文档库 最新最全的文档下载
当前位置:文档库 › 基于zemax的反射式系统的结构设计

基于zemax的反射式系统的结构设计

基于zemax的反射式系统的结构设计
基于zemax的反射式系统的结构设计

基于zemax的反射式系统的结构设计

基于zemax的反射式系统的结构设计 (1)

1. 球面和非球面 (2)

2. 典型的反射系统 (3)

2.1 牛顿望远镜(抛物面镜) (4)

2.2 经典卡塞格林系统 (5)

2.3 里奇-克列基昂(R-C系统) (6)

2.4 格里高里系统 (9)

2.5 马克苏托夫-卡塞格林式 (10)

2.6 施密特-卡塞格林系统 (14)

2.7 施密特弯月形卡塞格林 (16)

2.8 达尔-奇克汉卡塞格林 (16)

2.9 霍顿-卡塞格林(H-C系统) (17)

2.10 阿古诺夫-卡塞格林 (18)

2.11 普雷斯曼-卡米歇尔卡塞格林 (19)

2.12 "离轴"或"斜反射"反射镜卡塞格林 (20)

2.13 三反-卡塞格林(Three-mirror Cassegrain) (20)

3. 反射式的特点 (21)

4. 参考与鸣谢 (21)

5. 附录 (22)

1. 球面和非球面

球面只用一个参数即表面半径(或曲率)来定义。球面折射强烈,球差明显。

若使表面形状自光轴向外越来越平坦,则可以逐渐减小折射角,最终使所有光线会聚到同一焦点。

对比:球面边缘较陡,非球面平坦,可校正球差(主要应用)。

非球面不能只用一个曲率来定义,因其局部曲率在其表面范围内变化,常用解析公式描述,有时也用表面内坐标点的矢高表示。最普遍形式是旋转对称的非球面,矢高为:

2

2i i z a r =

+∑,

其中,c 为顶点处基本曲率,k 为圆锥曲线常数,r 为垂直光轴方向的径向坐标;2i i a r 为非球面的高次项。

圆锥曲线常数k

表面类型 0 球面 K<-1 双曲面 K=-1 抛物面 -10

扁椭球面

当非球面非旋转对称时,将其表示成双锥形表面形式或变形非球面形式。双锥形表面有沿正交方向的两个基本曲率和两个圆锥曲线常数;变形非球面在两个正交方向上还附加高次项。

非球面的另一个形式是超环面(即复曲面),超环面具有环形面包圈的形状。 当非球面的高次项为0,非球面采用旋转对称的圆锥曲面横截面形式,其性质:

A.不论反射面还是折射面,圆锥曲面对于一组特定的共轭点无球差。如果目标位于表面的曲

率中心,球面成无像差的几何完善像。

B.椭球面对位于表面同侧的一对实像共轭点成无像差的像。

C.双曲面对位于表面两侧的一对共轭点成无像差的像。

D.抛物面反射镜对无限远的轴上物点成完善的点像。故:抛物面反射镜(有时和双曲面反射

镜结合)广泛应用于天文光学系统。

E.当物点从无像差的共轭点沿轴移动时,将引入球差。当物点沿垂直光轴方向横向移动时,

慧差、像散、场曲等会使得像模糊。

2. 典型的反射系统

下面以发展演化的角度简单介绍几种类卡式系统。

1.Newton 抛物面平面

2.Classical Cassegrain 抛物面双曲面

3.Ritchey-Chretien 双曲面双曲面

4.Gregory 凹的抛物面凹的椭球面

5.Maksutov-Cassegrain 弯月透镜球面球面主反射

6.Schmit-Cassegrain 施密特校正器面型任意

7.Schmidt-meniscus Cassegrain 施密特校正器+弯月透镜球面球面

8.Dall-Kirkham 椭圆面球面

9.Houghton-Cassegrain 双凸透镜+双凹透镜球面球面

10.Mangin-Cassegrain 多个球面透镜球面球面

11.Pressmann-Camichel 球面椭圆面

12.Schiefspiegler 斜反射离轴

13.Three-mirror Cassegrain

2.1 牛顿望远镜(抛物面镜)

单个抛物面镜对轴向无限远目标的球差为0,但受到轴外慧差的限制。故:需要借助倾斜的平面折叠反射镜将光反射到侧面。

%起初,由于加工工艺,采用的是球面凹面镜%

牛顿系统极好地消除了色差,但是球差及轴外慧差严重,所以视场很小。为了消除球差,主物镜可用抛物面凹面镜代替,但慧差更为明显。为了避免严重的慧差,牛顿系统的F数不能大于f/4。

参数:f:1000 mm,f/5,默认视场,默认波长。

设置挡板:双击表面1的Surf:Type——Aperture——(Aperture Type)--Circular Obscuration--最大半径设为16.7。

2.2 经典卡塞格林系统

主镜:抛物面镜,次镜:双曲面。抛物面的焦点和双曲面的虚焦点重合,经双曲面后成像在其实焦点处。

其利用双曲面和抛物面反射的特性:凹面的抛物面反射镜可以将平行于光轴入射的所有光线汇聚在单一的点上-焦点;凸面的双曲面反射镜有两个焦点,会将所有通过其中一个焦点的光线反射至另一个焦点上。

点评:

a)折叠式设计使镜筒的长度紧缩,结构更为紧凑

b)这种最常用的设计,慧差是限制性像差,这点与具有相同f/#的单抛面镜相同。

c)设计使光线稍有发散,放大率有所下降,适用于大口径的天文望远镜

参数:入瞳 200mm ;视场角(角度) 0、0.21、0.3;默认波长

LDE编辑如下:

表面2面型为圆形挡光:挡光最小半径为0,最大半径为31.3999996mm

STO 面型为圆形光圈:光圈最小半径为35mm,最大半径为100.099998mm

2.3 里奇-克列基昂(R-C系统)

平行于光轴的光﹐满足等光程和正弦条件的卡塞格林望远镜。由克列基昂(H.Chretien)提出﹑里奇(G.W.Ritch)制成的﹐按他们两人姓氏的第一个字母得名为R-C望远镜。它的焦点称为R-C 。

主镜:双曲面,实现像质的改善。

次镜:双曲面。

实际上,是无慧差的卡塞格林系统,只受像散和场曲的限制

描述:主﹑次镜形状很接近旋转双曲面﹐在实用上可把这种系统近似地视为消除三级球差和彗差的﹑由旋转双曲面组成的系统。由于消除了彗差﹐可用视场比卡塞格林望远镜更大一些﹐并且像斑呈对称的椭圆形。如果采用弯曲底片﹐视场会更大﹐像斑则呈圆形。

典型的卡塞格林系统主镜为抛物面,次镜为双曲面,这样只能校正球差,如果将主镜也改为双曲面则可以校正两种像差,球差和慧差,视场也可适当增大,但为了进一步增大视场则还需校正场曲、象散和畸变,这就还需要在像方加一组至少由两片透镜组成的校正透镜组,可称之为场镜。

参数1:入瞳150 mm;默认视场;波长632.8,取自系统文件库。

面1:圆形挡光 0-26 ;面2:圆形光圈26-80 ;面4,面5,浮动光圈。

参数2: F/4,入瞳 200 mm;视场角(角度) 0、0.21、0.3 ;默认波长

面2:圆形挡光 0-30.5470009 ;面3:圆形光圈,25-100.099998。

2.4 格里高里系统

主镜:凹形抛物面

次镜:凹形椭球面,次镜在主镜焦点外,且次镜焦点与主镜焦点重合。

抛物面的焦点和椭球面的一个焦点重合,经椭球面后成像在其另一个实焦点处。

格里高利系统很好地消除了球面像差,但是仍然存在慧差。凹面好检测,但结构不够紧凑。参数: F/4,入瞳 200 mm ;视场角(角度)0、0.0707、0.1;默认波长。

面2:圆形挡光 0-29.5599995 mm ;面3:圆形光圈,25-100.040001 mm

2.5 马克苏托夫-卡塞格林式

折反式,不同于上述的纯反射式。

通过透镜补偿矫正反射式的像差。常见的折反系统有施密特-卡塞格林系统、马克苏托夫-卡塞格林系统。

区别:(1)马氏把施式的改正透镜替换为弯月形透镜(即由两个表面曲率半径相差不大,但有相当大的曲率和厚度,呈弯月形的透镜)。弯月透镜产生的球差可以补偿球面凹面镜产生的球差,

同时又满足消色差条件。而且,适当调节弯月透镜与球面镜的间距,也可以矫正慧差。(2)与施式相比,马式的透镜磨制更为容易,但对玻璃的要求比较高。故:限制了口径.

球面主反射镜+球面弱光焦度弯月玻璃校正版。

被设计来减少离轴的像差,例如彗差。

i.1944年,苏联光学家德密特利?马克苏托夫发明此镜,以球面镜作主镜并结合在入射光孔的

弯月形的修正壳以改正球面像差。

ii.马克苏托夫式:(1)最大缺点是不能制作大口径(>250毫米/10 英吋),因为受到修正板的抑制,重量和制作成本都会上扬。(2)马克苏托夫物镜不能校正整个光束的球差,只能校正边缘球差,因此存在剩余球差,对轴外像差来说,只能校正慧差,不能校正象散。

iii.马克苏托夫暗示有可能取代卡塞格林式的“折叠”光学的构造。约翰?葛利格里由马克苏托夫

的想法发展出了马克苏托夫-卡塞格林望远镜。稍后,葛利格里在1957年的天空和望远镜杂志上发

表了划时代的f/15和f/23的马克苏托夫-卡塞格林望远镜设计,为珀金埃尔默明确的预告了这项设计

在商业上的用途。

iv.今天,许多马克苏托夫式都采用了‘卡塞格林式’的设计(或称斑点马克苏托夫):原本的次

镜被在修正板内侧的一小片铝制的斑点所取代。好处是已经固定住无须再对正与校准,也消除了蜘

蛛型支撑架所产生的衍射条纹。缺点则是损失了一定量的自由度(次镜的曲率半径),因为次镜的曲

率半径必须与弯月形修正板的内侧一致。葛利格里第二次设计的(f/15),就改采修正板的前面或主镜

为非球面镜来减少像差。

参数1:Maksutov系统,zemax文件库

像方F数为10 ;视场角0,1.5;e光

面2,面3——浮动光圈;面4,圆形挡光0-2.5 mm;面5,圆形光圈2.5-5 mm

参数2:Maksutov offset ;取自zemax文件库

入瞳200 mm;视场0 0.35 0.5 ;默认波长

面2,圆形挡光0-45 mm;面3,浮动光圈;面4,圆形光圈60-120;面5,浮动光圈。

2.6 施密特-卡塞格林系统

折反式,以折叠的光路与修正板结合,较紧密。

主镜:球面反射镜,并辅以施密特修正板(改正透镜)来改正球面像差

次镜:承袭卡塞格林的设计,以凸面镜做次镜。有些设计会在焦平面附近增加光学元件,例如平场镜。

图:施密特-卡塞格林系统

施密特修正板:一块波浪形的改正透镜,透镜中间厚,两边薄。

施-卡系统:(1)视场很大,但是改正透镜的四次曲面难以磨制,故:口径不能做得很大。

(2)拥有许多的变形,分为两种:紧密的和非紧密的。a. 在紧密的设计中,修正板靠近或就在主镜的焦点上;非紧密的修正板则靠近或就在主镜的曲率中心上(焦距的两倍距离)。b. 非紧密的设计比紧密形的能产生较好的平场和变型的修正,但镜筒在长度上却有所增加。

参数:zemax文件库

2.7 施密特弯月形卡塞格林

集合了施密特和马克苏托夫的优点,使用两种校正器,施密特用于校正球差,弯月用于校正慧差。不过这种类型的卡塞格林长度显得有些过长,不适合大口径的使用。

2.8 达尔-奇克汉卡塞格林

1928年由霍勒斯达尔设计,并于1930年由艾伦奇克汉和艾伯特G.英格尔写成论文发表。

主镜:凹的椭圆面镜。次镜:凸的球面镜。

此系统比卡塞格林或里奇-克莱琴的系统都容易磨制,但是没有修正离轴的彗差和视场畸变,所

以离轴的像品质很快的变差。但是对长F数的影响较小,所以焦比在f/15以上的反射镜仍会采用。

2.9 霍顿-卡塞格林(H-C系统)

改正镜:由一块双凸透镜和一块双凹镜组成,能很好的修正球差,彗差,畸变,可用视场很大,色差也极小,可以忽略不计。像差主要是离轴像散。所有面都是球面,曲率半径较大(马克苏托夫的

改正镜曲率半径很小)容易加工,对材料要求也较低。安装方面,改正镜两透镜之间的间隔,以及

和主镜间的距离的容差很大,主要是对正光轴。

2.10 阿古诺夫-卡塞格林

1972年,P.P. 阿古诺夫。所有的光学元件都是球面镜。

将传统卡式的次镜换成三个有空气隙的透镜元件。距离主镜最远的透镜是曼京镜,它的作用如同第二个镜子的表面,在对向天空的一面有反射用的涂层。阿古诺夫的系统只使用球状的表面,避免了非球面的制造和测试。然而,获得的好处似乎很少,因为这套系统实际上非常难以制做,它需要精确的自由区域球的曲率半径以取代等效的非球面镜。

2.11 普雷斯曼-卡米歇尔卡塞格林

相比上述几种类型卡塞格林来说,Pressmann-Camichel Type最容易制造,但品质较差,需加施密特校正器才能使用。

2.12 "离轴"或"斜反射"反射镜卡塞格林

Schiefspiegler("离轴"或"斜反射")反射镜是一种非常奇特的卡塞格林反射镜,他将主反射镜倾斜以避免第二反射镜在主镜上造成阴影。虽然消除了衍射的图形,却又导致了其他不同的像差必须要修正。

2.13 三反-卡塞格林(Three-mirror Cassegrain)

由三片反射镜组成,有两个间距、三个半径和三个圆锥系数共八个变量,除了满足系统焦距、球差、彗差、像散、场曲等系统性能和像质要求外,还有足够的变量进行系统布局和结构的优化设计。三反射镜系统比两反射镜系统的视场大,且易于控制光学系统的杂散辐射,增加了轴外视场的光通量,使得像面照度更加均匀。随着空间技术的发展,全反射式光学系统,尤其是三反射式光学系统正在逐渐成为空间光学系统的主要形式。长光

zemax自聚焦透镜设计

目录 摘要................................................................ I Abstract........................................................... II 绪论. (1) 1 自聚焦透镜简介 (2) 1.1自聚焦透镜 (2) 1.2 自聚焦透镜的特点 (2) 1.3 自聚焦透镜的主要参数 (3) 2 自聚焦透镜的应用 (4) 2.1 聚焦和准直 (4) 2.2 光耦合 (5) 2.3 单透镜成像 (6) 2.4 自聚焦透镜阵列成像 (6) 3 球面自聚焦透镜设计仿真 (8) 3.1 确定透镜模型 (8) 3.2 设置波长 (8) 3.3数值孔径设定 (9) 3.4 自聚焦透镜光路 (9) 4 优化参数 (10) 4.1光线相差分析 (10) 4.2聚焦光斑分析 (12) 4.3 3D模型 (12) 结束语 (13) 致谢 (14) 参考文献 (15)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

Abstract This article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system. Keywords:Gradient index, GRIN lens, Light coupling,Collimation

ZEMAX光学设计报告

光学设计报ZEMA 一、设计目 通过对设计一个双胶合望远物镜,学zema软件的基本应用和操作 二、设计要 的双胶合望远物镜,且相对孔径1:1设计一个全视场角1.56°,焦距1000m=13.6m要求相高三、设计过 1双胶合望远物镜系统初始结构的选 1.选 由于该物镜的全视场角较小,所以其轴外像差不太大,主要校正的像差有球差、正弦差 位置色差。又因为其相对孔径较小,所以选用双胶合即可满足设计要求。本系统采用紧 型双胶合透镜组,且孔径光阑与物镜框相重合 1.确定基本像差参 根据设计要求,假设像差的初级像差值为零,即球;正弦;位置色s 由此可得基本像差参量。那么按初级像差公式可F 1.冕牌玻璃在前0.0.80.0.8火石玻璃在前 0.008因为没有指定玻璃的种类,故暂选用冕牌玻璃进行计1.选定玻璃组 鉴玻璃的性价比较好,所以选作为其中一块玻璃。查表发现0.00 0.030.008Z组合,此时对应最接近的组合。此系统选 Z组合 的折射的折射0.038311.6721.516Z 1.74.284070.0609 2.009402.4 求形状系1.

考虑到任何实际的透镜组总是有一定的厚度,因此需要把薄透镜组转换成后透镜组 100m1/110m。选用压圈方式根据设计要,则通光口 3.m,由此可求得透镜组定透镜组,该方式所需余量由《光学仪器设计手册》查得103.m外径 对于凸透镜而言;假分别为球面矢高为折射球面曲率半径为透镜外径如图所示, 由上式可求。将所求的的结果代入下式中可求得凸透镜最小2.62.1 缘厚103.4.88.m11 利用下式可求得凸透镜的最小中心厚 m10.01.02.611.6 对于凹透镜而言:先求,再代入下式中可求得凹透镜最小边缘厚1.0.02.6103.11.6m11利用下式可求得凹透镜的最小中心厚不变的条件下进行薄透镜变换成后透镜时,应保

ZEMAX光学设计软件操作说明详解

【ZEMAX光学设计软件操作说明详解】 介绍 这一章对本手册的习惯用法和术语进行说明。ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。 活动结构 活动结构是指当前在镜头数据编辑器中显示的结构。详见“多重结构”这一章。 角放大率 像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。 切迹 切迹指系统入瞳处照明的均匀性。默认情况下,入瞳处是照明均匀的。然而,有时入瞳需要不均匀的照明。为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。 有三种类型的切迹:均匀分布,高斯型分布和切线分布。对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。在“系统菜单”这一章中有关于切迹类型和因子的讨论。ZEMAX也支持用户定义切迹类型。这可以用于任意表面。表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。 后焦距 ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。 基面 基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。 除焦平面外,所有的基面都对应一对共轭面。比如,像空间主面与物空间主面相共轭,等等。如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。 ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。 主光线 如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。 如果使用了渐晕系数,主光线被认为是通过有渐晕入瞳中心的光线,这意味着主光线不一定穿过光阑的中央。 如果有瞳面像差(这是客观存在的),主光线可能会通过近轴入 瞳中心(如果没有使用光线瞄准)或光阑中央(如果使用光线瞄准),但一般说来,不会同时通过二者中心。 如果渐晕系数使入瞳减小,主光线会通过渐晕入瞳中心(如果不使用光线瞄准)或者渐晕光阑中心(如果使用光线瞄准)。 常用的是主光线通过渐晕入瞳的中心,基本光线通过无渐晕的光阑中心。ZEMAX不使用基本光线。大部分计算都是以主光线或者中心光线作为参考。优先使用中心光线,因为它是基于所有照射到象面的光线聚合效应,而不是基于选择某一条特殊光线。

800 万像素手机镜头的zemax设计

800 万像素手机镜头的zemax设计 2012.03.13 评论关闭4,757 views 目录 [隐藏] ?1引言 ?21感光器件的选取 ?32设计指标 ?43设计思路 ? 4.13.1材料选取 ? 4.23.2初始结构选取 ? 4.33.3优化过程 ?54设计结果 ? 5.14.1光学调制传递函数 ? 5.24.2点列图 ? 5.34.3场曲和畸变 ? 5.44.4色差和球差 ? 5.54.5相对照度 ?65公差分析 ?76结论 随着手机市场对高像素手机镜头的需求增大,利用Zemax光学设计软件设计一款大相对孔径800万像素的广角镜头。该镜头由1片非球面玻璃镜片,3片非球面塑料镜片,1片滤光镜片和1片保护玻璃构成。镜头光圈值F为2.45,视场角2ω为68°,焦距为4.25mm,后工作距离为0.5mm。采用APTINA公司的MT9E013型号800万像素传感器,最大分辨率为3264×2448,最小像素为1.4μm。设计结果显示:各视场的均方根差(RMS)半径小于1.4μm,在奈奎斯特频率1/2处大多数视场的MTF值均大于0.5,畸变小于2%,TV畸变小于0.3%。 关键词:手机镜头;光学设计;800万像素;Zemax 引言 手机镜头的研发工作始于20世纪90年代,世界上第一款照相手机是由夏普JPHONE(现在的日本沃达丰)在2001年推出的JSH04手机,它只搭载了一个11万像素的COMS数码相机镜头。随后各大手机知名制造厂商纷纷开始研发手机摄像功能。2003年5月22日夏普制造了100万素的JSH53,目前照相手机的市场占有率几乎是100%,特别是带有高像素2M、3M、5M、8M的镜头就成为镜头研发的热点[1]。目前800万像素的手机市场占有率还不是太多,但随着人们对高端手机的需求量越来越大,800万像素手机肯定是主流趋势。鉴于此,在选用合理初始结构的基础上,优化出了一款800万像素的手机镜头。 1感光器件的选取 感光器件有CCD(电荷耦合器件)和CMOS(互补金属氧化物半导体)两种。CMOS器件产生的图像质量相比于CCD来说要低一些,到目前为止,大多数消费级别以及高端数码相机都使用CCD作为感光元件;CMOS感应器则作为低端产品

ZEMAX光学设计讲义

实验一:单镜头设计(Singlet) 实验目的: 1、学习如何启用Zemax 2、学习如何输入波长(wavelength)、镜头数据(lens data) 3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams), MTF等。 4、学习如何定义thickness solve以及变量(variables) 5、学习如何进行优化设计(optimization) 实验仪器:微机、zemax光学设计软件 实验步骤: 1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length)为100mm,波长为可见光, 用BK7玻璃为材料。 2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。什么是LDE呢?它 是你要的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜片的radius,thickness,大小,位置等。 3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框wavelength data, 键入你要的波长,在第一行输入0.486,它是以microns为单位,此为氢原子的F-line光谱。在第 二、三行键入0.587及0.656,然后在primary wavelength上点在0.587的位置,primary wavelength 主要是用来计算光学系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。 4、确定透镜的孔径大小。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形 成的effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture 就是100/4=25(mm)。于是从system menu上选general data,aperture type里选择entrance pupil,在apervalue上键入25,然后点击ok。 5、回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源, STO即孔径光阑aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面(surface),于是点击IMA栏,选取insert,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。 6、输入镜片的材质为BK7。在STO列中的glass栏上,直接键入BK7即可。 7、孔径的大小为25mm,则第一镜面合理的thickness为4,在STO列中的thickness栏上直接键入4。 Zemax的默认单位是mm 8、确定第1及第2镜面的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为 负值。再令第2面镜的thickness为100。

使用ZEMAX设计的典型实例分析

使用ZEMAX于设计、优化、公差和分析 摘要 光学设计软件ZEMAX的功能讨论可藉由使用ZEMAX去设计和分析一个投影系统来讨论,包括使用透镜数组(lenslet arrays) 来建构聚光镜(condenser)。 简介 ZEMAX以非序列性(non-sequential) 分析工具来结合序列性(sequential) 描光程序的传统功能,且为一套能够研究所有表面的光学设计和分析的整合性软件包,并具有研究成像和非成像系统中的杂散光(stray light) 和鬼影(ghosting) 的能力,从简单的绘图(Layout) 一直到优化(optimization)和公差分析(tolerance analysis)皆可达成。 根据过去的经验,对于光学系统的端对端(end to end)分析往往是需要两种不同的设计和分析工具。一套序列性描光软件,可用于设计、优化和公差分析,而一套非序列性或未受限制的(unconstrained) 描光软件,可用来分析杂散光、鬼影和一般的非成像系统,包括照明系统。 “序列性描光程序”这个名词是与定义一个光学系统为一连串表面的工具有关。所有的光线打到光学系统之后,会依序的从一个表面到另一个表面穿过这个系统。在定义的顺序上,所有的光线一定会相交到所有的表面,否则光路将终止。光线不会跳过任何中间的表面,且光线只能打在每一个已定义的表面一次。若实际光线路径交到一个表面上超过一次,如使用在二次描光(double pass) 中的组件,必须在序列性列表中,再定义超过一次的表面参数。

大部份成像光学系统,如照相机镜头、望远镜和显微镜,可在序列性模式中完整定义。对于这些系统,序列性描光具有许多优点:非常快、非常弹性和非常普遍。几乎任何形状的光学表面和材质特性皆可建构。在成像系统中,序列性描光最重要的优点为使用简单且高精确的方法来做优化和分析。序列性描光的缺点,包括无法追迹所有可能的光路径(即鬼影反射) 和许多无法以序列性方式来描述的光学系统或组件。 非序列性描光最常用来分析成像系统中的杂散光和鬼影,甚致分析照明和其它非成像系统。在非序列性描光中,光线入射到光学系统后,是自由的沿着实际光学路径追迹;一条光线可能打到一个对象(object) 许多次,而且可能完全未打到其它对象。此外,非序列性方法可用来分析从光学或机构组件产生的表面散射(scatter),以及从场内(in-field) 和场外(out-of-field) 的光源所产生的表面反射而形成的鬼影成像。 ZEMAX的功能 ZEMAX可以用于一个完全序列性模式中、一个完全非序性模式中和一个混合模式中,混合模式对分析具有大部分序列性而却有一些组件是作用在非序列性方式的系统,是相当有用的,如导光管(light pipes) 和屋顶棱镜(roof prisms)等。 序列性系统需定义视场角(field of view)、波长范围(wavelength range)和表面数据(surface date)。序列性设计的最重要参数之一,为系统孔径(system aperture)。系统孔径,常指入瞳(entrance pupil) 或孔径光栏(STO),它限制可从已定义视场入射光学系统的光线。光学表面可以是折射、反射或绕射。透镜可以是由均匀或渐变折射率材质所制成。表面的下弯(sag) 可以是球面、圆锥面(conic)、非球面(aspheric)或藉由多项式或其它参数函数

ZEMAX光学设计报告材料

ZEMAX 光学设计报告 一、设计目的 通过对设计一个双胶合望远物镜,学会zemax 软件的基本应用和操作。 二、设计要求 设计一个全视场角为1.56°,焦距为1000mm ,且相对孔径为1:10的双胶合望远物镜,要求相高为y`=13.6mm 。 三、设计过程 1.双胶合望远物镜系统初始结构的选定 1.1选型 由于该物镜的全视场角较小,所以其轴外像差不太大,主要校正的像差有球差、正弦差和位置色差。又因为其相对孔径较小,所以选用双胶合即可满足设计要求。本系统采用紧贴型双胶合透镜组,且孔径光阑与物镜框相重合。 1.2确定基本像差参量 根据设计要求,假设像差的初级像差值为零,即球差0'0=L δ;正弦差0'0s =K ;位置色差 0'0=FC l δ。那么按初级像差公式可得0===∑∑∑I I I I C S S ,由此可得基本像差参量为 0===I ∞ ∞C W P 。 1.3求0P )(() ?? ?? ?+-+-=∞∞∞∞ 火石玻璃在前时 冕牌玻璃在前时 2 2 02.085.01.085.0W P W P P 因为没有指定玻璃的种类,故暂选用冕牌玻璃进行计算,即0085.00-=P 。 1.4选定玻璃组合 鉴于9K 玻璃的性价比较好,所以选择9K 作为其中一块玻璃。查表发现当000.0=I C ,与 0085.00-=P 最接近的组合是9K 与2ZF 组合,此时对应的038.00=P 。此系统选定9K 与

2ZF 组合。 9 K 的 折 射 率 5163 .11=n , 2 ZF 的折射率 6725 .12=n , 038319.00=P ,284074.40-=Q ,06099.00-=W ,009404.21=?,44.2=A ,72.1=K 。 1.5求形状系数Q 一般情况下,先利用下式求解出两个Q 的值: A P P Q Q 00-±=∞ 再与利用下式求的Q 值相比较,取其最相近的一个值: ) (1 20 0+-+ =∞ A P W Q Q 因为 0P P ≈∞ ,所以可近似为284074.40-==Q Q ,06099.00-==∞ W W 。 1.6求归一化条件下的透镜各面的曲率 ()()?????????-=--+-==-=-+=+===-+-?=+-==77370.011 1127467 .2284074.4009404.21 61726.1284074.415163.1009404 .25163.111221233 12211111n Q n n r Q r Q n n r ?ρ?ρ?ρ 1.7求球面曲率半径 ???? ?????-=-='=-=-='==='=491.129277370.01000 624.43927467.21000330.61861726.110003322 11ρρρf r f r f r 1.8整理透镜系统结构数据 视场0136.0tan -=ω(负号表示入射光线从光轴左下方射向右下方),物距-∞=L (表示物体在透镜组左侧无穷远处),入瞳半径mm h 50=,光阑在透镜框上,即入瞳距第一折射

zemax设计实例之手机镜头汇编

zemax设计实例之手机镜头 2012.03.13 评论关闭4,757 views 随着手机市场对高像素手机镜头的需求增大,利用Zemax光学设计软件设计一款大相对孔径800万像素的广角镜头。该镜头由1片非球面玻璃镜片,3片非球面塑料镜片,1片滤光镜片和1片保护玻璃构成。镜头光圈值F为2.45,视场角2ω为68°,焦距为4.25mm,后工作距离为0.5mm。采用APTINA公司的MT9E013型号800万像素传感器,最大分辨率为3264×2448,最小像素为1.4μm。设计结果显示:各视场的均方根差(RMS)半径小于1.4μm,在奈奎斯特频率1/2处大多数视场的MTF值均大于0.5,畸变小于2%,TV畸变小于0.3%。 关键词:手机镜头;光学设计;800万像素;Zemax 引言 手机镜头的研发工作始于20世纪90年代,世界上第一款照相手机是由夏普JPHONE(现在的日本沃达丰)在2001年推出的JSH04手机,它只搭载了一个11万像素的COMS数码相机镜头。随后各大手机知名制造厂商纷纷开始研发手机摄像功能。2003年5月22日夏普制造了100万素的JSH53,目前照相手机的市场占有率几乎是100%,特别是带有高像素2M、3M、5M、8M的镜头就成为镜头研发的热点[1]。目前800万像素的手机市场占有率还不是太多,但随着人们对高端手机的需求量越来越大,800万像素手机肯定是主流趋势。鉴于此,在选用合理初始结构的基础上,优化出了一款800万像素的手机镜头。 1感光器件的选取 感光器件有CCD(电荷耦合器件)和CMOS(互补金属氧化物半导体)两种。CMOS器件产生的图像质量相比于CCD来说要低一些,到目前为止,大多数消费级别以及高端数码相机都使用CCD作为感光元件;CMOS感应器则作为低端产品应用于一些摄像镜头上,目前随着CMOS技术的日益成熟,也有一些高端数码产品使用CMOS器件。CMOS相对于CCD有很多优点,比如价格低、集成化程度高、体积小、质量轻、功耗低、无光晕、高读出速率等[6]。

光学系统设计zemax初级教程

光学系统设计(Zemax初学手册) 内容纲目: 前言 习作一:单镜片(Singlet) 习作二:双镜片 习作三:牛顿望远镜 习作四:Schmidt-Cassegrain和aspheric corrector 习作五:multi-configuration laser beam expander 习作六:fold mirrors和coordinate breaks 习作七:使用Extra Date Editor, Optimization with Binary Surfaces 前言 整个中华卫星二号「红色精灵」科学酬载计划,其量测仪器基本上是个光学仪器。所以光学系统的分析乃至于设计和测试是整个酬载发展重要一环。 这份初学手册提供初学者使用软件作光学系统设计练习,整个需要Zemax光学系统设计软件。它基本上是Zemax使用手册中tutorial的中文翻译,由蔡长青同学完成,并在Zemax E. E. 7.0上测试过。由于蔡长青同学不在参和「红色精灵」计划,所以改由黄晓龙同学接手进行校稿和独立检验,整个内容已在Zemax E. E. 8.0版上测试过。我们希望藉此初学手册(共有七个习作)和后续更多的习作和文件,使团队成员对光学系统设计有进一步的掌握。(陈志隆注) (回内容纲目) 习作一:单镜片(Singlet)

你将学到:启用Zemax,如何键入wavelength,lens data,产生ray fan,OPD,spot diagrams,定义thickness solve以及variables,执行简单光学设计最佳化。 设想你要设计一个F/4单镜片在光轴上使用,其focal length 为100mm,在可见光谱下,用BK7镜片来作。 首先叫出ZEMAX的lens data editor(LDE),什么是LDE呢?它是你要的工作场所,譬如你决定要用何种镜片,几个镜片,镜片的radius,thickness,大小,位置……等。 然后选取你要的光,在主选单system下,圈出wavelengths,依喜好键入你要的波长,同时可选用不同的波长等。现在在第一列键入0.486,以microns为单位,此为氢原子的F-line 光谱。在第二、三列键入0.587及0.656,然后在primary wavelength上点在0.486的位置,primary wavelength主要是用来计算光学系统在近轴光学近似(paraxial optics,即 first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes 等。 再来我们要决定透镜的孔径有多大。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture就是100/4=25(mm)。于是从system menu上选general data,在aper value上键入25,而aperture type被default为Entrance Pupil diameter。也就是说,entrance pupil的大小就是aperture的大小。 回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源,STO即aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA 就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面 (surface),于是在STO栏上,选取insert cifter,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。 再来如何输入镜片的材质为BK7。在STO列中的glass栏上,直接打上BK7即可。又孔径的大小为25mm,则第一面镜合理的thickness为4,也是直接键入。再来决定第1及第2面镜的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为负值。而再令第2面镜的thickness为100。 现在你的输入数据已大致完毕。你怎么检验你的设计是否达到要求呢?选analysis中的fans,其中的Ray Aberration,将会把transverse的ray aberration对pupil coordinate 作图。其中ray aberration是以chief ray为参考点计算的。纵轴为EY的,即是在Y方个的aberration,称作tangential或者YZ plane。同理X方向的aberration称为XZ plane 或sagittal。 Zemax主要的目的,就是帮我们矫正defocus,用solves就可以解决这些问题。solves 是一些函数,它的输入变量为curvatures,thickness,glasses,semi-diameters,conics,以及相关的parameters等。parameters是用来描述或补足输入变量solves的型式。如curvature的型式有chief ray angle,pick up,Marginal ray normal,chief ray normal,Aplanatic,Element power,concentric with surface等。而描述chief ray angle solves

基于ZEMAX的照相物镜的设计 推荐

燕山大学 课程设计说明书题目:基于ZEMAX的照相物镜设计 学院(系):电气工程学院 年级专业: 10级仪表三班 学号: 学生姓名: 指导教师: 教师职称:副教授

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 学号学生姓名专业(班级) 10级仪表三班设计题目 设 计技术参数 1、焦距:f’=15mm; 2、相对孔径:1/2.8; 3、在可见光波段设计(取d、F、C三种色光) 4、视场角2w=74° 设计要求 1、简述照相物镜的设计原理和类型; 2、确定照相物镜的基本性能要求,并确定恰当的初始结构; 3、输入镜头组数据,设置评价函数操作数,进行优化设计和像差结果分析; 4、给出像质评价报告,撰写课程设计论文 工作量 查阅光学设计理论和像差分析的相关文献和资料,提出并较好地的实施方案设计简单透镜组,并用zemax软件对初级像差进行分析和校正,从而对镜头进行优化设计 工作计划 第一天、第二天:熟悉ZEMAX软件的应用,查阅资料,确定设计题目进行初级理论设计 第三天、第四天:完善理论设计,运用ZEMAX软件进行设计优化,撰写报告 第五天:完善过程,进行答辩 参考资料《光学设计》,西安电子科技大学出版社,刘钧,高明,2006,10 《几何光学像差光学设计》,浙江大学出版社,李晓彤,岑兆丰,2003.11 《实用光学技术手册》,机械工业出版社,王之江,2007.1 指导教师签字基层教学单位主任 签字

目录 摘要 (1) 第一章简述照相物镜的设计原理和类型 (2) 第二章设计过程 (4) 2.1根据参数要求确定恰当的初始结构 (4) 2.2优化设计过程 (5) 2.3 优化结果像差结果分析 (8) 第四章课设总结 (13) 参考文献

zemax非顺序系设计教程

如何创建一个简单的非顺序系统 建立基本系统属性 我们将创造出一个带点光源的非序列系统,抛物面反射镜和一个平凸透镜镜头耦合成一个长方形光管灯,如下面的布局显示。 我们还将跟踪分析射线探测器获得光学系统中的各点照度分布。下面是我们最终将产生:

如果ZEMAX软件没有运行,启动它。 默认情况下,ZEMAX软件启动顺序/混合模式。要切换到纯非连续模式,运行ZEMAX软件,然后点击文件“>非序列模式。 一旦纯非连续模式,在编辑器窗口的标题栏将显示非连续组件编辑器而不是在连续模式时只用于连续或混合模式系统的镜头数据编辑。

对于本练习,我们会设置系统波长,点击系统>波长,指定波长0.587微米。 我们还将在系统设置单位,System>General /Unit tab “一般组标签如下(默认)(default).。

除辐射辐照装置单位如Watt.cm -2外,您可以指定光度和能源单位,如lumen.cm -2或joule.cm -2。我们将选择默认为这项工作辐射单位。 创建反射 按键盘上的“插入”(insert)插入几行非序列编辑器。 在设计的第一部分,我们将创建一个由抛物面反射镜准直的线光源。然后,我们将在+ Z上放置探测器对象和看光照在探测器上的分布。 建立第一个对象通过抛物面反射镜。在编辑器对象1列“对象类型”(Object type)双击(右击一下)下,打开对象的属性窗口。根据类型选项卡类型设置为标准的表面(Standard Surfauce),然后单击确定。

在编辑器,请在标准表面对象相应的地方列下列参数。对于某些参数,您可能需要滚动到编辑器的右方以看到标题列,显示所需参数的名称。 Material: Mirror Radius: 100 Conic: -1 (parabola抛物线) Max Aper: 150 Min Aper: 20 (center hole in the reflector在反射中心孔) 所有其他参数缺省 您可以通过“分析>布局”>NSC三维布局菜单,或NSC阴影模型(分析“布局”>NSC阴影模型)打开NSC 三维布局,看看反射镜样子。 创建源 更改对象#2类型(目前是空对象),在编辑器第2行重复前面的步骤并在属性窗口选择线光源(Source Filament)。

用zemax设计光学显微镜 光学系统设计实验报告

课 程 设 计 光学显微镜设计 设计题目 学 号 专业班级 指导教师 学生姓名 测量显微镜

根据学号得到自己设计内容的数据要求: 1.目镜放大率10(即焦距25) 2.目镜最后一面到物面距离110 3.对准精度1.2微米 按照实验步骤,先计算好外形尺寸。然后根据数据要求选取目镜与物镜。 我先做物镜。因为这个镜片比较少。按物镜放大率选好物镜后,将参数输入。简单优化,得到比较接近自己要求的物镜。 然后做目镜,同样的做法,这个按照焦距选目镜,将参数输入。将曲率半径设为可变量,调入默认的优化函数进行优化。发现“优化不了”,所有参数均没有变化。而且发现把光源放在“焦点”位置,目镜出射的不是平行光。我百思不得其解。开始认为镜头库的参数可能有问题。最后我问老师,老师解释,那个所谓的“焦点”其实不是焦点,我错误的把“焦点”到目镜第一个面的距离当成了焦距。这个目镜是有一定厚度的,不能简单等效成薄透镜。焦点到节点的距离才是焦距。经过老师指点后,我尝试调节光源到目镜第一面的距离,想得到出射平行光,从而找到焦点。但这个寻找是很费力气的,事倍功半。老师建议我把目镜的参数倒着顺序输入参数。然后用平行光入射,然后可以轻松找到焦点。 但是,按照这个方法,倒着输入参数,把光源放在无限

远的地方(平行光入射),发现光线是发散的。不解。还是按照原来的方法。把光源放在目镜焦点上,尽量使之出射平行光。然后把它与优化好的物镜拼接起来。后来,加入理想透镜(会聚平行光线),加以优化。 还有一个问题,就是选物镜的时候,发现放大倍率符合了自己的需求,但工作距离与共轭距,不符合自己的要求。这个问题在课堂上问过老师,后来经老师指点,通过总体缩放解决。 物镜参数及优化函数

ZEMAX课程设计照相机物镜设计

ZEMAX课程设计——照相机物镜设计 一、 (课题的背景知识,如照相机镜头的发展概况,类型及其主要技术参数的简要说明) 二、课程设计题目 设计一个照相物镜, =30;;D/f=100mm;'2=1:3.5. 光学特性要求:1)f'2)成像质量要求:弥散斑直径小于0.05mm;倍率色差最好不超过0.01mm;畸变小于3%。 三、设计课题过程 1、参考Ernostar和Tessar联合型物镜设计相关数据,对其进行相关改进。 Ernostar和Tessar联合型物镜设计相关数据如下表1(其中焦距f'=75.68mm;相对孔径D /f'=1:2.4;视场角2ω=56) Radius/r Thickness/d 折射率/n 玻璃阿贝数/ν 表1 2、根据焦距曲率镜片厚度之间的比例关系,即f1/f2=r1/r2=d1/d2,得到焦距100mm,相对孔径D/f'=1:3.5的透镜数据如下表2。

表2 ,相关步骤由以下图给出LDE数据输入到1,将表ZEMAX、启动3. (1)打开ZEMAX。 (2)输入数据。 在主选单system下,圈出wavelengths,依喜好键入所要的波长,同时可选用不同波长,本实验中在第一列键入0.486,单位为microns,第二第三列分别键入0.587、0.656。在primary中点击选1,即用第一个波长为近轴波长。

(3)输入孔径大小。 由相对孔径为1:3.5,焦距为100mm得到,孔径D=100/3.5=28.57143mm。在主选单system 。 28.57143上键入aper value在general data,菜单中选 择. (4)输入视场角。

使用ZEMAX设计的典型实例分析剖析

使用ZEMAX于设计、优化、公差和分析 武汉光迅科技股份有限公司宋家军(QQ:41258981)转载并修改 摘要 光学设计软件ZEMAX的功能讨论可藉由使用ZEMAX去设计和分析一个投影系统来讨论,包括使用透镜数组(lenslet arrays) 来建构聚光镜(condenser)。 简介 ZEMAX以非序列性(non-sequential) 分析工具来结合序列性(sequential) 描光程序的传统功能,且为一套能够研究所有表面的光学设计和分析的整合性软件包,并具有研究成像和非成像系统中的杂散光(stray light) 和鬼影(ghosting) 的能力,从简单的绘图(Layout) 一直到优化(optimization)和公差分析(tolerance analysis)皆可达成。 根据过去的经验,对于光学系统的端对端(end to end)分析往往是需要两种不同的设计和分析工具。一套序列性描光软件,可用于设计、优化和公差分析,而一套非序列性或未受限制的(unconstrained) 描光软件,可用来分析杂散光、鬼影和一般的非成像系统,包括照明系统。 “序列性描光程序”这个名词是与定义一个光学系统为一连串表面的工具有关。所有的光线打到光学系统之后,会依序的从一个表面到另一个表面穿过这个系统。在定义的顺序上,所有的光线一定会相交到所有的表面,否则光路将终止。光线不会跳过任何中间的表面,且光线只能打在每一个已定义的表面一次。若实际光线路径交到一个表面上超过一次,如使用在二次描光(double pass) 中的组件,必须在序列性列表中,再定义超过一次的表面参数。 大部份成像光学系统,如照相机镜头、望远镜和显微镜,可在序列性模式中完整定义。对于这些系统,序列性描光具有许多优点:非常快、非常弹性和非常普遍。几乎任何形状的光学表面和材质特性皆可建构。在成像系统中,序列性描光最重要的优点为使用简单且高精确的方法来做优化和分析。序列性描光的缺点,包括无法追迹所有可能的光路径(即鬼影反射) 和许多无法以序列性方式来描述的光学系统或组件。 非序列性描光最常用来分析成像系统中的杂散光和鬼影,甚致分析照明和其它非成像系统。在非序列性描光中,光线入射到光学系统后,是自由的沿着实际光学路径追迹;一条光线可能打到一个对象(object) 许多次,而且可能完全未打到其它对象。此外,非序列性方法可用来分析从光学或机构组件产生的表面散射(scatter),以及从场内(in-field) 和场外(out-of-field) 的光源所产生的表面反射而形成的鬼影成像。 ZEMAX的功能 ZEMAX可以用于一个完全序列性模式中、一个完全非序性模式中和一个混合模式中,混合模式对分析具有大部分序列性而却有一些组件是作用在非序列性方式的系统,是相当有用的,如导光管(light pipes) 和屋顶棱镜(roof prisms)等。

ZEMAX光学辅助设计简明教程 2

ZEMAX光学辅助设计简明教程 沈常宇 中国计量学院光电子技术研究所

目录 第一章引言 (3) 第二章ZEMAX的基本界面及文件菜单 (4) 第三章编辑菜单 (6) 第四章系统菜单 (12) 第五章分析菜单 (17) 第六章工具菜单 (29) 第七章报告菜单 (36) 第八章宏指令菜单 (38) 第九章扩展命令菜单 (39) 第十章表面类型简介 (40) 第十一章设计优化实例 (46) 第一章引言 对于实际的光学系统来说,它的成像往往是非完善成像,对于怎样来判断一个光学系统的性能的优劣,是光学设计中遇到的一个重要问题.在当前计算机辅助科研、教学的迅猛发展过程中,计算机辅助光学系统设计已成为光学设计不可缺少的一种重要手段.其中,由美国焦点软件公司所发展出的光学设计软件ZEMAX,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件.其主要特色有分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function 参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件. 但是,这里必须强调一点的是,ZEMAX软件只是一个光学设计辅助软件,也就是说,该软件不能教你怎么去进行光学设计,而只是能对你设计的光学系统进行性能的优化以达最佳成像质量.所以,在应用本教程进行光学辅助设计之前,您最好先学习一下光学设计的有关知识:首先是几何光学基础,几何光学是光学设计的基础.要做光学设计必须懂得各种光学仪器成像原理,外形尺寸计算方法,了解各种典型光学系统的设计方法和设计过程.实际光学系统大多由球面和平面构成.记住共轴球面系统光轴截面内光路计算的三角公式,了解公式中各参数的几何意义是必要的,具体公式可参考有关光学书籍,在此就不一一介绍了.对于平面零件有平面反射镜和棱镜,它们的主要作用多为改变光路方向,使倒像成为正像,或把白光分解为各种波长的单色光.在光学系统中造成光能损失的原因有三点:透射面的反射损失、反射面的吸收损失和光学材料内部的吸收损失.其次是像差理论知识,对于一个光学系统,一般存在7种几何像差,他们分别是球差、彗差、像散、场曲、畸变和位置色差以及倍率色差.另外,还必须了解一点材料的选择和公差的分配方面的知识,以及一些光学工艺的知识,包括切割,粗磨,精磨,抛光和磨边,最后还有镀膜和胶合等. 第二章 ZEMAX的基本界面及文件菜单 §2.1 ZEMAX的基本界面 ZEMAX的基本界面比较简单,如下图所示. 包括一系列文件菜单和工具按钮.以及一个镜头数据编辑对话框.

zemax光学设计书汇总

广东工业大学物理与光电工程学院 ZEMAX软件和像差设计 [光学器件CAD] 应用光学和光学工程教研组 2013/9/2 1

前言 广东省的经济发展环境和产业分布特点吸引了众多的光学光电相关企业的进驻。国家的“节能减排”政策又大力促进了材料,半导体和照明产业的新一轮的改革和投入。例如,在LED节能照明,激光制版和光电子信息产业方面,无论是企业的数量还是企业对经济发展的贡献,都有可观的增长。所以,今后几年行业对专门应用型人才的旺盛需求。广东工业大学物理与光电工程学院及时地注意到行业发展的大趋势,进行了专业培养方案的调整,增设了光学工程教研组,旨在培养光学和光机电行业企业所需光学工程方面的人才。 光学工程的课程体系包含《应用光学》(2学分),《光学器件设计》(3学分)和《光学器件CAD课程设计》(2学分)。《应用光学》主要讲授高斯光学光束变换、成像原理;《光学器件设计》主要讲授像差理论和像质评价,为后续的课程设计打基础;《光学器件CAD课程设计》主要讲解光学系统设计,性能分析和优化方法。 ZEMAX光学设计软件,被广泛用于公司、研究所和高校用于产品设计,研究和教学培训。2007年被引进我校的光学设计教学当中,我们在像差教学以及课程设计教学中完全使用ZEMAX软件作为分析和优化工具。ZEMAX软件让学生得到直观和形象地感知透镜光学系统的建立,像质评价指标的物理表述,像差优化和系统成形等各个过程。 内容安排:第一章ZEMAX软件简介,讲述软件的用户界面,工具栏,透镜系统的建立的基本方法,像质评价的物理意义和相关举例。第二章ZEMAX优化操作符,介绍评价函数,操作符的定义和使用。第三章ZEMAX像差设计和优化,讲解建立像差控制的评价函数,如轴上和轴外像差的评价函数以及设计实例。第四章典型光学系统的设计。 i

相关文档
相关文档 最新文档