文档库 最新最全的文档下载
当前位置:文档库 › 石墨烯的应用——散热

石墨烯的应用——散热

石墨烯的应用——散热
石墨烯的应用——散热

石墨烯的应用

1.石墨散热片

1.1 石墨散热片概述

导热石墨片(TCGS-S)也称石墨散热片,是一种全新的导热散热材料,具有独特的晶粒取向,沿两个方向均匀导热,平面内具有150-1500 W/m-K 范围内的超高导热性能,片层状结构可很好地适应任何表面,屏蔽热源与组件的同时改进消费类电子产品的性能。其分子结构示意图如下:

石墨散热片(TCGS-S :Thermal Flexible Graphite sheet)的化学成分主要是单一的碳(C)元素,是一种自然元素矿物。薄膜高分子化合物可以通过化学方法高温高压下得到(TCGS-S)石墨化薄膜,因为碳元素是非金属元素,但却有金属材料的导电、导热性能,还具有象有机塑料一样的可塑性,并且还有特殊的热性能,化学稳定性,润滑和能涂敷在固体表面的等一些良好的工艺性能,因此,在电子、通信、照明、航空及国防军工等许多领域都得到了广泛的应用。

1.2.石墨散热片的散热原理:

典型的热学管理系统是由外部冷却装置,散热器和热力截面组成。而散热片的重要功能是创造出最大的有效表面积,在这个表面上热力被转移并有外界冷却媒介带走。石墨散热片就是通过将热量均匀的分布在二维平面从而有效的将热量转移,保证组件在所承受的温度下工作。

图 1 TCGS-S 石墨散热片热扩散示意图

1.3.石墨散热片的应用:

石墨散热片通过在减轻器件重量的情况下提供更优异的导热散热性能,能有效的解决电子设备的热设计难题,广泛的应用于PDP、LCDTV 、Notebook PC、UMPC、Flat Panel Display 、MPU 、Projector 、Power Supply、LED 等电子产品。

目前石墨散热片已大量应用于通讯工业、医疗设备、SONY/DELL/Samsung 笔记本、中兴小米等手机、Samsung PDP、PC 内存条,LED 基板等散热等。

中国石墨烯产业技术创新战略联盟报道:

石墨烯在散热领域的应用

石墨烯具有极高的热导率和热辐射系数,单层石墨烯的导热系数可达5300W/mK,不仅优于碳纳米管,更是远高于金属中导热系数最高的银、铜、金、铝等,因此石墨烯作为辅助散热的导热塑料或者膜片具有巨大的应用前景。石墨烯导热塑料的开发,可以为各种散热需求提供性能更加优异的新型的散热产品,例如各种电子设备(如LED灯)的外壳散热,目前国外已经有厂家开发出了成型的导热塑料并进入市场。

一直以来,大功率LED灯的散热外壳基本全部为铝,目前国内外在积极探索采用导热塑料代替。飞利浦MASTER LED MR16 新式灯具作为全球首例大功率LED应用,其铝制外壳已经被帝斯曼公司开发出的Stanyl TC 导热塑料所取代,其效果不仅达到了同等级的散热目的,而且整个灯具更轻,耐腐蚀。而石墨烯导热塑料的导热率可从普通塑料的0.2W/mK 提高至5-15W/mK,且抗腐蚀,已有Blue Stone等公司开发出采用石墨烯导热塑料的大功率LED产品,并显示了优异的散热性能。另一方面,石墨烯制成的散热膜散热性能会大大优于石墨片,实测的热导率可达到1000W/mK以上,同时膜片具有良好的柔韧性易于加工。而散热薄膜是计算机、手机制造中的关键材料,比如苹果手机目前用的散热膜是用石墨片制成的,因此高性能的石墨烯散热薄膜是如智能手机、平板电脑等高性能、超薄电子产品的理想散热材料。

石墨烯导热研究取得进展

中科院山西煤化所在石墨烯柔性散热体领域今年已取得两项重大进展。日前,该所系统研究了氧化石墨烯薄膜在炭化过程中的导热性能演变机制,并获得高性能热还原氧化石墨烯薄膜。此前他们还与清华大学和中科院金属研究所相关团队成功研制出高导热石墨烯/碳纤维柔性复合薄膜。

将纳米石墨烯宏观组装形成薄膜材料,同时保持其纳米效应是石墨烯规模化应用的重要途径。山西煤化所与相关单位通过自组装技术,构建结构/功能一体化的碳/碳复合薄膜。这种全碳薄膜具有类似于钢筋混凝土的多级结构,其厚度在10~200μm之间可控,室温面向热导率高达977W/m·K,拉伸强度超过15MPa。这项研究解决了石墨烯导热应用的难题,是石墨烯领域的一项突破。

以氧化石墨烯为前驱体很容易获得薄膜材料,但这种材料需通过热处理才能恢复其导热

/导电性能。山西煤化所的研究结果表明,1000℃是薄膜性能转变的关键点,薄膜的性能在该点发生质变。这一发现不仅解决了石墨烯热化学转变的基础科学问题,也为石墨烯导热薄膜的规模化制备提供了依据。

石墨烯基薄膜可作为柔性面向散热体材料,满足LED照明、计算机、卫星电路、激光武器、手持终端设备等高功率、高集成度系统的散热需求。这些研究成果为结构/功能一体化的碳/碳复合材料的设计提供了一个全新视角。

急速降温手机中的石墨散热技术

手机在频繁的使用或玩游戏的情况下,手机的内部发热会变得非常严重,尤其是芯片、电池等。发热太高一方面会导致握起来手感不适,另一方面手机的性能也可能会受到影响,甚至是重启或死机。因此为了能够让手机热量更快散出去,不少手机厂商都会给手机贴上石墨散热片,也就是我们常说的石墨散热。

散热片也称导热石墨片,它是一种全新的高导热散热材料,化学成分主要是单一

的碳(C)元素,是一种自然元素矿物。薄膜高分子化合物可以通过化学方法高温高压下得

到石墨化薄膜,虽然碳元素是非金属元素,但是却有金属材料的导电,导热性能,还具有象有机塑料一样的可塑性,并且还有特殊的热性能,化学稳定性,润滑和能涂敷在固体表面的等等一些良好的工艺性能,因此导热石墨在中众多领域都有被广泛的应用,包括了我们航空、国防、照片以及我们身边的电子产品。

传统的导热材料主要是金属材料,包括了铜、铝、银等,但金属材料密度大,使用在手

机上无疑会增加手机的重量。另外从下图中,我们也看到,在水平方向上石墨的导热系数为1000-1500W/mK,它在水平上的导热系数远高与银、铜、铝等金属(如银、铜、铝的导热系数分别为430W/mK, 400W/mK, 238 W/mK)

此外,石墨散热片还有一些金属无法达到的优点,他可以非常平滑的贴附在任何平面和弯曲的表面上,并能依客户的需求作任何形式的切割。他的贴附和切割过程都远比金属要简单。

现在在许多品牌都手机上我们都已经看到石墨散热这一技术,包括了iPhone、LG、小米、中兴等。

iPhone 后盖上的石墨散片

iPhone在芯片上也是有石墨散热片的

芯片已达散热极限?使用石墨烯来帮助铜导线散热

当芯片行业的人谈论计算机处理器的发热量问题时,他们总是变得激动起来。2001年,英特尔当时的副总裁帕特·基辛格(Pat Gelsinger)指出,如果最新芯片的温度上升趋势维持不变的话,到了2005年,它们的温度就会超过核反应堆,而到了2015年就会超过太阳表面。幸运的是,这样的发热灾难通过降低微处理器的开关速度以及采用让数个处理器并行的多核芯片设计得到了缓解。

现在,半导体行业面临另外一个需要解决的发热问题。因为芯片元件变小了,连接它们的铜导线也必须变细。而随着导线变得越来越细,它们的发热量极大地提高了。

人们已经找到了有可能解决这种因连接导致发热的方案——石墨烯,这是一种由单层碳原子构成的奇异材料,是热与电的最佳导体。

材料学家已经把铜作为催化剂用来生长其他的石墨烯。所以加州大学河滨分校的亚历山大·巴兰丁( Alexander Balandin)和曼彻斯特大学的物理学家,因石墨烯基础研究获得2010年诺贝尔奖的康斯坦丁·诺沃肖洛夫(Kostya Novoselov)决定把石墨烯留在铜的表面,看看这对材料的热性能有何影响。在发表于《纳米快报》(Nano Letter)的论文中,他们写道,铜片两侧覆盖石墨烯而形成的三明治结构可以把铜的散热能力提高25%——对于芯片设计者来说这是个相当大的数字。

巴兰丁说,石墨烯本身似乎并没有把热量传导走。更确切地说,它改变了铜的结构,提高了金属的导热性能。热量在铜内的流动往往会被金属的晶体结构阻碍。石墨烯改变了这样的结构,使得那些障碍更加分散,从而让热量更容易流动,巴兰丁表示。

已完成的研究用的是相对较厚的铜片——远比那些计算机芯片中可以找到的铜导线粗。

不过巴拉丁预计在更细的铜线中也存在这样的导热效应。他目前正研究粗细和商用计算机芯片导线相仿的的铜—石墨烯导线。

这是个紧迫的问题。今年,英特尔公司预计将发布采用带有14纳米晶体管的产品,用的是同样尺寸甚至更细的铜导线。直径10纳米以下的铜导线不能正常工作,而可以用什么材料还不清楚。“我们还没找到能在10纳米以下工作的互连材料,”部分原因就是过热,萨罗杰·纳亚克(Saroj Nayak)说。他是纽约州特洛伊(Troy)的伦斯勒理工学院集成电子中心(Center for Integrated Electronics at the Rensselaer Polytechnic Institute)的物理学家。

总部设在加利福尼亚州圣克拉拉的半导体设备制造商应用材料公司的电气工程师马吉德·佛德(Majeed Foad)负责帮助公司跟踪新材料研究。他表示石墨烯的特性令人兴奋,但他补充说,由于芯片元件日益小型化,它们对高温变得愈加敏感。而要制造高质量的石墨烯需要相当高的温度——巴兰丁和诺沃肖洛夫要把他们的导线加热到超过1000°C。佛德说在这么高的温度下晶体管和其他芯片元件会被分解。不过,巴兰丁指出,也有实验室的研究表明,至少在实验室条件下,石墨烯可以在较低温度下生长。

无论如何,佛德说,芯片制造商都不会急于接受石墨烯。“更换材料是非常痛苦的工作,所以我们会去挤压现有材料的最后一滴性能。”

很明显,简单地把更多晶体管塞进处理器并把更多的处理器放进芯片中,是撑不了多久的。高端芯片内部已经有50到60千米长的铜导线以及多个核心了。

半导体行业研究联盟(Semiconductor Research Corporation)是位于北卡罗来纳州达勒姆的行业研究协会。它的互连研究主任乔纳森·坎德拉里亚(Jonathan Candelaria)说,增加更多的晶体管不能像过去那样提高性能了。解决之道可能仍是采用完全不同的架构。设计和封装芯片的新方法可以帮助解决发热问题,而且可以给该行业争取利用新材料解决问题的时间,这些新材料中可能就包括新的石墨烯-铜混合材料,坎德拉里亚说。

美国发明石墨泡沫散热片延长LED寿命

美国橡树岭国家实验室(ORNL)的研究人员成功利用一种石墨泡沫材料,用于解决高亮度LED因运作高温环境而寿命减短的问题,并将该技术独家授权给其实验室独立而出的公司LED North America。据悉,石墨泡沫类似发泡塑胶,轻且多孔,密度为25%,这使得该种材料很容易做成散热片。LED North America打算在未来利用低温运作的石墨泡沫散热片,提供新一代路灯、车库灯解决方案。

石墨烯制备方法及应用的研究进展

石墨烯制备方法及应用的研究进展 邓振琪黄振旭 (郑州师范学院化学化工学院,河南郑州450044) 摘要:石墨烯因具有高的比表面积、突出的导热性能和力学性能及其非凡的电子传递性能等一系列优异的性质,引起了科学界新一轮的研究热点。本文总结近年石墨烯的研究现状,综述介绍石墨烯的制备方法和其应用的研究进展。 关键字:石墨烯;制备;应用 2004年,英国曼彻斯特大学Geim研究小组首成功地在实验中从石墨中分离出石墨烯[1],并提出了表征石墨烯的光学方法,对其电学性能进行了系统研究,发现石墨烯具有很高的载流子浓度、迁移率和亚微米尺度的弹道输运特性,从而掀起了石墨烯研究的热潮。 石墨烯是由碳原子以sp2杂化连接按照六边形紧密排列成蜂窝状晶格的二维晶体,其理论厚度仅为0.35nm,是目前所发现的最薄的二维材料[2]。是构造其他维度碳质材料的基本单元,它可以包裹形成零维富勒烯,也可以卷起来形成一维的碳纳米管或者层层堆叠构成三维的石墨。 石墨烯因其独特的二维晶体结构,从而具有优异的性能。如单原子层石墨烯材料理论表面积可达2630m2/g,半导体本征迁移率高达2×105cm2/(V·s),弹性模量约为1.0TPa,热传导率约为5000W/(m·K),透光率高达97.7%,强度高达 110GPa[3]。这些优异的性能使得石墨烯在纳米电子器件、传感器、电化学及复合材料等领域有光明的应用前景。 1.石墨烯的制备 现在制备石墨烯主要方法为微机械剥离法、基底生长法、化学气相沉淀法、氧化石墨还原法。另简单介绍液相或气相直接剥离法、电化学法、石墨插层法等方法。 1.1微机械剥离法 石墨烯最初的制备就是微机械剥离,机械剥离法就是通过机械力从具有高度定向热解石墨表面剥离石墨烯片层。Geim教授采用胶带剥离法可以认为是机械剥离法中的一个代表。Knieke等[4]利用湿法研磨法在室温下研磨普通石墨粉,成功的对石墨的片层结构进行了剥离,制备了单层和多层的石墨烯片。微机械剥离法制得的石墨烯具有最高的质量,适用于研究石墨烯的电学性质。但该方法低

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽

石墨烯散热片

石墨烯散热片的应用及介绍 摘要:石墨烯材料因其辐射水平优于绝大数散热材料,配合纳米碳粉有特别好的散热作用,因此广泛用于解决电子器件因功耗增大导致的热问题。本文重点介绍了石墨烯散热片的基本知识,散热原理,应用案例。 关键词:石墨烯,散热片,导热系数 1.石墨烯散热片 1.1 石墨烯散热片概述 导热石墨片(TCGS-S)也称石墨烯散热片,是一种全新的导热散热材料,具有独特的晶粒取向,沿两个方向均匀导热,平面内具有150-1500 W/m.K范围内的超高导热性能,片层状结构可很好地适应任何表面,屏蔽热源与组件的同时改进消费类电子产品的性能。其分子结构示意图如下: 石墨散热片(TCGS-S :ThermalFlexible Graphite sheet)的化学成分主要是单一的碳(C)元素,是一种自然元素矿物。薄膜高分子化合物可以通过化学方法高温高压下得到(TCGS-S)石墨化薄膜,因为碳元素是非金属元素,但却有金属材料的导电、导热性能,还具有象有机塑料一样的可塑性,并且还有特殊的热性能,化学稳定性,润滑和能涂敷在固体表面的等一些良好的工艺性能,因此,在电子、通信、照明、航空及国防军工等许多领域都得到了广泛的应用。 1.2 石墨烯散热片的组成 界面导热材料是由基体材料和导热填料组成的复合材料。 A.基体材料 石墨烯散热片的基体主要有硅油、矿物油、硅橡胶、环氧树脂、聚丙烯酸酯、聚乙烯、

聚氨酯等。石墨烯基散热片的关键点是石墨烯与环氧树脂基体的复合。目前,行业内的供应商将环氧树脂和石墨烯材料采取分层剥离和喷涂,导热系数可达到80w/m.k. B.导热填料 石墨烯散热片以石墨烯或石墨烯与碳纳米管,金属等混合作为导热填料。现有技术很难大量制备高质量的单层石墨烯,而少层或多层石墨烯相对容易制备和较便宜,且其可保持 热传导性质,石墨层可自然地连接到散热片上,避免了应用中接触热阻的问题,导热效率较常规的纳米散热片提升20%以上。 1.3.石墨烯散热片的散热原理。 典型的热学管理系统是由外部冷却装置,散热器和热力截面组成。而散热片的重要功能是创造出最大的有效表面积,在这个表面上热力被转移并有外界冷却媒介带走。石墨散热片就是通过将热量均匀的分布在二维平面从而有效的将热量转移,保证组件在所承受的温度下工作。 图1 TCGS-S 石墨散热片热扩散示意图 2.石墨散热片的应用: 石墨散热片通过在减轻器件重量的情况下提供更优异的导热散热性能,能有效的解决电子设备的热设计难题,广泛的应用于PDP、LCDTV 、Notebook PC、UMPC、Flat Panel Display 、MPU 、Projector 、Power Supply、LED 等电子产品。 目前石墨散热片已大量应用于通讯工业、医疗设备、SONY/DELL/Samsung 笔记本、中兴小米等手机、Samsung PDP、PC 内存条,LED 基板等散热等。

石墨烯文献检索

《文献检索与科技论文写作》作业 学生姓名 年级专业 班级学号 指导教师职称

目录 第一部分文献查阅练习 (1) 第二部分文献总结练习 (7) 第三部分科技论文图表练习 (8) 第四部分心得体会 (11)

第一部分文献查阅练习 1、黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学B辑:化学2009年第39卷第9期:887-896 摘要:石墨烯是2004年才被发现的一种新型二维平面纳米材料,其特殊的单原子层结构决定了它具有丰富而新奇的物理性质.过去几年中,石墨烯已经成为了备受瞩目的国际前沿和热点.在石墨烯的研究和应用中,为了充分发挥其优良性质,并改善其成型加工性(如分散性和溶解性等),必须对石墨烯进行功能化,研究人员也在这方面开展了积极而有效的工作.但是,关于石墨烯的功能化方面的研究还处在探索阶段,对各种功能化的方法和效果还缺乏系统的认识.如何根据实际需求对石墨烯进行预期和可控的功能化是我们所面临的机遇和挑战.本文重点阐述了石墨烯的共价键和非共价键功能化领域的最新进展,并对功能化石墨烯的应用作了介绍,最后对相关领域的发展趋势作了展望. 关键词:功能化应用 2、胡耀娟,金娟.石墨烯的制备、功能化及在化学中的应用. 物理化学学报(Wuli Huaxue Xuebao)Acta Phys.-Chim.Sin.,2010,26(8):2073-2086 摘要:石墨烯是最近发现的一种具有二维平面结构的碳纳米材料,它的特殊单原子层结构使其具有许多独特的物理化学性质.有关石墨烯的基础和应用研究已成为当前的前沿和热点课题之一.本文仅就目前石墨烯的制备方法、功能化方法以及在化学领域中的应用作一综述,重点阐述石墨烯应用于化学修饰电极、化学电源、催化剂和药物载体以及气体传感器等方面的研究进展,并对石墨烯在相关领域的应用前景作了展望。 关键词:制备功能化应用. 3、杨永岗,陈成猛,温月芳.新型炭材料.第23卷第3期 2008年9月:193-200 摘要:石墨烯是单原子厚度的二维碳原子晶体,也是性能优异的新型纳米复合填料。近三年来,石墨烯从概念上的二维材料变成现实材料,在化学和物理学界均引起轰动。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合

石墨烯的制备方法与应用

石墨烯的制备方法与应用 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的热潮。关键字: 石墨烯, 制备, 应用,氧化石墨烯,传感器 石墨烯的定义 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学性能和电学质量。 石墨烯的结构 完美的石墨烯是二维的, 它只包括六角元胞(等角六边形)。 如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯; 可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元。

单原子层石墨晶体薄膜。 每个原胞中两个碳原子,每个原子与最相邻三个碳原子形成三个σ键。 每个碳原子贡献一个多余p电子,垂直于graphene平面,形成未成键的π电子——良好的导电性。 石墨烯的性能 最薄——只有一个原子厚 强度最高——美国哥伦比亚大学的专家为了测试石墨烯的强度,先在一块硅晶体板上钻出一些直径一微米的孔,每个小孔上放置一个完好的石墨烯样本,然后用一个带有金刚石探头的工具对样本施加压力。结果显示,在石墨烯样品微粒开始断裂前,每100纳米距离上可承受的最大压力为2.9 微牛左右。按这个结果测算,要使1 米长的石墨烯断裂,需要施加相当于55 牛顿的压力,也就是说,用石墨烯制成的包装袋应该可以承受大约两吨的重量。 没有能隙——良好的半导体 良好的导热性 热稳定性——优于石墨 较大的比表面积 优秀导电性——电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度--电子的“光速”移动碳原子有四个价电子,这样每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成轨道,π电子可在晶体中自由移动,赋予

石墨烯电热膜的好处

石墨烯电热膜地暖的好处 汉高特是全球拥有核心技术的电热膜制造商,汉高特研发的石墨烯纳米碳无衰减电热膜,省电、环保、安全,安装在建筑领域可以使用50年以上。公司投资3000多万元,凭借高新人才和技术,自主开发全自动生产设备及独家配方。汉高特秉承欧洲设计理念与德国工匠精神的严谨与高品质,满足用户安全、舒适、健康、节能、环保的高科技供热需求。 地暖黑科技---汉高特电地暖城市护栏广告电热膜地暖是供暖方式之一,它是一种以电力为能源,通过红

外线辐射进行传热的新型供暖方式。电热膜是一种通电后能发热的半透明的聚酯膜。它具有耐高压、耐潮湿、承受温度围广、高韧度、低收缩率、运行安全、便于储运等优良性能。 方便经济,节约能源:石墨烯电热膜供暖系统可根据用户的需要,随时启动或关闭,运行十分经济。电热膜地暖占用层高低,升温快,三分钟电热膜可以升到45度,一两个小时地板就热了。电热膜地暖是在复合木地板下唯一不需要水泥回填的地暖,无形中电热膜地暖是当下最薄的电地暖。 可随意调节室温度:石墨烯电热膜供暖系统可通过在每个房间设置的交流电温控器,在设定的温度围,随意调整室温,使人们能像“节水”、“节电”那样灵活方便的“节暖”。 绿色环保,不环境污染:石墨烯电热膜供暖系统不产生烟尘和粉尘,没有噪音和因室空气对流引起的浮尘,符合城市规划要求,适合现代社会绿色环保的要求。 不占室空间,免维护,免维修:石墨烯电热膜供暖系统因为取消了暖气片和管路,不占用室空间。并且整个系统使用寿命长,免维护,免维修。 低温运行,安全可靠,系统工作时:石墨烯电热膜表面保持低温运行,最高温度不超过60摄氏度。因此不会发生烫伤、引起爆炸和火灾等事故,整个系统全部采用并联方式连接,运行稳定,可行性高。 可分户计费:石墨烯电热膜供暖系统适应多种用户的需求,可

石墨烯碳纳米管散热涂料技术

石墨烯碳纳米管散热涂料技术 (1)项目背景 碳材料是目前人类认知的材料中功能最全、性能最优越、形式最多样的材料,是目前所有已知划时代材料所有不能比拟的,继硅时代之后21世纪甚至有望成为碳材料时代。尤其是纳米碳材料丰富的形态,涵盖从零维、一维到二维结构, 每一次纳米碳材料的出现都引领了纳米科技的快速发展。其中,碳纳米管可看成是一种石墨片卷曲结构,超强的C-C键使碳纳米管具有超强的力学性能和热传 导性能,理论计算和实际测量表明,单壁碳纳米管拉伸强度可达150 GPa,弹性模量1TPa,是钢铁的100倍,密度却只有其1/6,被誉为终极碳纤维。同时单壁碳纳米管室温导热系数高达6000W/m.K,多壁碳纳米管的室温导热系数也达3000W/m.K,是热导率最高的材料。同时,碳纳米管比表面积大,被誉为世界上 最黑的物质,这种物质对光线的折射率只有0.045%,吸收率高达99.5%以上,辐射系数接近绝对黑体的 1.0。另外还具有优异的导电性能和超高的载流子输送 密度,导电率接近金属,载流能力超过金属铜。众多优异综合性能使碳纳米管自发现以来受到极大关注,是纳米材料和纳米技术的最典型代表,是散热涂料和复合材料最理想的功能填料。 碳纳米管在功能涂料领域主要发挥以下主要作用: (1)导电填料:碳纳米管的导电阈值低至0.1wt%,而传统炭黑却高达15wt%以上,碳纳米管可以在极少量添加的情况下即达到目前炭黑型导电涂料的 性能,避免大量无机炭黑添加对涂料工艺性的负面影响。因此,碳纳米管在抗静电涂料、电磁屏蔽涂料、重防腐涂料等领域具有显著优势。同时还能利用其电致发热的作用,开发新型的节能加温、保温涂料,在家居地暖加温、仪器设备保温等新型市场具有极大的商业前景。 (2)散热填料:碳纳米管不仅具有超高的热导率,同时还具有接近理论黑体的辐射率,以此加强其红外辐射散热功能,因此新型散热涂料将有望改变目 前散热模式,大大提高热交换能力。 (3)力学增强填料:充分发挥碳纳米管一维结构的优势,在涂层内部形成增强网络,将使涂料力学性能大大提高,尤其是耐磨性、硬度等,甚至可形成

石墨烯量子点制备与应用

石墨烯量子点的概述 石墨烯量子点的性质 GQDs是准零维结构的纳米材料,由于其自身半径小于波尔激发半径,原子内部的电子在三维方向上的运动均受到限制,所以量子局域效应十分显着,因此具有许多独特的物理和化学性质。其与传统的半导体量子点(QDs)相比,GQDs 具有如下独特的性质:不含高毒性的金属元素如镉、铅等,属环保型量子点材料;自身结构稳定,耐强酸和强碱,耐光漂白;厚度可达到单个原子层,横向尺寸可达到几个互相联接的苯环大小,却能够保持高度的化学稳定性;带隙宽度范围可调,原则上可通过量子局域效应和边缘效应在0~5 eV 范围内调节,从而将波长范围从近红外区扩展到可见光区及深紫外区,从而满足了各种技术对材料能隙和特征波长的要求;容易实现表面功能化,可稳定分散于常用的化学试剂,满足材料低成本加工处理的需求。GQDs拥有的发光特性主要是通过光致发光和电化学发光产生,其中荧光性能是GQDs最突出的性能,GQDs的荧光性质主要包括:激发荧光稳定性高且具有抗光漂白性;荧光发射波长可以进行可控调节,有些GQDs还具有上转换荧光性质;激发光谱宽且连续,可以进行一元激发、多元发射。目前关于GQDs的光致发光机理主要有两个:(1)官能团效应,即在GQDs表面进行化学修饰,使得GQDs表面产生能量势阱,表面物理化学状态发生显着变化,导致其荧光量子产率提高;(2)尺寸效应,即GQDs的荧光性能取决于粒径尺寸的大小。GQDs还是优良的电子给体和电子受体,因此GQDs在能量存储、光电转化和电磁学领域具有重要的研究意义,同时在生物、医学、材料、新型半导体器件等领域具有重要潜在应用价值。 石墨烯量子点的制备 GQDs的合成方法可以分为两大类:自上而下法和自下而上法,如图1-1所示。自上而下法是通过简单的物理化学作用,进行热解和机械剥离块状石墨,得到尺寸较小的GQDs,是最常用的制备方法,比如改进的Hummers法,其使用的原料廉价,但是反应条件比较苛刻,制备周期比较长,通常需要经过强酸、强氧

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102 m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳-碳键长约为0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

综述石墨烯的制备与应用

半导体物理课程作业 石墨烯的制备与应用(材料)

目录 一、石墨烯概述 (2) 二、石磨烯的制备 (3) 1、机械剥离法 (3) 2、外延生长法 (5) 3、化学气相沉积法 (6) 4、氧化石墨-还原法 (6) 5、电弧法 (9) 6、电化学还原法 (9) 7、有机合成法 (10) 三、石墨烯的应用 (11) 1、石墨烯在电子器件领域的应用 (11) 1.1 石墨烯场效应晶体管 (11) 1.2 石墨烯基计算机芯片 (12) 1.3 石墨烯信息存储器件 (13) 2、石墨烯在能源领域的应用 (14) 2.1 石墨烯超级电容器 (14) 2.2 锂离子电池 (15) 2.3 太阳能电池 (16) 2.4 储氢/甲烷器件 (17) 3、石墨烯在材料领域的应用 (18) 3.1 特氟龙材料替代物 (18) 3.2 石墨烯聚合物复合材料 (18) 3.3 光电功能材料 (19) 4、石墨烯在生物医药领域的应用 (20) 4.1 基于氧化石墨烯的纳米载药体系 (20) 4.2 氧化石墨烯对DNA/基因/蛋白的选择性检测 (21) 4.3用于生物成像技术 (23) 4.4 石墨烯在肿瘤治疗方面的应用 (23) 四、总结及展望 (24) 参考文献 (25)

一、石墨烯概述 碳广泛存在于自然界中,是构成生命有机体的基本元素之一。碳基材料是材料界中一类非常具有魅力的物质,从无定形的碳黑到晶体结构的天然层状石墨;从零维纳米结构富勒烯到一维碳纳米管无不给人们带来炫丽多彩的科学新思路。而二维碳基材料石墨烯的发现,不仅极大地丰富了碳材料的家族,而且其所具有的特殊纳米结构和性能,使得石墨烯无论是在理论还是实验研究方面都已展示出了重大的科学意义和应用价值,从而为碳基材料的研究提供新的目标和方向。 碳的晶体结构—石墨和金刚石(三维)是自然界中最早为人们熟知的两种碳同素异构体,因化学成键方式不同而具有截然相反的特性。1985年,一种被称为“巴基 (零维)被首次发现,三位发现者于11年后, 即1996年获诺贝尔球”的足球形分子C 60 化学奖。1991年,由石墨层片卷曲而成的一维管状结构: 碳纳米管被发现,发现者饭岛澄男(Sumio Iijima)于2008年获卡弗里纳米科学奖。石墨烯(Graphene)是只有一个原子层厚的单层石墨片,是石墨的极限形式。作为碳的二维晶体结构, 石墨烯的出现最终为人类勾勒出一幅点、线、面、体(从零维到三维)相结合的完美画面(图1)。 图1 碳的晶体结构 石墨烯作为一种独特的二维晶体,有着非常优异的性能:具有超大的比表面积,理论值为2630m2/g;机械性能优异,杨氏模量达1.0TPa;热导率为5300W·m-1·K-1,是铜热导率的10多倍;几乎完全透明,对光只有2.3%的吸收;在电和磁性能方面具有很多奇特的性质,如室温量子霍尔效应、双极性电场效应、铁磁性、超导性及高

石墨烯的性能与应用

ANYANG INSTITUTE OF TECHNOLOGY 《材料物理》期末论文 石墨烯的性能及应用 学院名称:数理学院 专业班级:应用物理学11-1班 学生姓名:邢俊俊 学号: 201111020026 2014年6月

石墨烯的性能及应用 摘要:石墨烯其貌不扬,其微片看上去就好像是棉花一样的黑色絮状物,可它为什么如此受追捧?答案其实并不复杂。因为它太轻薄了,只有一个原子厚度,却又非常坚硬。除此之外,它还拥有优秀的导热性、极低的电阻率。在轻薄坚固的同时,它还几乎是完全透明的。这些特性让研究者们能够创造出无限的可能性,无怪乎石墨烯横空出世之时业界震惊。 关键词:石墨烯、新材料、物质、科技 Abstract:Graphene does not seem good, its microchip looks like black cotton floc, but why it can be so popular these days? The answer is not complicated. Because it is so thin and only has one atom thick, it is very hard, however. In addition, it has excellent thermal conductivity and low resistivity. It is in strong light while almost completely transparent. These features allow the researchers are able to create infinite possibilities, no wonder when the industry turned out of graphene shocked. Key words: Graphene, new materials, substances, Technology 1、前言: 石墨烯是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆(Andre Geim)和康斯坦丁?诺沃肖洛夫(Konstantin Novoselov),成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸

石墨烯的表面性质及其分析测试技术

Journal of Advances in Physical Chemistry 物理化学进展, 2016, 5(2), 48-57 Published Online May 2016 in Hans. https://www.wendangku.net/doc/cf12301875.html,/journal/japc https://www.wendangku.net/doc/cf12301875.html,/10.12677/japc.2016.52006 Progress in Surface Properties and the Surface Testing of Graphene Jinfeng Dai1*, Guojian Wang1,2, Chengken Wu1 1School of Materials Science and Engineering, Tongji University, Shanghai 2Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Shanghai Received: Apr. 22nd, 2016; accepted: May 10th, 2016; published: May 13th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/cf12301875.html,/licenses/by/4.0/ Abstract Graphene has been paid much attention for its special two-dimensional structure and excellent physicochemical properties. Researchers have done a great number of studies on these fields, and have made lots of outstanding results, while less on the surface properties, relatively. However, the surface properties of graphene usually play an important role in the practical application of graphene-based materials, especially, in the nano-composites, nano-coating and electrical nano- devices. In this review, the recent developments of surface properties and surface modification of graphene are summarized, where the relationship between the structure and surface properties of graphene is highlighted. The method of surface testing is also compared and commented on briefly. We believe that the future prospects of research emphasis on preparation of functiona-lized graphene with special surface properties, and a new comprehensive technique for testing the surface properties of graphene. Finally, the current challenges of research on structural surface and surface properties of graphene are commented based on our own opnion. Keywords Surface Properties, Structural Surface, Surface Energy, Surface Testing, Graphene 石墨烯的表面性质及其分析测试技术 戴进峰1*,王国建1,2,吴承恳1 1同济大学材料科学与工程学院,上海 *通讯作者。

石墨烯项目申报材料

石墨烯项目 申报材料 规划设计/投资分析/产业运营

石墨烯项目申报材料说明 2016年8月,国务院出台的《十三五国家科技创新规划》明确重点发展以石墨烯等为代表的先进碳材料。2017年1月,工信部、发改委、科技部、财政部联合发布了《新材料产业发展指南》,对石墨烯、超导材料等提出了任务要求,提出大力发展石墨烯产业。2017年4月,科技部发布《十三五材料领域科技创新》,明确指出了石墨烯碳材料技术发展领域:单层薄层石墨烯粉体、高品质大面积石墨烯薄膜工业制备技术,柔性电子器件大面积制备技术,石墨烯粉体高效分散、复核与应用技术,高催化活性炭及材料应用技术。 该石墨烯项目计划总投资5133.17万元,其中:固定资产投资4044.47万元,占项目总投资的78.79%;流动资金1088.70万元,占项目总投资的21.21%。 达产年营业收入7693.00万元,总成本费用5895.79万元,税金及附加87.16万元,利润总额1797.21万元,利税总额2132.26万元,税后净利润1347.91万元,达产年纳税总额784.35万元;达产年投资利润率35.01%,投资利税率41.54%,投资回报率26.26%,全部投资回收期5.31年,提供就业职位106个。

坚持“实事求是”原则。项目承办单位的管理决策层要以求实、科学 的态度,严格按国家《建设项目经济评价方法与参数》(第三版)的要求,在全面完成调查研究基础上,进行细致的论证和比较,做到技术先进、可靠、经济合理,为投资决策提供可靠的依据,同时,以客观公正立场、科 学严谨的态度对项目的经济效益做出科学的评价。 ...... 报告主要内容:项目基本情况、项目建设及必要性、市场分析预测、 建设规划方案、选址分析、土建工程、工艺说明、环境保护说明、项目职 业安全、风险评价分析、项目节能情况分析、实施安排、项目投资规划、 项目经济评价分析、总结说明等。

石墨烯的制备与应用--课程论文

石墨烯的制备与应用前景 石墨烯是由碳原子以sp2链接的单元子层构成,其基本结构为有机材料中最稳定的苯六元环。它是目前发现的最薄的二维材料。石墨烯是构成其他石墨材料的基本单元,它可以翘曲成为零维的富勒烯,卷曲成为一维的CNTs或者堆垛成为三维的石墨。石墨烯是人类已知强度最高的物质,比钻石还坚硬,厚度相当于普通食品塑料袋的石墨烯能够承担大约两吨重的物品。石墨烯最大的特点是石墨 烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”的性质和相对论性的中微子非常相似。此外石墨烯有相当的不透明度:可以吸收大约2.3%的可见光。而这也是石墨烯中载荷子相对论性 的体现。 石墨烯的合成方法 1.微机械剥离法 这是最早制备出石墨烯的方法。2004年Novoselovt等用这种方法制备出了单层石墨烯。典型制备方法是用另外一种材料膨化或者引入缺陷的热 解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的 晶体中含有单层的石墨烯。但缺点是此法是利用摩擦石墨表面获得的薄片 来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供 应用的石墨薄片样本。 2.外延生长法 一般是通过加热6H—SiC单晶表面,脱附Si(0001面)原子制备出石墨烯.先将6H- SiC单晶表面进行氧化或H 刻蚀预处理在超高真空下加热去除表面氧化物,通过俄歇电子能谱确认氧化物完全去除后,继续恒温加热10-20分钟,所得的石墨烯片层厚度主要由这一步骤的温度所决定,这种方法能够制备出l-2碳原子层厚的石墨烯,但由于SiC晶体表面结构较为复杂,难以获得大面积、厚度均一的石烯。与机械剥离法得到的石墨烯相比,外延生长法制备的石墨烯表现出较高的载流子迁移率等特性,但观测不到量子霍尔效应。 3.碳纳米管轴向切割法 前文已经提到过,碳纳米管从结构上可以看作是由单层的石墨烯纳米带卷曲

石墨烯的结构、制备、性能及应用研究进展

. . .. . . 报告题目:石墨烯的结构、制备、性能及应用研究进展 一、书目信息: 二、评分标准 1.格式规、容简明扼要。报告中引用的数据、观点等要注明出处20分 2. 报告结构合理,表述清晰20分 3. 石墨烯的结构、性能、制备方法概述正确、新(查阅5篇以上的文献)20分 4. 石墨烯的应用研究进展概述(文献)全、新(查阅5篇以上的文献)20分 5. 心得及进一步的研究展望真实,无抄袭与剽窃现象20分 三、教师评语 请根据写作容给定成绩,填入“成绩”部分。 注1:本页由报告题目、书目信息有学生填写,其余由教师填写。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规。注3:不符合规试卷需修改规后提交。 摘要 碳是自然界中万事万物的重要组成物质,也是构成生命有机体的主要元素。石墨和金刚石是两种典型的单质碳,也是最早为人们所熟知的两种碳的三维晶体结构,属于天然矿

密封线 石。除石墨和金刚石外,碳材料还包括活性炭、碳黑、煤炭和碳纤维等非晶形式。煤是重 要的燃料。碳纤维在复合材料领域有重要的应用。20 世纪80 年代,纳米材料与技术获得 了极大的发展。纳米碳材料也是从这一时期开始进入历史的舞台。1985 年,由60 个碳原 子构成的“足球”分子:C60被三位英美科学家发现。随后,C70、C86等大分子相继出现, 为碳家族添加了一大类新成员:富勒烯。富勒烯是碳的零维晶体结构,它们的出现开启了 富勒烯化学新篇章。三位发现者于1996 年获诺贝尔化学奖。1991 年,由石墨层片卷曲 而成的一维管状纳米结构:碳纳米管被发现。如今,碳纳米管已经成为一维纳米材料的典 型代表。发现者饭岛澄男于2008 年获卡弗里纳米科学奖。2004 年,一位新成员:石墨 烯,出现在碳材料的“家谱”中。石墨烯的发现者,两位英国科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)于2010 年获诺贝尔物理学 奖。 关键词:碳材料复合材料晶体结构 1 石墨烯的结构 石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。 2 石墨烯的制备 2.1 物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得, 操作相对简单,合成的石墨烯的纯度高、缺陷较少。 2.1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt 等[1]于2004年用一种极为简单的微机械剥离法成功地从高定向热解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在 1 mm厚的高定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20 μm—2 mm、深 5 μm的微槽后,用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用德华力或毛细管力将单层石墨烯“捞出”。 2.1.2取向附生法—晶膜生长

石墨烯-散热

石墨烯在散热领域的应用 石墨烯具有极高的热导率和热辐射系数,单层石墨烯的导热系数可达5300W/mK,不仅优于碳纳米管,更是远高于金属中导热系数最高的银、铜、金、铝等,因此石墨烯作为辅助散热的导热塑料或者膜片具有巨大的应用前景。石墨烯导热塑料的开发,可以为各种散热需求提供性能更加优异的新型的散热产品,例如各种电子设备(如LED灯)的外壳散热,目前国外已经有厂家开发出了成型的导热塑料并进入市场。 一直以来,大功率LED灯的散热外壳基本全部为铝,目前国内外在积极探索采用导热塑料代替。飞利浦MASTER LED MR16 新式灯具作为全球首例大功率LED应用,其铝制外壳已经被帝斯曼公司开发出的Stanyl TC 导热塑料所取代,其效果不仅达到了同等级的散热目的,而且整个灯具更轻,耐腐蚀。而石墨烯导热塑料的导热率可从普通塑料的0.2W/mK提高至5-15W/mK,且抗腐蚀,已有Blue Stone 等公司开发出采用石墨烯导热塑料的大功率LED产品,并显示了优异的散热性能。另一方面,石墨烯制成的散热膜散热性能会大大优于石墨片,实测的热导率可达到1000W/mK以上,同时膜片具有良好的柔韧性易于加工。而散热薄膜是计算机、手机制造中的关键材料,比如苹果手机目前用的散热膜是用石墨片制成的,因此高性能的石墨烯散热薄膜是如智能手机、平板电脑等高性能、超薄电子产品的理想

散热材料。 企业布局 1、东旭光电8000万控股石墨烯LED企业明朔科技 2017年5月10日晚间,东旭光电科技股份有限公司发布公告称,公司通过旗下全资子公司深圳旭辉投资控股有限公司向明朔(北京)电子科技有限公司(以下简称明朔科技)增资5700余万人民币。同时,公司旗下的控股子公司管理的泰州东旭石墨烯产业投资基金管理中心(有限合伙)出资2300万元受让明朔科技原股东部分出资的方式,合计取得明朔科技51%的股份。 有市场人士指出,本次收购不仅能够进一步拓展东旭光电石墨烯新材料在下游领域的产业化应用,丰富其石墨烯系列应用产品,加速推动其石墨烯产业化进程。 2、珈伟股份设子公司提早布局石墨烯 2017年4月5日,珈伟股份2016年度业绩说明会在全景网举行时,总裁李雳介绍称,为了完善产品线布局,更好的提升储能产品的性能,公司三年前投资设立子公司拓展石墨烯业务。目前该公司厂房、设备等均已到位,已具备一定规模的量产能力。并表示,随着公司加速推进以新型锂电池技术为核心的储能业务,以及整体锂电池行业对石墨烯电极材料的需求扩大,公司的石墨烯业务有望在未来几年当中迎来放量增长的机会。

石墨烯以及导热性质的介绍

石墨烯以及导热性质的有关介绍 石墨烯( Graphene)又叫单层石墨,是构造其他石墨材料的最基本的材料单元。石墨稀是由sp2碳原子以蜂窝状晶格构成的二维单原子层结构。每个碳原子周围有3个碳原子成键,键角120°;每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键。在石墨烯中,碳原子在不停的振动,振动的幅度有可能超过其厚度。其中最重要的石墨烯的晶格振动,不仅仅影响石墨烯的形貌特征,还影响的石墨烯的力学性质、输运特性、热学性质和光电性质。对石墨烯的热学性质的影响主要是由于石墨烯晶格振动。 根据有关资料的显示,对石墨烯晶格振动的研究可利用价力场方法。在价力场方法中,石墨烯内所有原子间的相互作用力可以分为键的伸缩力和键的弯曲力。从经典的热学理论出发,对石墨烯的导热系数进行研究。 一、以下是石墨烯薄片的热通量有关的表达式:

上面理论计算的导热系数主要由石墨烯的声子频率、声子的支数和声子的作用过程等决定。从得出的结果出可以得出以下的图表: 从图中看出来石墨烯的导热系数随温度的增加而减小。在同一温度下,导热系数随石墨烯的宽度的增加而增加。由经典的热传导理论可知,随着温度的升高,晶格振动加强,声子运动剧烈,热流中的声子数目也增加。声子间的相互作用或碰撞更加频繁,原子偏离对平衡位置的振幅增大,引起的声子散射加剧,使导热载体(声子)的平均自由程减小。这是石墨烯的导热系数随温度升高而降低的主要原因。对于石墨烯,电子的运动对导热也有一定的贡献,但在高温情况下,晶格振动对石墨烯的导热贡献是主要的,起主导作用。 二、石墨烯的导热系数经验公式 式中 Xg 是温度系数,L 是单层石墨烯的中间部分与散热片之间的距离,h 是单层石墨烯厚度,d 为单层石墨烯的宽度,δf 是G 峰位移,δP 是样品的热功率的变化。从经验公式可以看出,石墨烯的导热系不同宽度的石墨烯薄 片的导热系数与温度 的关系

石墨烯

石墨烯简介 有这样一种材料,它的机械强度是世界上最好钢的100倍,有着最快的电子迁移率,1秒内就可以传完两张蓝光DVD的容量……这就是石墨烯。 石墨烯是从石墨中剥离出的单层碳原子面材料,由碳原子紧密堆积成单层二维蜂窝状晶格结构,也可称为“单层石墨”(碳原子以sp2混成轨域呈蜂巢晶格排列构成的单层二维晶体,由碳原子和其共价键所形成的原子尺寸网,为平面多环芳香烃原子晶体),它是人类已知的厚度最薄、质地最坚硬、导电性最好的材料。 一、石墨烯发展简史 20世纪初,科学家开始接触到石墨烯。2004年,英国曼彻斯特大学的物理学教授安德烈〃杰姆(AndreGeim)和他的学生克斯特亚〃诺沃消洛夫(Ko-styaNovoselov)用简单易行的胶带分离法制备出了石墨烯。他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,把石墨片一分为二,不断重复这样的操作,于是薄片越来越薄,最后得到了仅由一层碳原子构成的薄片,即石墨烯。2010年,他们二人凭借着在石墨烯方面的创新研究获得了诺贝尔物理学奖。获奖后,一些媒体渲染性地报道:“物理学家用透明胶和铅笔赢得诺贝尔奖。” 二、特性 石墨烯具有优异的力学、光学和电学性质:结构非常稳定,迄今为止研究者仍未发现石墨烯中有碳原子缺失的情况,碳原子之间的连接非

常柔韧,比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍,如果用石墨烯制成包装袋,它将能承受大约两吨重的物品;几乎完全透明,却极为致密、不透水、不透气,即使原子尺寸最小的氦气也无法穿透;导电性能好,石墨烯中电子的运动速度达到了光速的1/300,导电性超过了任何传统的导电材料;化学性质类似石墨表面,可以吸附和脱附各种原子和分子,还有抵御强酸强碱的能力。 三、制备方法 石墨烯的制备方法主要有机械法和化学法两种。机械法包括微机械分离法、取向附生法和加热碳化硅法,化学法包括化学还原法与化学解理法、化学气相沉积法等。 2008年,常州二维碳素科技有限公司于庆凯博士首次提出以铜箔为基质的化学气相沉积法合成石墨烯,这已成为目前石墨烯合成的主要方法。2010年,韩国科学家用此项技术较便宜地制备出了30英寸的石墨烯,并研制出以石墨烯为电极的触摸屏样品。 四、应用方向 石墨烯在物理学、化学、信息、能源以及器件制造等领域,都具有巨大的研究价值和应用前景。可用于制造超轻防弹衣、超薄超轻型飞机材料、“太空电梯”缆线、抗菌材料、超微型晶体管、代替硅用于电子产品、生产未来的超级计算机等等。 也许有一天,你会在电视上看到这样的广告。“××电脑采用1.5T 石墨烯处理器……”;也许有一天,你把掌上电脑三折两叠塞进牛仔裤后兜,这比各种Pad都拉风;也许有一天,应用了石墨烯的光调制器,可使网络速度快一万倍;也许有一天,石墨烯实现了直接快速低成本

相关文档
相关文档 最新文档