疲劳、剥落、塑性流动及齿根裂纹,甚至断齿等失效现象。

齿轮的第一类失效主要引起不平衡和啮合不良,前者使振动加剧,后者将诱发齿轮的第二类失效。第二类失效主要是指啮合齿面上的损伤,这些损伤会造成运转时齿面间的撞击,从而产生具有一定频率特征的振动的声音;齿面产生这些损伤时,剥离的金属微粒必然进入齿轮箱的润滑油内,不同类型的损伤其微粒的形貌特征、化学成分、数量多少等方面都有所区别。

二、齿轮脱啮振动机理

脱啮振动产生的基本原因是惯性作用。惯性作用仅反映了脱啮现象产生动因,但不能说明产生脱啮振动齿轮副的内在因素。侧隙是产生脱啮的基本条件(内因),如果没有侧隙也就不可能产生脱啮。由于惯性力和脱啮位移效应产生静态脱啮,然后撞击、振动和共振等。产生动态脱啮影响静态脱啮的因素有:啮合刚度、有效齿形误差、额定载荷、等效从动轮系质量、脱啮时间以及转速n 。

齿轮在传动过程中存在着撞击、振动、共振及耦合共振等,由于上述原因产生动态脱啮。脱啮振动越严重,齿轮噪声越大。

啮合冲击:齿轮啮合存在间隙与误差,存在啮合刚度变化,在传动过程中不可避免的存在脱啮,即“脱啮—接触—分离—接触”的过程,从而产生了“撞击”称之为啮合撞击。冲击力F大小取决于脱啮位移量h 。

导致齿轮剧烈振动的内在因素是齿轮啮合刚度,支承扭转刚度和等效转动惯量。反映了动态耦合特性,属参数激励;啮合刚度变化和相对运动误差变化是产生调制的根源,为传动误差效应。根据动力学特性分析,说明动态脱啮特征首先是导致共振,其次是产生调制波,随着刚度变化及运动误差变化加剧其基本频率边频增加。

当齿轮副中有一个齿轮轴线与轴不重合时,往往会产生以啮合频率fm为载波频率,以故障齿轮转频fc为调制频率的调幅现象。调幅作用使信号总能量增加,这部分能量的大小恰恰反映了齿轮故障的程度,而调制边带的距离fc则表明了故障产生的部位。

三、常用齿轮故障分析方法

1.幅值调制分析:

调制在数学上可分为幅值调制、频率调制和相位调制。幅值调制是由于节线冲击,啮合冲击等忽大忽小而造成的。比较典型的例子是齿轮偏心。使两齿轮中心发生周期性的变化,因而节线冲击、啮合冲击随之产生周期变化。幅值调制从数学上看,在时域上相当于两个信号相乘,在频域上相当于两个信号相卷积,两个信号中,频率相对

较高的称为载波,相对较低的称为调制波。

2.利用包络技术进行诊断

通常齿轮的固有频率fe = 1∽10KHz,属于高频振动,而一般齿轮的啮合频率和转频都在低频段。故所设定的包络带域应不含fm、fr、仅含fe 。经过检波和共振解调可显示齿轮共振频率的激励频率,即故障频率。

3.振动频率分析

齿轮在运行过程产生的振动是比较复杂的,由于齿轮所受的激励不同,使齿轮产生不同类型的振动。因此、振动频率也有所差别,其主要有以下各种类型:

1)齿轮的啮合过程中由于周节误差、齿形误差或均匀磨损等都会使齿与齿轮之间发生撞击,撞击的频率就是它的啮合频率。齿轮在此周期撞击力的激励下产生了以啮合频率为振动频率的受迫振动,频率范围一般在几百到几千赫内。

2)由于齿轮啮合过程中齿轮发生弹性变形,使刚刚进入啮合频率齿轮发生撞击,因而产生沿着啮合线方向作用的脉动力,于是也会产生以啮合频率为频率的振动。对于齿廓为渐开线的齿轮,在节点附近为单齿啮合,而在节点两侧为双齿啮合,故其刚度是非简谐的周期函数,所以产生的强迫振动与上述第一种情况不同,不仅有以啮合频率为频率的基频振动,而且还有啮合频率的高次谐波振动。

3)齿与齿之间的摩擦在一定条件下会诱发自激振动,主要与齿面加工质量及润滑条件有关,自激振动的频率接近齿轮的固有频率。

4)齿与齿之间的撞击是一种瞬态激励,使齿轮产生衰减自由振动,振动频率就是齿轮的固有频率,固有频率通常在1-10千赫内。

5)因齿轮、轴、轴承等元件不同心、不对称、材料不均匀等原因产生的偏心、不平衡其离心惯性力使齿轮轴系统产生强迫振动,振动的频率等于轴的转动频率(一般在100赫内)及其谐波。

6)由于齿面的局部损伤而产生的激励,其相应的强迫振动频率等于损伤的齿数乘以轴的转动频率。

7)啮合频率及其各次谐波的分析:

齿轮运转时会产生齿轮的啮合振动,其啮合频率是齿轮振动中最为突出的成分,它是齿轮磨损的一个灵敏度标志。当齿轮均匀磨损后,在频谱图上啮合频率及其各次谐波的幅值都会上升,值得注意的是,啮合频率的各次谐波的幅值比基波的幅值上升得快。齿轮运转时,齿面上的点蚀、剥落等损伤也会在啮合频率及其各次谐波成分中表现出来。

齿轮的振动频率基本上可归纳为三类:轴的转动频率及其谐波、齿轮的啮合频率及其谐波、齿轮自身的各阶固有频率。齿轮实际的振动往往是上述各类振动的某种组合。不同状态下其时域和频域的图形均有明显的区别。不过这些振动曲线都是经过低通滤波后得到的,也就是说只显示出其中频率较低的转动频率和啮合频率及它们的谐频,而滤去了高频的衰减自由振动。实际上,齿轮的自由振动经由轴、轴承传到齿轮箱体时,犹如通过一个机械低通滤波器,因此在轴承座等处测得的振动信号,一般只包含转动频率与啮合频率及其谐波。

4.相位调制分析

在齿轮传递系统中,齿轮根部裂纹,轴的裂纹和联轴节的松动将削弱轴系的抗扭刚度,并反映为相位调制量。

区别不同类的故障应分析不同类故障的特征。对于裂纹齿轮,它最突出的特点是相位调制的局部性;而扭振和刚度变化对相位的调制的影响则体现在旋转频率分量和高次谐波上。

由联轴器松动引起的轴系扭振变化反映在相位调制信息的旋转

频率分量上。

另外、有一些干扰对相位调制量有影响,如外界的冲击,润滑油的杂质,滚动轴承滚动体的旋转等等。这些因素常常带有随机性或与轴的旋转非完全同步,通过时域同步平均处理,一般可以排除这些干扰,提高可靠性。

在多级齿轮传动中,一旦形成齿根裂纹后,产生的相位调制信息会沿传动系统传递并扩散,因此在同一测点可获得多个故障源的信息,这给故障诊断带来了方便。如果被测轴上的齿轮是完好的,则上级或下级齿轮的裂纹故障信息可以在一根轴上测到。

根据裂纹故障的传递特性,测点对不同位置的传递特性,测点对不同位置的故障源的敏感程度不同。当故障发生在测点的上一级齿轮时,测点振动的相位调制先是滞后,然后再恢复。另一种情况是故障发生在测点的下一级齿轮,测点振动的相位调制是超前,然后再恢复。

在应用解析信号提取相位调制量时,可利用参考信号的间距确定中心频率f。;

对啮合振动进行连续监视,由相位调制信息的变化,区分故障初期,中期及晚期阶段。

5.调制效应产生的边频带分析:

在一对齿轮啮合的过程中,其啮合频率及其谐波各次谐波可以看作一个高频振荡,即把它看作载波。而那些在每周呈现一次或两次的振动信号,如齿面上的点蚀,剥落后引起的振动信号(即故障信号)可视为缓变信号,即调制信号。两种信号同时出现时,就会产生调制效应。

在频谱图中,两谱线间的间隔即为其调制信号的频率,这是非常有价值的诊断信号。找出调制信号的频率,即可判断其相应的故障。调制又分为振幅和频率调制。

I.振幅调制

振幅调制简称调幅。齿轮齿距的周期性变化,载荷的波动、局部及均匀分布的故障都会产生振幅调制效应。

1)齿轮出现局部缺陷(裂纹、断齿、剥落)时,齿轮一周产生一次冲击振动,相当于啮合频率被一个短的周期脉冲调制,因而其频谱在啮合频率两侧有大量的边带,且边频幅值较低,起伏不大,分布均匀且平坦。

t

f

2)均布缺陷

均布缺陷是一种分布均匀的缺陷,相当于时域包络线较宽的脉冲。因此、它在频域中表现为在啮合频率两边产生一簇幅值较高,起伏较大,分布较窄的边频带。不少试验证明,啮合频率的第四次谐波对故障反映灵敏,边带分布也极为丰富,是信息的汇集之处。

3)当边频间隔为旋转频率fr时,可能为齿轮偏心,齿距的缓慢的周

期变化及载荷的周期波动等缺陷存在,齿轮每旋转一周,这些缺陷就重复一次,即这些缺陷的重复频率与该齿轮的旋转频率一致。

4)齿轮的点蚀等分布故障会在频谱图上形成与3)相似的边频带,

但其边频阶数少而集中在啮合频率及其谐频的两侧。

5)齿轮的剥落,齿根裂纹及部分断齿等局部故障会产生特有的瞬态

调制,在啮合频率及其谐波两侧产生一系列边频带,其特点是阶数多且分散。

6)当齿轮传动中出现齿距误差,载荷波动以及联轴器不平衡等缺陷

时,齿轮每旋转一周就会产生一次或几次振动,这些缺陷的频率与该齿轮轴的轴频fc成正比。因此、在频谱的啮合频率两侧将产生fm±fc的一簇边频带。

7)当齿轮有安装偏心时,会出现下边带。

8)轴不对中,会产生fm ±2fc的边带。

II.调频效应

调频效应是由于齿距周期性变化及载荷波动引起的。事实上,一个齿轮上载荷波动就会引起速度的波动。所以,在调幅的同时也必然会产生频率调制效应。调频的结果同样是引出一簇边频带,其间距的涵义与调幅时相同。在啮合频率fm两侧有一簇边频带其谱线的间隔即特征频率fc,它等于齿距一个变化周期的倒数即fc=1/tc;

从理论上讲,由调幅、调频产生的边频带对载波应该是对称的,但实际上,由于经常是调幅和调频效应同时产生,而且有相位等的综合因素影响,因此谱图上会形成不对称的边带。

6.固有频率分析:

当啮合频率或其高阶谐波接近或等于齿轮的某阶固有频率时,激励齿轮固有频率共振,齿轮将产生强烈振动;

在常速旋转的齿轮中,其振动波形包含有啮合频率和啮合冲击引发的自由振动的固有频率这两个主要成分。(啮合频率小于、等于齿轮固有频率);而在高速旋转的齿轮中,因啮合频率大于固有频率(没有与齿轮固有频率接近的激励频率),所以齿轮只发生啮合频率成分的振动,而不发生固有频率的振动。

7.转速变化的识别:

齿轮在无故障时,轴的转速近似为恒速。齿轮的裂纹引起的转速波动导致平均转速下降。

四、齿轮故障综合特征:

1.均匀性磨损

齿轮径向间隙过大,不适当的齿轮间隙以及齿轮负荷过大等原因,将增加齿轮啮合频率和它的谐波成分幅值,而不产生边频。在恒定负荷下,如果发生齿轮啮合频率和它的谐波成分变化,则意味着齿的磨损,挠曲和齿面误差中产生齿的分离(脱齿)现象。而齿轮磨损的特征是,频谱上啮合频率及其谐频幅值都会上升,高次谐波的幅值增加较多。

正常齿轮与故障齿轮噪声频谱有明显差异,正常齿轮频谱图上啮合频率很突出,其谐波的幅值随谐波的次数增大,特别是谐波幅值相对增加很多。随着磨损程度的增大,高阶谐波越来越突出,整个谱图上出现“梳”状图形。

2.不均匀的分布故障

如齿轮偏心,齿距周期性变化及载荷波动等,将产生幅值调制和频率调制,从而在啮合频率及其谐波两侧形成边频带,边带的间隔频率是齿轮转速频率,该间隔频率是与有缺陷的齿轮相对应的。值得注意的是,对于齿轮偏心所产生的边带,一般出现的是下边带成分,即fm -n(n = 1、2、3、....),上边带是很少出现的。fm -载波频率(啮合频率);fe —调制波频率(旋转频率);

3.齿面剥落、裂纹以及齿的断裂等局部性故障,将产生周期性冲击

脉冲,啮合频率为脉冲频率所调制,在啮合频率及其谐波两侧形成一系列边带,其特点是边带的阶数多而分散,而点蚀等分布性故障形成的边带,在啮合频率及其谐波的两侧分布的边带阶数少而集中,这些边带随着故障的发展其图形也将发生变化。

4.齿的断裂或裂缝,每当轮齿进入啮合时就产生一个冲击信号。这

种冲击可激起齿轮系统的一阶或几阶自振频率。但是、齿轮固有频率一般都为高频(约在1-10KHz范围内),这种高频成分传递到齿轮箱时已基本上被衰减掉,多数情况下只能测到啮合频率和调制的边频。

相关概念

●齿轮箱振动特征信息:

齿轮箱运行时,传感器拾取的振动信号不论是时域的还是频域的,通常都十分复杂,但它不外乎是由下列一些成分综合构成的:1)啮合频率及其各次谐波;

2)隐含成分(鬼线),降低说明齿廓磨损信息;

3)在啮合频率及其它一些高频成分两边,由于调制效应产生的边频带;

4)转速频率及其低次谐波---这是由于齿轮轴每旋转一周重复产生的附加脉冲引起的;

5)交叉调制成分等。

●附加脉冲

失衡、不对中及机械松动等缺陷都会引起附加脉冲。附加脉冲与调频、调幅效应不同;后者对称于零线,前者不对称于零线,它们在时域信号中具有明显特征。

在频谱中,调制信号表现为啮合频率两侧的边频带,而附加脉冲只是轴频的低次谐波。

在实际谱分析中,如仅出现下限边频带(如fm—fc,fm—2fc….)时,则很可能是由于轮轴偏心之类缺陷引起的。

●交叉调制成分:

在齿轮箱振动的频谱中还会出现其它成分,这些频率成分大都是由上述基本成分互相调制而形成的,表现为一些频率的和频及差频。它们并不独立,只有哪些基本成分改变时才会有所改变,一般不用去考虑和加以分析。

●副疲劳磨损试验结论:

齿轮副条件设置:齿轮Z = 50;n = 1500r/min;新齿轮开始止于严重点蚀。

1)新齿轮刚开始运转时,从自功率谱可见整个振动的能量水平较低,啮合频率的基波、二次、三次、四次谐波的振动幅值依次降低。

2)随着齿轮的运转,齿轮产生中度疲劳性点蚀以后,整个齿轮副的振动量加大,二次谐波的振幅超过基波振幅,且在靠近二次谐波两边产生了丰富的边带,说明齿面点蚀使啮合频率及其谐波受到故障信号的调制,且调制信号频率恰好与轴频相等。

3)当齿面出现严重点蚀(剥落面积达33mm2)时,频谱的底噪

声急剧上升(总能量加大)而啮合频率的谐波延伸到8次,整个齿轮副的振动能量已达到很高的水平。

啮合频率分析也有其不足之处,因为它毕竟是众多齿轮振动能量的平均值,因此在局部轮齿损伤时,其幅值的增长就不太显著,只有在大多数轮齿受到磨损或出现点蚀、剥落等损坏时,才有明显的增量。

齿轮故障一般常用概念:

一、齿轮故障诊断分类

1、齿轮磨损

2、齿轮负荷过大

3、齿轮偏心或后冲

4、齿轮不对中

5、齿轮断齿

6、齿隙游移故障

二、振动测点布置要点

1、尽可能在每个轴承座上测量振动。

2、在水平、垂直和轴向三个方向上测量振动。

3、斜齿轮、螺旋齿轮和人字齿轮会产生较大轴向振动。

4、直齿轮一般在径向测量振动,但有时也会产生较大的轴向振

动,比如齿轮不对中。

三、振动测量要点

1、必要时采用多个传感器。

2、测量兼顾高低频段振动。

3、不同齿轮的啮合具有不同的啮合频率。

4、多级齿轮箱可当作多个单级齿轮看待。

四、齿轮正常振动的频谱特点

1、可以看到齿轮的工频。

2、可以看到齿轮啮合频率以及它的很小的倍频,并分别伴有很

小的转速边频带。

3、峰值振幅较低,没有齿轮的固有频率的振动频谱峰。

4、最大频率范围F max 推荐设为至少3.25GMF。

若齿轮齿数未知,设置F max 为200×RPM,一旦获知齿数,立

即更正。

五、齿轮磨损故障特点

1、齿轮磨损的较好指示不是齿轮啮合频率,而是齿轮的固有频率。齿轮磨损会激励产生有故障齿轮转频为边频的齿轮共振频率;

2、齿轮磨损严重时,不仅齿轮啮合频率周围会出现边频带,还会出现齿轮固有频率振动。

3、与齿轮啮合频率幅值相比,边频带幅值的大小更能反映磨损的严重程度。

4、边频带组数越多,磨损越严重。

5、当齿轮磨损发生时,齿轮啮合频率振幅可能并不发生变化。

6、如果参与啮合的多个齿轮有问题,则在同一啮合频率周围会出现多个边频带。

六、齿轮载荷影响

1、齿轮啮合频率对齿轮负荷非常敏感。高的齿轮啮合频率振幅不

一定显示有问题;

2、不同时间测得的齿轮啮合频率的幅值改变并不意味齿轮故障

(尤其边频带幅值依然较小,没有齿轮固有频率出现时)。3、最好在齿轮满负荷状态下测量振动。

七、轮偏心与后冲(反撞力)、不平行

1、齿轮偏心与后冲均会引起齿轮固有频率振动和齿轮啮合频

率的振动。

2、啮合频率周边有较高的边频存在说明齿轮有偏心、后冲、或

轴不平行问题;

六、齿轮不对中

1、齿轮不对中一般总能产生齿轮啮合频率的高次谐波。及伴有

齿轮转速的边频带。

2、通常啮合频率的一倍频幅值较低,但啮合频率的两倍和三倍

频幅值较高。(即与相当于齿轮轴旋转次数相对应,)

3、齿轮不对中时,齿轮啮合频率周围的边频带的间距为2×

RPM乃至3×RPM 。

七、齿轮齿断裂

1、齿轮齿断裂时,会在该齿轮转速的1×RPM和齿轮固有频率

处产生较高振动,并在齿轮固有频率两侧产生间距为该齿轮

转速的边频带。

2、齿轮齿面有大块的剥落时,也会产生相同的振动特征。

3、下图所示时域波形有助于区分齿轮断裂与齿轮不平衡。

正常冲击

4、最好的诊断是利用时域波形,冲击的间隔时间为频率的倒

数。在许多情况下,齿轮齿断裂几乎不产生1×RPM振动,

但会在时域波形上产生尖峰。

八、齿轮副安装相问题

1、齿轮副安装相频率(GAPF)会导致GMF的1/Na倍频振动(若

Na>1;Na-安装相因子,为大小齿轮齿数所有公有质因素

的乘积)

2、(Ta/ Na)个大齿轮齿只与(Ta/ Na)个小齿轮齿啮合,在

齿轮上产生Na种磨损形式。

3、Na>1的齿轮副若有制造问题或某一齿面产生损伤,即产生

GAPF及其倍频。

十一、齿隙游移故障

(一)正常齿轮频谱

1.正常的齿轮频谱显示1X和2X的齿轮轴转频和齿轮的啮合频率;

2.齿轮啮合频率伴有齿轮轴的转频;

3.峰值振幅较低,没有自然频率产生。

2625 rpm

8 teeth GMF= 21k CPM

1500 rpm

14 teeth

(二)齿轮载荷影响

1.齿轮啮合频率对载荷敏感;

2.高的齿轮啮合频率振幅不一定显示有问题;

3.分析应在系统负载状态下进行。

(三)齿轮磨损

1.齿轮磨损会激励产生有故障齿轮转频为边频的齿轮共振频率;

2.边频能够比齿轮啮合频率更好的显示齿轮磨损问题;

3.当齿轮磨损发生时,齿轮啮合频率振幅可能并不发生变化。

14 teeth

1500 rpm

8 teeth

2625 rpm

GMF = 21k CPM

(四)齿轮的偏心和后冲、轴不平行

1.啮合频率周边有较高的边频存在说明齿轮有偏心、后冲、或轴不

平行问题;

2.故障齿轮频谱受边频调制;

3.有故障的齿轮后冲一般会激励齿轮的共振频率。

(五)齿轮不对中

1.齿轮不对中几乎总是会产生有轴转速频率2X或更高的谐频的边

频;

2.1X齿轮啮合频率振幅较小,3X齿轮啮合频率有较高的振幅;

(Small amplitude at 1X GMF but higher levels at and 3X GMF)3.设置最高频率范围至少要包括2X GMF。

齿轮不对中一般总能产生齿轮啮合频率的高次谐波

通常啮合频率的一倍频幅值较低,但啮合频率的两倍和三倍频幅值比较高

齿轮不对中时,齿轮啮合频率周围的边频带的间距为2X RPM, or even 3X RPM

(六)齿轮破裂和断齿

1.齿轮破裂或断齿会在齿轮轴转频产生高的振幅;

2.故障会激励齿轮自然频率并伴有齿轮轴轴频的边频;

3.最好的诊断是利用时域波形;

4.冲击的间隔时间为频率的倒数。

齿轮故障诊断

第1章齿轮箱失效比重及失效形式 齿轮箱在机械设备中扮演着非常重要的角色,通常情况下,原动机输出的转矩和转速不能直接用于执行元件执行操作,需要进行转矩放大和降低转速,通常使用的传动设备有齿轮减速箱、带传动、链传动等,由于齿轮箱传动瞬时传动比恒定、传动效率高、工作可靠、使用寿命长、结构紧凑、适用范围从1W到数万KW等优点,所以齿轮箱传动是机械传动系统中运用最广泛的一种传动形式。 1.1 齿轮箱失效原因及比重 机械设备中的齿轮箱从装配投入使用开始,除了设备维护以外,齿轮箱都需要保持一个稳定的运行状态,长期的高负荷运转使齿轮箱的故障率非常大,在机械设备中,造成齿轮箱故障的原因及失效比重如下表所示: 由此可见,齿轮箱失效主要的原因是维护和操作不当,相邻的零件故障也会造成齿轮箱的故障,设计不合理也是严重影响齿轮箱使用的重要因素,为保障机械设备在运行中稳定可靠,除了合理设计齿轮箱外,正确选择相邻零件、合理操作维护是保障稳定运行的重要手段。当出现故障时,能够准确找出故障是对齿轮箱维护的重要前提,因此,掌握齿轮箱故障诊断技术非常重要。 1.2 齿轮箱失效零件及失效比重 在齿轮箱中,失效的主要零件及失效比重如下表所示:

由此可见,齿轮失效是造成齿轮箱失效的主要原因,由于制造误差、装配不当或在不适当的条件(如载荷、润滑等)下使用,齿轮常发生损伤,从而导致机械设备不能够用稳定运行,甚至发生生产安全事故。 1.3 齿轮的主要失效形式 齿轮的主要失效形式有四种:轮齿断裂、齿面磨损、齿面疲劳、齿面塑性变形。 1.31 轮齿折断 齿轮副在啮合传递运动时,主动轮的作用力和从动轮的反作用力都通过接触点分别作用在对方轮齿上,最危险的情况是接触点某一瞬间位于轮齿的齿顶部,此时轮齿如同一个悬臂梁,受载后齿根处产生的弯曲应力为最大,若因突然过载或冲击过载,很容易在齿根处产生过负荷断裂。即使不存在冲击过载的受力工况,当轮齿重复受载后,由于应力集中现象,也易产生疲劳裂纹,并逐步扩展,致使轮齿在齿根处产生疲劳断裂。 轮齿的断裂是齿轮的最严重的故障,常因此造成设备停机,在齿轮故障中,轮齿折断概率为41%。 1.32 齿面磨损 (1)粘着磨损在低速、重载、高温、齿面粗糙度差、供油不足或油粘度太低等情况下,油膜易被破坏而发生粘着磨损。润滑油的粘度高,有利于防止粘着磨损的发生。 (2)磨粒磨损与划痕含有杂质颗粒以及在开式齿轮传动中的外来砂粒或在摩擦过程中产生的金属磨屑,都可以产生磨粒磨损与划痕。 (3)腐蚀磨损由于润滑油中的一些化学物质如酸、碱或水等污染物与齿面发生化学反应造成金属的腐蚀而导致齿面损伤。 (4)烧伤烧伤是由于过载、超速或不充分的润滑引起的过分摩擦所产生的局部区域过热,这种温度升高足以引起变色和过时效,会使钢的几微米厚表面层重新淬火,出现白层。损伤的表面容易产生疲劳裂纹。 (5)齿面胶合大功率软齿面或高速重载的齿轮传动,当润滑条件不良时易产生齿面胶合(咬焊)破坏,即一齿面上的部分材料胶合到另一齿面上而在此齿面上

齿轮传动系统的故障诊断方法研究要点

齿轮传动系统的故障诊断方法研究内容提要:在机械设备运转过程中,齿轮传动系统通过主、从动齿轮的相互啮合传递运动和能量,这个过程将产生一定形式的机械振动。而诸如磨损、点蚀、制造误差、装配误差等齿轮和齿轮传动系统的各种缺陷和故障必然引起机械振动状态(或信号)发生变化。因此,在齿轮传动系统的振动信号中,蕴涵有它的健康状态(故障与无故障)信息,监测和分析振动信号自然就可以诊断齿轮和齿轮传动系统的故障。 关键词:齿轮故障;故障诊断;振动;裂纹

目录 引言 (1) 第一章影响齿轮产生振动的因素 (2) 1.1 振动的产生 (2) 1.2 振动的故障 (2) 第二章齿轮裂纹故障诊断 (4) 2.1 裂纹产生的原因 (4) 2.2齿轮裂纹分类、特征、原因及预防措施 (4) 2.2.1淬火裂纹 (4) 2.2.2磨削裂纹 (4) 2.2.3疲劳裂纹 (5) 2.2.4轮缘和幅板裂纹 (6) 第三章齿轮故障诊断方法与技术展望 (7) 3.1 齿轮故障诊断的方法 (7) 3.1.1 时域法 (7) 3.1.2 频域法 (7) 3.1.3 倒频谱分析 (8) 3.1.4 包络分析 (8) 3.1.5 小波分析方法 (8) 3.2 齿轮故障诊断技术的展望 (9) 结论 (10) 致谢 (11) 参考文献 (12)

引言 随着科学技术的不断进步,机械设备向着高性能、高效率、高自动化和高可靠性的方向发展。齿轮由于具有传动比固定、传动转矩大、结构紧凑等优点,是改变转速和传递动力的最常用的传动部件,是机械设备的一个重要组成部分,也是易于故障发生的一个部件,其运行状态对整机的工作性能有很大的影响。 在机械设备运转过程中,齿轮传动系统通过主、从动齿轮的相互啮合传递运动和能量,这个过程将产生一定形式的机械振动。而诸如磨损、点蚀、制造误差、装配误差等齿轮和齿轮传动系统的各种缺陷和故障必然引起机械振动状态(或信号)发生变化。因此,在齿轮传动系统的振动信号中,蕴涵有它的健康状态(故障与无故障)信息,监测和分析振动信号自然就可以诊断齿轮和齿轮传动系统的故障。

齿轮箱故障分析和维护使用

风电齿轮箱的故障分析和维护 风力发电机组由叶片、增速齿轮箱、控制系统、发电机、塔架等组成。其中增速齿轮箱作为其传动系统起到动力传输的作用,使叶片的转速通过增速齿轮箱增速,使其转速达到发电机的额定转速,以供发电机能正常发电。因此增速齿轮箱设计及制造相当关键。同时风力发电机组增速齿轮箱由于其使用条件的限制,要求体积小,重量轻,性能优良,运行可靠,故障率低。 随着风电行业的发展,更多更大功率的机组投入商业化运营,因而其维修费用更高。虽然世界上著明的齿轮箱制造企业,如德国的Renk公司,Fland公司,Eickhoof公司以及一些中小企业在这方面都作了研究,并且有的企业也付出了很大的代价,但目前世界风电行业所用增速齿轮箱仍然事故较多。因此,采用先进技术,分析其失败的原因,总结和吸收以往开发其它项目齿轮箱成功的经验,研制高技术性能,高可靠性和良好的可维修性的增速齿轮箱是风力发电机组的关键技术保障。 一、风电齿轮箱故障分析 (一)、齿轮传动的故障原因分析 齿轮传动是机械设备中设备中最为常用的传动方式之一。风电齿轮箱运行状态的正常与否直接关系到整台机组的工作状况。据有关资料统计,齿轮箱发生故障有40%的原因是由于设计、制造、装配及原材料等因素引起的,即是由制造单位设计制造引起的;另有43%的原因是由于用户维护不及时和操作不当引起的;还有17%的原因是由于相邻条件(如电机、联轴节等)的故障或缺陷引起的。当然,风电齿轮箱故障原因是否有这比例关系,还要经过统计得出。由此可见,为了确保风电齿轮箱安全、正常地运行,提高齿轮传动的可靠性,一方面需要改进设计、提高加工制造精度以及改善装配质量,另一方面则必须提高运行管理和维护水平,对齿轮传动装置进行状态监测和故障诊断。 (二).齿轮箱中主要故障及其原因分析 据统计,齿轮箱中其次是轴承,占20%;再者是轴,占10%。最后是箱体和紧固件。由此可见,在齿轮箱中齿轮本身的故障所占比重大。说明在齿轮传动系统中齿轮本身的制造、装配质量及其运行维护水平是关键问题。齿轮在机械加工

机械故障诊断之齿轮故障小议

机械故障诊断之齿轮故 障小议 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

机械故障诊断之齿轮故障小议随着时代的不断发展,机械已日益成为生产过程中不可或缺的一部分。而机械的高性能化、高自动化、高效率化是现代机械的一个重要发展方向。齿轮作为传动机械设备中至关重要的部件,它不仅关乎机械的正常运转,且对整个生产过程的进度与经济效益等产生巨大影响。而齿轮发生故障又是常出现的事件,因此,加大对齿轮出现故障的原因与解决方法的研究尤显必要。本文将针对此进行粗略探讨。 现代化的不断发展让机械设备也日益朝着大型化、复杂化方向发展,其设备的构造与操作原理也愈加复杂。齿轮是机械设备中用来传递动力的重要部件,而齿轮故障又时常发生,这无疑会对机械的整体运作产生不利影响。所以,有必要对齿轮故障进行分析,并能理论联系实际,通过实际案例来寻求解决方法,从而做到故障出现时能及时解决并予以防范。 机械设备中齿轮常见故障分析 齿轮在机械设备中有个重要作用,这就是它能传递运动,而且能控制运动方向,影响运动速度。而为更好地调控齿轮运转速度,就需要齿轮减速机装置的安装。我们知道,与齿轮减速机有关的几个主要频率为轴频、齿轮的啮合频率、轴承的内外圈、滚动体、保持架的频率,它们与

“谐频”、“边频”相结合,成为对齿轮减速机故障判定的依据。同时,与齿轮减速机有密切关系的是齿轮振动,且通过齿轮振动是判断齿轮故障的一个重要方式。因此,笔者将重点针对齿轮减速与齿轮振动的有关故障开展具体探讨。 2.1齿轮振动发生故障的一个重要原因是齿轮在生产与安装中存在失误。生产齿轮是齿轮得以发挥自身作用的首要条件,而生产制作中的微小误差就能导致齿轮的啮合精度降低,从而带来齿轮的振动和噪声增大,这些问题的出现无疑会提高齿轮的故障率[2]。因而,我们的相关机械使用单位应对齿轮的生产源与齿轮安装予以极大关注。 2.2齿轮振动出现故障的另一个原因是与齿轮的工作环境适宜度有关。因不同的工作环境在空气湿度、空气质量、温度等方面都存在差异。而齿轮作为现代化机械,其对工作环境有一定要求。因齿轮在啮合过程中,齿与齿连续冲击使齿轮产生受迫振动,如果此时其工作环境存在高湿度或其他不利影响,就会对齿轮的正常振动带来不利影响。为减少此种不必要的失误,我们的机械使用单位就应提前做好齿轮工作环境的净化工作。 2.3齿轮运行过程中存在因所使用到的润滑剂质量不达标而导致齿轮故障的现象。齿轮的运转少不了润滑剂的调节,有些单位为减少经济成本投入而使用不够清洁的润滑剂,或者使用的润滑剂不足,这些情况无疑会

论述齿轮啮合频率产生的机理及齿轮故障诊断方法分析

一、论述齿轮啮合频率产生的机理及齿轮故障诊断方法 一、齿轮啮合频率的机理 由齿轮传动理论可知,渐开线齿廓齿轮在节点附近为单齿啮合,而在节线的两边为双齿啮合,啮合区的大小则由重叠系数ε决定。因此,每对轮齿在啮合过程中承受的载荷是变化的,从而引起齿轮的振动,另外,一对轮齿在啮合过程中两齿面的相对滑动速度和摩擦力均在节点处改变方向,引起齿轮的振动.这两者形成了啮合频率fz 及其谐波Nfz ,其计算式为: 60z nZ f = 式中 Z ——齿轮的齿数;n ——轴的转速,/min r 。 60z nZ Nf N =? 式中N —自然数,1,2,3,……。N=1称为基波,即啮合频率;N = 2,3,……时,称为二次,三次…谐波。 啮合频率fz 及其谐波Nfz 的频谱特点: ①初始状态,啮合颇率的幅值最高,各次谐波的幅值依次减小(图1的实线部分); ②随着齿轮磨损的增加,渐开线齿廓逐渐受到破坏,使齿轮振动加剧,此时啮合频率及其各次谐波的幅值逐渐增大,而且各次谐波幅值的增加比啮合频率快得多(图中虚线所示); ③磨损严重时,二次谐波幅值超过啮合频率幅值。 图1 啮合频率及其谐波 图2 严重磨损时的啮合频率及其二次谐波 由频谱图上啮合频率及其谐波幅值的增量可判断出齿轮的磨损程度。

啮合频率分析: (1)负载和啮合刚度的周期性变化 负载和啮合刚度的变化可用两点来说明:一是随着啮合点位置的变化,参加啮合的单一齿轮的刚度发生了变化,二是参加啮合的齿数在变化。如渐开线直齿轮,在节点附近是单齿啮合,在节线两侧某部位开始至齿顶、齿根区段为双齿啮合。显然,在双齿啮合时,整个齿轮的载荷由两个齿分担,故此时齿轮的啮合刚度就较大;同理单齿啮合时,载荷由一个齿承担,此时齿轮的啮合刚度较小。从一个轮齿开始进入啮合到下一个轮齿进入啮合,齿轮的负载和啮合刚度就变化一次,所以齿轮的负载和啮合刚度周期性变化的频率与齿轮旋转频率成整数倍关系。 (2)节线冲击的周期性变化 齿轮在啮合过程中,轮齿表面既有相对滚动,又有相对滑动。主动轮带动从动轮旋转时,主动轮上的啮合点从齿根移向齿顶,啮合半径逐渐增大,速度渐次增高;而从动轮上的啮合点是由齿顶移向齿根,啮合半径逐渐减小,速度渐次降低。两轮齿齿面在啮合点的速度差异就形成了主动轮和从动轮的相对滑动。在主动轮上,齿根和节点之间的啮合点速度低于从动轮上的啮合点速度,因此滑动方向向下;在节点处,因为两轮上的啮合点速度相等,相对滑动速度为零。因此,摩擦力在节点处改变了方向,形成节线冲击。由以上分析可知,从一个轮齿开始进入啮合到下一个轮齿进入啮合,发生两次节点冲击,所以节线冲击发生的频率与齿轮旋转频率成整数倍关系。 (3)齿轮运转时,其振动频谱上都含有啮合频率及其谐波分量。随着齿轮的磨损,频谱上的啮合频率及其各次谐波都会上升,即幅值增大。但值得注意的是,啮合频率高次谐波的幅值要比基波的幅值上升得快。啮合频率是齿轮振动中比较突出的成分,它既是齿轮齿廓磨损的一个灵敏指标,同时齿面上产生点蚀、剥落等损伤也会在啮合频率及各次谐波成分上表现出来。对于一对新齿轮来说,其频谱的整个振动能量水平较低,啮合频率的基波及其第二、三次谐波幅值依次减小。对于具有中等点蚀故障的齿轮,其频谱随着点蚀的增加,整个谱的水平都随之增加,且啮合频率高次谐波幅值将超过基波。另一个特点是啮合频率的二次谐波两边的边频带愈加丰富。当齿面出现重度点蚀时,谱噪声总量急剧上升,且啮合频率的谐频延伸到七次以上。啮合频率分析也有其不足之处,它毕竟是众多齿轮振动能量的平均值,因此在局部轮齿呈现损伤时,其幅值的增长就不那么明显,只有大多数轮齿受到磨损或出现点蚀、剥落等损坏时才有明显的增量。 当齿轮发生故障时,振动信号常会发生调制现象而产生调制波(调幅波和调频波),其载

齿轮故障诊断方法综述

齿轮故障诊断方法综述 摘要齿轮就是机械设备中常用得部件,而齿轮传动也就是机械传动中最常见得方式之一。在许多情况下,齿轮故障又就是导致设备失效得主要原因。因此对齿轮进行故障诊断具有非常重要得意义。介绍了故障得特点与几种诊断方法,并比较了基于粒子群优化得小波神经网络,基于相关分析与小波变换,基于小波包与BP神经网络与基于小波分析等故障诊断方法得优缺点,并提出了齿轮故障诊断得难点与发展方向。 关键字齿轮故障诊断诊断方法分析比较发展

目录 第一章齿轮故障诊断发展及故障特点 (1) 1、1 齿轮故障诊断得发展 (1) 1、 2齿轮故障形式与震动特征 (1) 第二章齿轮传动故障诊断得方法 (2) 2、 1高阶谱分析 (2) 2、1、1参数化双谱估计得原理 (3) 2、1、2试验装置与信号获取 (3) 2、1、3 故障诊断 (4) 2、1、4 应用双谱分析识别齿轮故障 (4) 2、2基于边频分析得齿轮故障诊断 (6) 2、2、1分析原理 (6) 2、2、2铣床振动测试 (6) 2、2、3 边频带分析 (7) 2、2、4 故障诊断 (8) 2、 3时域分析 (10) 2、3、1 时域指标 (10) 2、3、2非线性时间分析 (10)

第一章齿轮故障诊断发展及故障特点 1、1 齿轮故障诊断得发展 齿轮故障诊断始于七十年代初,早期得齿轮故障诊断仅限于在旋转式机械上测量一些简单得振动参数,用一些简单得方法进行诊断。这些简单得参数与诊断方法对齿轮故障诊断反应灵敏度较低,根本无法准确判断发生故障得部位。七十年代末到八十年代中期,旋转式机械中齿轮故障诊断得频域法发展很快,其中R、B、Randall与James1、Taylor等人做好了许多有益得工作,积累了不少故障诊断得成功实例,出现了一些较好得频域分析方法,对齿轮磨损与齿根断裂等故障诊断较为成功。进入九十年代以后,神经网络、模糊推理与网络技术得发展与融合使得齿轮系统故障诊断进入了蓬勃发展得时期。 我国学者在齿轮故障诊断研究方面也做了大量工作。1986年,屈梁生、何正嘉在《机械故障诊断学》中分析了齿轮故障得时频域特点。1988年,颜玉玲、赵淳生对滚动轴承得振动监测及故障诊断进行了分析。1997年,郑州工业大学韩捷等在“齿轮故障得振动频谱机理研究”中对齿轮得故障机理做了探讨。西安交通大学张西宁等在“齿轮状态监测与识别方法得研究”中提出了一种新方法即基于一致度分析。 1、 2齿轮故障形式与震动特征 通常齿轮在运转时,由于制造不良或操作维护不善会产生各种形式得故障。故障形式又随齿轮材料、热处理、运转状态等因素得不同而不同,常见得齿轮故障形式有齿面磨损、齿面胶合与擦伤、齿面接触疲劳与弯曲疲劳与断齿。 在齿轮运转状态下,伴随着内部故障得发生与发展,必然会产生振动上得异常。实践证明,振动分析就是齿轮故障检测中最有效得方法。若齿轮副主轮转速为n1,齿数为z1,频率为f1;从轮转速为n2,齿数为z2,频率为f2,则齿轮啮合频率fC 为:fC=Nf1z1=Nf2z2=Nn160z1=Nn260z2(1) 式中:N=1, 2, 3,…。齿轮处于正常或异常状态下,啮合频率振动成分及其倍频总就是存在得,但两种状态下得振动水平有差异。如果仅仅依靠对齿轮振动信号得啮合频率及其倍频成分得差异来识别齿轮得故障就是不够得,因故障对振动

齿轮故障诊断方法综述

齿轮故障诊断方法综述 摘要齿轮是机械设备中常用的部件,而齿轮传动也是机械传动中最常见的方式之一。在许多情况下,齿轮故障又是导致设备失效的主要原因。因此对齿轮进行故障诊断具有非常重要的意义。介绍了故障的特点和几种诊断方法,并比较了基于粒子群优化的小波神经网络,基于相关分析与小波变换,基于小波包和BP神经网络和基于小波分析等故障诊断方法的优缺点,并提出了齿轮故障诊断的难点和发展方向。 关键字齿轮故障诊断诊断方法分析比较发展

目录 第一章齿轮故障诊断发展及故障特点..................... 错误!未定义书签。齿轮故障诊断的发展................................... 错误!未定义书签。 1. 2齿轮故障形式与震动特征 ........................... 错误!未定义书签。第二章齿轮传动故障诊断的方法......................... 错误!未定义书签。 2. 1高阶谱分析........................................ 错误!未定义书签。 参数化双谱估计的原理 .............................. 错误!未定义书签。 试验装置与信号获取 ................................ 错误!未定义书签。 故障诊断 ......................................... 错误!未定义书签。 应用双谱分析识别齿轮故障 ........................ 错误!未定义书签。基于边频分析的齿轮故障诊断............................ 错误!未定义书签。 分析原理 .......................................... 错误!未定义书签。 铣床振动测试 ...................................... 错误!未定义书签。 边频带分析 ...................................... 错误!未定义书签。 故障诊断 ........................................ 错误!未定义书签。 2. 3时域分析.......................................... 错误!未定义书签。

机械故障诊断之齿轮故障分析

机械故障诊断—齿轮故障诊断及分析 [摘要]本文介绍了齿轮的几种典型故障的特征及诊断方法。在齿轮故障诊断过程中,应用振动诊断方法可以解决齿轮的绝大部分问题。 引言 随着科学技术的不断进步,机械设备向着高性能、高效率、高柔性化和高可靠性的方向发展。齿轮由于具有传动比固定、传动转矩大、结构紧凑等优点,是改变转速和传递动力的最常用的传动部件,是传动机械设备的一个重要组成部分,也是易于故障发生的一个部件,其运行状态对整机的工作性能会有很大的影响。 在机械设备运转过程中,齿轮传动系统通过主、从动齿轮的相互啮合传递运动和能量,这个过程将产生一定形式的机械振动。而诸如磨损、点蚀、制造误差、装配误差等齿轮和齿轮传动系统的各种缺陷和故障必然引起机械振动状态发生变化。因此,在齿轮传动系统的所测振动信号中,包含有它的健康状态信息或故障与无故障信息,我们通过监测和分析振动信号自然就可以诊断齿轮和齿轮传动系统的故障。 一、关于齿轮工作过程中引起振动的振源 在齿轮的传动啮合过程中,影响齿轮产生振动的原因很多,有大周期的误差也有小周期的误差。产生大周期振动的因素主要是齿轮加工过程中的运动偏心和几何偏心以及安装中的对中不良;产生小周期振动的因素主要有齿轮加工中的主轴回转误差,啮合刚度的变化,齿轮啮入、啮出冲击,以及在运行过程中产生的断齿、齿根疲劳裂纹、齿面磨损、点蚀剥落、严重胶合等等。其中啮合刚度的周期性变化是齿轮系统振动的重要激振源之一。它的周期性变化主要由以下两个原因所致:一是随着啮合点位臵的变化,参加啮合的单一齿轮的刚度发生了变化;二是参加啮合的齿数在变化。 如图1所示,在啮合开始时(A点),主动轮齿1在齿根处啮合,弹性变形较小;被动齿轮2在齿顶处啮合,弹性变形大,而在啮合终止时(D点),情况则相 反。设齿副I的啮合刚度为k 1,齿副П的啮合刚度为k 2 ,则总的啮合刚度为k=k 1 +k 2 。 由图1可以看出总的啮合刚度随着从单啮合区到双啮合区而作周期性的变化。 图1 直齿轮啮合刚度变化图

齿轮的故障诊断

齿轮的故障诊断 一、齿轮的常见故障 齿轮是最常用的机械传动零件,齿轮故障也是转动设备常见的故障。据有关资料统计,齿轮故障占旋转机械故障的10.3%。齿轮故障可划分为两大类,一类是轴承损伤、不平衡、不对中、齿轮偏心、轴弯曲等,另一类是齿轮本身(即轮齿)在传动过程中形成的故障。在齿轮箱的各零件中,齿轮本身的故障比例最大,据统计其故障率达60%以上。齿轮本身的常见故障形式有以下几种。 1. 断齿 断齿是最常见的齿轮故障,轮齿的折断一般发生在齿根,因为齿根处的弯曲应力最大,而且是应力集中之源。 断齿有三种情况: (1)疲劳断齿由于轮齿根部在载荷作用下所产生的弯曲应力为脉动循环交变应力,以及在齿根圆角、加工刀痕、材料缺陷等应力集中源的复合作用下,会产生疲劳裂纹。裂纹逐步蔓延扩展,最终导致轮齿发生疲劳断齿。 (2)过载断齿对于由铸铁或高硬度合金钢等脆性材料制成的齿轮,由于严重过载或受到冲击载荷作用,会使齿根危险截面上的应力超过极限值而发生突然断齿。 (3)局部断齿当齿面加工精度较低、或齿轮检修安装质量较差时,沿齿面接触线会产生一端接触、另一端不接触的偏载现象。偏载使局部接触的轮齿齿根处应力明显增大,超过极限值而发生局部断齿。局部断齿总是发生在轮齿的端部。 2. 点蚀 点蚀是闭式齿轮传动常见的损坏形式,一般多出现在靠近节线的齿根表面上,发生的原因是齿面脉动循环接触应力超过了材料的极限应力。 在齿面处的脉动循环变化的接触应力超过了材料的极限应力时,齿面上就会产生疲劳裂纹。裂纹在啮合时闭合而促使裂纹缝隙中的油压增高,从而又加速了裂纹的扩展。如此循环变化,最终使齿面表层金属一小块一小块地剥落下来而形成麻坑,即点蚀。 点蚀有两种情况: (1)初始点蚀(亦称为收敛性点蚀)通常只发生在软齿面(HB<350)上,点蚀出现后,不再继续发展,甚至反而消失。原因是微凸起处逐渐变平,从而扩大了接触区,接触应力随之降低。 (2)扩展性点蚀发生在硬齿面(HB>350)上,点蚀出现后,因为齿面脆性大,凹坑的边缘不会被碾平,而是继续碎裂下去,直到齿面完全损坏。 对开式齿轮,齿面的疲劳裂纹尚未形成或扩展时就被磨去,因此不存在点蚀。 当硬齿面齿轮热处理不当时,沿表面硬化层和芯部的交界层处,齿面有时会成片剥落,

齿轮常见故障信号特征与精密诊断

齿轮常见故障信号特征与精密诊断 齿轮故障比较复杂,上节所述的几种信号分析处理方法针对齿轮故障诊断是非常有效的,但在实际工作中,通常是先利用常规的时域分析、频谱方法对齿轮故障做出诊断,这种诊断结果有时就是精密诊断结果,有时还需要利用上节所述的分析处理方法进一步对故障进行甄别和确认,最终得出精密诊断结果。 一、正常齿轮的时域特征与频域特征 没有缺陷的正常齿轮,其振动主要是由于齿轮自身的刚度等引起的。 (1)时域特征 正常齿轮由于刚度的影响,其波形为周期性的衰减波形。其低频信号具有近似正弦波的啮合波形,如图1所示。 (2)频域特征 正常齿轮的信号反映在功率上,有啮合频率及其谐波分量,即有nf c(n=1,2,…),且以啮合频率成分为主,其高次谐波依次减小;同时,在低频处有齿轮轴旋转频率及其高次谐波mf r(m=1,2,…),其频谱如图2所示。 图1 正常齿轮的低频振动波形 图2 正常齿轮的频波 二、故障情况下振动信号的时域特征与频域特征 1.均匀磨损

齿轮均匀磨损是指由于齿轮的材料、润滑等方面的原因或者长期在高负荷下工作造成大部分齿面磨损。 (1)时域特征 齿轮发生均匀磨损时,导致齿侧间隙增大,通常会使其正弦波式的啮合波形遭到破坏,图3是齿轮发生磨损后引起的高频及低频振动。 图3 磨损齿轮的高频振动(a)和低频振动(b) (2)频域特征 齿面均匀磨损时,啮合频率及其谐波分量nf c(n=1,2,…)在频谱图上的位置保持不变,但其幅值大小发生改变,而且高次谐波幅值相对增大较多。分析时,要分析三个以上谐波的幅值变化才能从频谱上检测出这种特征。图4所示反映了磨损后齿轮的啮合频率及谐波值的变化。 随着磨损的加剧,还有可能产生1/k(k=2,3 ,4 ,…)的分数谐波,有时在升降还会出现如图5所示的呈非线性振动的跳跃现象。 2.齿轮偏心 齿轮偏心是指齿轮的中心与旋转轴的中心不重合,这种故障往往是由于加工造成的。 (1)时域特征 当一对互相啮合的齿轮中有一个齿轮存在偏心时,其振动波形由于偏心的影响被调制,产生调幅振动,图6为齿轮有偏心时的振动波形。

齿轮失效分析实例

齿轮失效分析实例 齿轮是传递运动和动力的一种机械零件。齿轮的类型以及特点不仅可决定齿轮的运转特性,并且也决定了它是否会过早地失效。 齿轮失效的类型可划分为四种: (1)磨损失效,是指轮齿接触表面的材料损耗; (2)表面疲劳失效,是指接触表面或表面下应力超过材料疲劳极限所引起的材料失效。进一步又可分为初始点蚀、毁坏性点蚀和剥落。 (3)塑性变形失效,是指在重载荷作用下表面金属屈服所造成的表面变形。它又可进一步分为压塌和飞边变形、波纹变形和沟条变形。 (4)折断失效,是指整个轮齿或轮齿相当大的一部分发生断裂。可以进一步分为疲劳折断、磨损折断、过载折断、淬火或磨削裂纹引起的折断等。 本章主要介绍变速箱齿轮及被动齿轮的失效分析实例,供读者参考。 变速箱齿轮失效分析 1.45号钢齿坯裂纹分析 45号钢齿坯,由φ80mm圆钢落料后直接粗车成外径为φ78mm的柱体形状。其化学成分为:C:0.49%,Mn: 0.68%,Cr<0.2%。热处理工艺过程:在X—45箱式电炉中加热,到温度(820℃)装炉,装炉量109只,保温时间为一小时(工件达到温度后计算时间),工件用盐水冷却(冷却液不循环),水温20~30℃。回火温度为520~530℃(零件淬火后隔天回火)。经车削后,发现零件内孔平面和内孔上有较多裂纹,如图1和2所示。 图1 OPI 图象说明: 零件实物经SM-3R型渗透剂着色探伤后宏观形貌。经肉眼与放大镜观察,在齿坯内孔平面与内孔中有距离大致相等的5~6处较长的裂纹,裂纹均由内孔之平面与孔交界处为起始分别向内孔壁与平面扩展;内孔平面上和内孔交界处加工纹路明显且尖锐。

图象说明: 内孔平面试样作金相观察,有 数条裂纹交叉分布,其内充满氧化皮 夹杂。其微观裂纹长度不等,分别为 0.63mm,0.29mm,0.23mm及0.19等。 图2 OMI 200× 2.汽车变速箱齿轮失效 失效齿轮为载重汽车变速箱一挡齿轮,由渗碳钢制造,在进行台架试验时,未达到设计要求就发生断齿现象。 根据断口的形貌可断定该齿轮的断裂为高应力作用下引起的快速断裂。主动齿轮心部断口基本为韧窝,被动齿轮具有准解理断裂形貌,说明主动齿轮韧性较好,但强度较低。显微硬度证实了主动齿轮硬度较被动齿轮低。两只齿轮渗碳层中均有网状渗碳体析出,这将使表层韧性较低,致使在运转过程经受不了启动冲击应力的作用。本次断裂事故是由主动齿轮先断裂,进而引起被动齿轮崩齿,故在被动齿轮上还能看到碰伤的痕迹。因此,可以认为齿轮失效的原因为渗碳工艺控制不当(热处理不当)而引起断齿。 变速箱一挡齿轮发生断齿后的宏观实物如图3所示。主动齿轮及被动齿轮断齿后的宏观断口形貌见图4所示。 图象说明: 变速箱齿轮发生断齿后的宏观 实物形貌。 图3 OPI

第六章 齿轮常见故障与诊断

第六章齿轮常见故障与诊断 齿轮传动由于结构紧凑、传动比精确等的优点,成为机械设备中常用的传动方式。现代机械对齿轮的要求日益提高,即要求齿轮能在高速、重载、特殊介质等恶劣环境条件下工作,又要求齿轮传动具有高平稳性、高可靠性等良好的工作性能,使得影响齿轮正常工作的因素愈来愈多,而齿轮工作不正常又是诱发机器故障的重要因素,因此,对齿轮故障诊断技术的应用也是非常重要的课题。 第一节齿轮故障的常见形式与原因 一、齿轮故障的常见形式 齿轮由于结构形式、材料与热处理、操作运行环境与条件等因素不同,发生故障的形式也不同,常见的齿轮故障有以下几类形式。 1.齿面磨损 润滑油不足或油质不清洁会造成齿面磨粒磨损,使齿廓改变,侧隙加大,以至由于齿轮过度减薄导致断齿。一般情况下,只有在润滑油中夹杂有磨粒时,才会在运行中引起齿面磨粒磨损。 2.齿面胶合和擦伤 对于重栽和高速齿轮的传动,齿面工作区温度很高,一旦润滑条件不良,齿面间的油膜便会消失,一个齿面的金属会熔焊在与之啮合的另一个齿面上,在齿面上形成垂直于节线的划痕状胶合。新齿轮未经磨合便投入使用时,常在某一局部产生这种现象,使齿轮擦伤。 3.齿面接触疲劳 齿轮在实际啮合过程中,既有相对滚动,又有相对滑动,而且相对滑动的摩擦力在节点两侧的方向相反,从而产生脉动载荷。载荷和脉动力的作用使齿轮表面层深处产生脉动循环变化的剪应力,当这种剪应力超过齿轮材料的疲劳极限时,接触表面将产生疲劳裂纹,随着裂纹的扩展,最终使齿面剥落小片金属,在齿面上形成小坑,称之为点蚀。当“点蚀”扩大成片时,形成齿面上金属块剥落。此外,材质不均匀或局部擦伤,也容易在某一齿上首先出现接触疲劳,产生剥落。 4.弯曲疲劳与断齿 在运行过程中承受载荷的轮齿,如同悬臂梁,其根部受到脉冲循环的弯曲应力作用最大,当这种周期性应力超过齿轮材料的疲劳极限时,会在根部产生裂纹,并逐步扩展,当剩余部分无法承受传动载荷时就会发生断齿现象。齿轮由于工作中严重的冲击、偏载以及材质不均匀也可能会引起断齿。断齿和点蚀是齿轮故障的主要形式。

齿轮故障分析及诊断方法的比较

齿轮故障分析及诊断方法的比较 [摘要]这里对齿轮故障机理进行了分析,揭示了齿轮振动信号的故障特征。对时域分析法、频域分析法、频谱包络分析法、时延相关解调法、小波滤波分析法等故障诊断方法进行了分析比较。 [关键词] 故障诊断时域分析频域分析小波分析 一、齿轮故障机理及其振动主要特征 齿轮箱是各类机械的变速传递部件。造成齿轮箱故障的原因,主要是由于设计不当,制造不良和维护操作不善引起的。常见的齿轮失效形式有四种:即断裂、磨料磨损、粘附磨损或擦伤、以及疲劳剥落。 1.断裂和磨料磨损失效。齿轮承受载荷,如同悬臂梁,其根部的弯曲应力最大。由于过载,特别是冲击载荷,会引起整个齿与其相应部分断裂。当周期性的应力过高时,也会引起疲劳断裂。当轮齿工作面间有金属微粒、金属氧化物或其他磨料存在时,会引起磨料磨损。 2.齿面引起粘附磨损或擦伤失效。这种擦伤是两个啮合的齿面在相对滑动时油膜破裂。在摩擦和表面压力的作用下产生高温,使接触区内的金属局部熔焊继之以撕裂的现象。在齿面的滑动方向上可以看到粗糙的、高低不平的条纹,严重时可以看到表面层熔化的迹象。一般,润滑油粘度过低、转速过低、运行温度过高、齿面上单位面积载荷过大、相对滑动速度过高、以及接触面积过小,均会使油膜易于破裂而造成齿面擦伤。 3.齿面剥落失效。当齿面的接触应力超过材料允许的疲劳极限时,在表面层开始产生微细的裂纹,继之由小块剥落扩大造成挣开剥落,当剥落的面积不断增大时,齿面上剩余的有效工作面积无法再继续承担外部载荷,从而使整个齿产生断裂。 4.齿面疲劳裂纹失效。齿轮在啮合过程中,既有相对滚动,又有相对滑动。因此齿面的疲劳裂纹是由于两种应力综合作用的结果。在滚动中,齿面接触区内的正压力使表面层深处产生剪应力,当此剪应力最大值超过材料的强度极限时,开始出现裂纹。另一方面,齿面的相对滑动,又会使表面产生拉应力。 齿轮箱装置在运行中与其运行状态有关的征兆由温度、噪声、振动、润滑油中磨损物的含量及形态、齿轮传动轴的扭转振动和扭矩、齿轮齿根应力分布等构成。基于振动信号分析的机械监测诊断技术,是齿轮诊断的主要方法。 与齿轮故障引起的振动有以下两个主要特征:

齿轮故障诊断的几种具体方法,经验总结

齿轮故障诊断的几种具体方法,经验总结 齿轮在运行中如果发生故障就会影响到真个设备的运行状态,要如何来发现和诊断齿轮故障呢?有四种方法——时域平均法、边频带分析、倒频谱分析、Hilbert解调法,下面我们就来了解一下。 这是齿轮时域故障诊断的一种有效的分析方法。该方法能从混有干扰噪声的信号中提取出周期性的信号。因为随机信号的不相关性,经多次叠加平均后便趋于零,而其中确定的周期分量仍被保留下来。 时域平均法要拾取两个信号:一个是齿轮箱的加速度信号,另一个是转轴回转一个周期的时标信号。时标信号就经过扩展或压缩运算,使原来的周期T转换为T’,相当于被检齿轮转过一整转的周期。这时加速度测过来的信号以周期T’截断叠加,然后进行平均。这种平均过程实质上是在所摄取的原始信号中消除其他噪声的干扰,提取有效信号的过程。最后,再经过光滑滤波,得到被检齿轮的有效信号。 边频带成分包含有丰富的齿轮故障信息,要提取边频带信息,在频谱分析时必须有足够高的频率分辨率。当边频带谱线的间隔小于频率分辨率时,

或谱线间隔不均匀,都会阻碍边频带分析,必要时应对感兴趣的频段进行频率细化分析(ZOOM分析),以准确测定边频带间隔。 由于边频带具有不稳定性,在实际工作环境中,尤其是几种故障并存时,边频带错综复杂,其变化规律难以用具体情况描述,但边频带的总体水平是随着故障的出现而上升的。 对于有数对齿轮啮合的齿轮箱振动的频谱图中,由于每对齿轮啮合时都将产生边频带,几个边频带交叉分布在一起,仅进行频率细化分析识别边频特征是不够的,如偏心齿轮,除了影响载荷的稳定性而导致调频振动以外,实际上还会造成不同程度的转矩的波动,同时产生调频现象,结果出现不对称的边频带,这时要对它进行分析研究,最好的方法是使用倒频谱分析。 倒频谱分析将功率谱中的谐波族变换为到频谱图中的单根谱线,其位置代表功率谱中相应谐波族(边频带)的频率间隔,可以检测出功率谱图中难以辨别的周期性,从而便于分析故障。 倒频谱的另一个优点是对于传感器的测点或信号传输途径不敏感,对幅值调制和频率调制的相位关系不敏感。这种不敏感反而有利于监测故障信号

齿轮油泵故障分析及排除方法标准版本

文件编号:RHD-QB-K6866 (操作规程范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 齿轮油泵故障分析及排除方法标准版本

齿轮油泵故障分析及排除方法标准 版本 操作指导:该操作规程文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 齿轮油泵是通过一对参数和结构相同的渐开线齿轮的相互滚动啮合,将油箱内的低压油升至能做功的高压油的重要部件。是把发动机的机械能转换成液压能的动力装置。东方红-75拖拉机和东方红-60、70T推土机机构采用CB46齿轮泵。东方红- 802/802K拖拉机和东方红-802KT推土机采用CBN-E450或CBTI-E550型齿轮泵,该泵流量大,可靠性好。在其使用过程中容易出现以下故障。 1、油泵内部零件磨损油泵内部零件磨损会造成内漏。其中浮动轴套与齿轮端面之间泄漏面积大,是

造成内漏的主要部位。这部分漏损量占全部内漏的50%~70%左右。磨损内漏的齿轮泵其容积效率下降,油泵输出功率大大低于输入功率。其损耗全部转变为热能,因此会引起油泵过热。若将结合平面压紧,因工作时浮动轴套会有少量运动而造成磨损,结果使农具提升缓慢或不能提升,这样的浮动轴套必须更换或修理。 2、油泵壳体的磨损主要是浮动轴套孔的磨损(齿轮轴与轴套的正常间隙是0.09~0.175mm,最大不得超过0.20mm)。齿轮工作受压力油的作用,齿轮尖部靠近油泵壳体,磨损泵体的低压腔部分。另一种磨损是壳体内工作面成圆周似的磨损,这种磨损主要是添加的油液不净所致,所以必须添加没有杂质的油液。 3、油封磨损,胶封老化卸荷片的橡胶油封老化

齿轮故障诊断常用信号分析处理方法

齿轮故障诊断常用信号分析处理方法 振动和噪声信号是齿轮故障特征信息的载体,目前能够通过各种信号传感器、放大器及其他测量仪器,很方便地测量出齿轮箱的振动和噪声信号,通过各种分析和处理,提取其故障特 征信息,从而诊断出齿轮的故障。 以振动与噪声为故障信息载体来进行齿轮的精密诊断,目前常用的信号分析处理方法 有以下几种: (1)时域分析方法,包括时域波形、调幅解调、相位解调等; (2)频域分析,包括功率谱、细化谱; (3)倒频谱分析; (4)时频域分析方法,包括短时FFT,维格纳分布,小波分析等; (5)瞬态信号分析方法,包括瀑布图等。 上述各种信号分述处理方法前面均已介绍,在此仅针对齿轮振动的特点介绍其中最常 用的几种分析方法。 一、频率细化分析技术 由于齿轮的振动频谱图包含着丰富的信息,不同的齿轮故障具有不同的振动特征,其 相应的谱线会发生特定的变化。 由于齿轮故障在频谱图上反映出的边频带比较多,因此进行频谱分析时必须有足够的频率分辨率。当边频带的间隔(故障频率)小于分辨率时,就分析不出齿轮的故障,此时可采用频率细化分析技术提高分辨率。以某齿轮变速箱的频谱图[见图1(a)]为例,从图中可几以看出,在所分析的0 ~ 2kHz频率范围内,有1~4阶的啮合频率的谱线,还可较清晰地看出有间隔为25Hz的边频带,而在两边频带间似乎还有其他的谱线,但限于频率分辨率已不能清晰分辨。利用频谱细化分析技术,对其中900~1 100Hz的频段进行细化分析,其细化频谱如图1 (b)所示。由细化谱中可清晰地看出边频带的真实结构,两边频带的间隔为8. 3Hz,它是由于转动频率为8.3Hz的小齿轮轴不平衡引起的振动分量对啮合频率调制的结果。本例表明,用振动频谱的边频带进行齿轮不平衡一类的故障诊断时,必须要有足够的频率分辨率,否则会造成误诊或漏诊,影响诊断结果的准确性。 二、倒频谱分析 对于同时有多对齿轮啮合的齿轮箱振动频谱图,由于每对齿轮啮合都将产生边频带,几个边频带交叉分布在一起,仅进行频率细化分析有时还无法看清频谱结构,还需要进一步做倒频谱分析。倒频谱能较好地检测出功率谱上的周期成分,通常在功率谱上无法对边频的总体水平作出定量估计,而倒频谱对边频成分具有“概括”能力,能较明显地显示出功率谱上的周期成分,将原来谱上成族的边频带谱线简化为单根谱线,便于观察,而齿轮发生故障时的振动频谱具有的边频带一般都具有等间隔(故障频率)的结构,利用倒频谱这个优点,可以检测出功率谱中难以辨识的周期性信号。

齿轮故障诊断资料

齿轮的故障诊断 齿轮的故障诊断 一、齿轮的常见故障 齿轮是最常用的机械传动零件,齿轮故障也是转动设备常见的故障。据有关资料统计,齿轮故障占旋转机械故障的10.3%。齿轮故障可划分为两大类,一类是轴承损伤、不平衡、不对中、齿轮偏心、轴弯曲等,另一类是齿轮本身(即轮齿)在传动过程中形成的故障。在齿轮箱的各零件中,齿轮本身的故障比例最大,据统计其故障率达60%以上。齿轮本身的常 见故障形式有以下几种。 1. 断齿 断齿是最常见的齿轮故障,轮齿的折断一般发生在齿根,因为齿根处的弯曲应力最大,而 且是应力集中之源。 断齿有三种情况:①疲劳断齿由于轮齿根部在载荷作用下所产生的弯曲应力为脉动循环交变应力,以及在齿根圆角、加工刀痕、材料缺陷等应力集中源的复合作用下,会产生疲劳裂纹。裂纹逐步蔓延扩展,最终导致轮齿发生疲劳断齿。②过载断齿对于由铸铁或高硬度合金钢等脆性材料制成的齿轮,由于严重过载或受到冲击载荷作用,会使齿根危险截面上的应力超过极限值而发生突然断齿。③局部断齿当齿面加工精度较低、或齿轮检修安装质量较差时,沿齿面接触线会产生一端接触、另一端不接触的偏载现象。偏载使局部接触的轮齿齿根处应力明显增大,超过极限值而发生局部断齿。局部断齿总是发生 在轮齿的端部。 2. 点蚀 点蚀是闭式齿轮传动常见的损坏形式,一般多出现在靠近节线的齿根表面上,发生的原因是齿面脉动循环接触应力超过了材料的极限应力。 在齿面处的脉动循环变化的接触应力超过了材料的极限应力时,齿面上就会产生疲劳裂纹。裂纹在啮合时闭合而促使裂纹缝隙中的油压增高,从而又加速了裂纹的扩展。如此循环变化,最终使齿面表层金属一小块一小块地剥落下来而形成麻坑,即点蚀。 点蚀有两种情况:①初始点蚀(亦称为收敛性点蚀)通常只发生在软齿面(HB<350)上,点蚀出现后,不再继续发展,甚至反而消失。原因是微凸起处逐渐变平,从而扩大了接触区,接触应力随之降低。②扩展性点蚀发生在硬齿面(HB>350)上,点蚀出现后,因为齿面脆性大,凹坑的边缘不会被碾平,而是继续碎裂下去,直到齿面完全损坏。 对开式齿轮,齿面的疲劳裂纹尚未形成或扩展时就被磨去,因此不存在点蚀。 当硬齿面齿轮热处理不当时,沿表面硬化层和芯部的交界层处,齿面有时会成片剥落,称 为片蚀。 3. 磨损 齿面的磨损是由于金属微粒、尘埃和沙粒等进入齿的工作表面所引起的。齿面不平、润滑不良等也是造成齿面磨损的原因。此外,不对中、联轴器磨损以及扭转共振等,会在齿轮

齿轮传动噪音及故障分析

齿轮传动噪音及故障分析 【摘要】为适应节能高效的需要,传动系零部件在朝小型化发展,汽车变速箱采用斜齿轮传动方式,不仅结构紧凑、传动平稳,还有传动力大等特点。斜齿轮传动存在轴向力和径向力,噪音的产生就包含了很多种原因。本文介绍了汽车变速箱在设计、零件制造、总成装配三个方面中产生噪音的原因和解决措施。 关键词传动斜齿轮噪音设计制造装配 目前,客车变速箱普遍采用三轴式传动,下面介绍下我公司生产的6T-160客车变速箱,结构如图一所示: 图一 公司为确保产品质量,对噪音做了详细规定:在台位主轴2600转/分以上转速各档进行跑合试验,要求纯试验时间不得少于5

分钟,在跑合试验时检查产品噪声。 空档和前进档(超速档除处)≤85dB;超速档和倒档≤87dB 本文以6T-160客车变速箱为例,从齿轮传动的特性出发,分析了设计、加工、装配各环节中与噪声产生密切相关的各种主要因素,并对其加以总结归纳,从而得出一系列经验性的方法和思路。 齿轮传动系统的噪声分析 一般来说,齿轮系统噪声发生的原因主要有以下几个方面: (1)齿轮设计方面参数选择不当,重合度过小,齿廓修形不当或没有修形,齿轮箱结构不合理等。 (2)齿轮加工方面基节误差和齿形误差过大,齿侧间隙过大,表面粗糙度过大等。 (3)轮系及齿轮箱方面装配偏心,接触精度低,轴的平行度差,轴,轴承、支承的刚度不足,轴承的回转精度不高及间隙不当等。 齿轮传动的减噪声设计 (1)、6T-160客车变速箱全部采用斜齿轮,齿轮的类型从传动平稳、噪声低的角度出发,斜齿圆柱齿轮同时接触的齿对多.啮合综合刚度的变化比较平稳。振动噪声可能比同样的直齿圆柱齿轮低,有时可低到大约12dB。 (2)、增加斜齿轮传动重合度。轮齿在传递载荷时有不同程度数变动,这样在进入和脱离啮合的瞬间就会产生沿啮合线方向的啮合冲力,因而造成扭转振动和噪音。 如果增加瞬间的平均齿数,即增大重合度,则可将载荷分配在

相关文档
相关文档 最新文档