文档库 最新最全的文档下载
当前位置:文档库 › 指数与指数函数知识点及题型归纳总结

指数与指数函数知识点及题型归纳总结

指数与指数函数知识点及题型归纳总结
指数与指数函数知识点及题型归纳总结

指数与指数函数知识点及题型归纳总结

知识点精讲

一、指数的运算性质 当a >0,b >0时,有 (1)a m a n

=a

m +n

(m ,n ∈R );

(2)m

m n n a a a

-=( m ,n ∈R) (3)(a m )n =a mn (m ,n ∈R );

(4)(ab )m =a m b m (m ∈R );

(5)p

p a a

-=1

(p ∈Q ) (6)m

m n n a a =(m ,n ∈N +)

二、指数函数

(1)一般地,形如y =a x (a >0且a ≠1)的函数叫做指数函数; (2)指数函数y =a x (a >0y =a x a >1 0

图象

(1)定义域:R (1)定义域:R 值域

(2)值域:(0,+∞) (2)值域:(0,+∞) (3)过定点(0,1)

(3)过定点(0,1) (4)在R 上是增函数. (4)在R 上是减函数. (5)00

y =1?x =0 y >1?x <0

(5)0

y =1?x =0 y >1?x >0

题型归纳及思路提示

题型1指数运算及指数方程、指数不等式 思路提示

利用指数的运算性质解题.对于形如()f x a b =,()f x a b >,()f x a b <的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如a 2x +B a x +C =0或a 2x +Ba x +C ≥0(≤0)的形式,可借助换元法转化二次方程或二次不等式求解. 一、指数运算

例2.48化简并求值.

(1)若a =2,b =4()()a a b b ab a b b

+÷+--223333

311

的值; (2)若x x -+=1

12

2

3,

x x x x -

-+-+-332

2

22

3

2

的值; (3)设n

n

a --=

1120142014

2

(n ∈N +),求()n a a +21的值.

分析:利用指数运算性质解题.

=

==.

当a=2,b=4

,原式===

1

2

.

(2)先对所给条件作等价变形:

()

x x x x-

-

+=+-=-=

11

122

222327,

()()

x x x x x x

---

+=++-=?=

3311

1

222213618,

x2+x-2=(x+x-1)2-2=72-2=47.

x x

x x

-

-

+--

==

+--

33

22

22

31831

24723

.

(3)因为

n n

a

-

-

=

11

20142014

2

,所以()

n n

a

-

+

+=

11

22

20142014

1

2

n n n n

n

a

--

-

+-

-=-=

1111

1

2014201420142014

2014

22

.

所以)n

a-

=1

2014.

变式1 设2a=5b=m,且

a b

+=

11

2,则m=( ).

A. B. 10 C. 20 D. 100

二、指数方程

例2.49 解下列方程

(1)9x-4?3x+3=0;(2)()()

x x

?=

2964

3827

分析:对于(1)方程,将其化简为统一的底数,9x=(3x)2;对于()()

x x

?

29

38

,对其底进行化简运算. 解析:(1)9x-4?3x+3=0?(3x)2-4?3x+3=0,令t=3x(t>0),则原方程变形为t2-4t+3=0,

得t1=1,t2=3,即x=

1

31或x=

2

33,故x1=0,x2=1.故原方程的解为x1=0,x2=1.

(2)由()()

x x

?=

2964

3827

,可得()x

?=

3

3

294

383

即()()

x=3

34

43

,所以()()

x-

=3

33

44

,得x=-3.

故原方程的解为x=-3.

变式1方程9x-6?3x-7=0的解是________.

变式2 关于x 的方程()x a

a

+=-32325有负实数根,则a 的取值范围是__________. 三、指数不等式

例2.50若对x ∈[1,2],不等式x m +>22恒成立,求实数m 的取值范围. 分析:利用指数函数的单调性转化不等式.

解析:因为函数y =2x 是R 上的增函数,又因为x ∈[1,2],不等式x m +>22恒成立,即对?x ∈[1,2],不等式x +m >1恒成立?函数y =x +m 在[1,2]上的最小值大于1,而y =x +m 在[1,2]上是增函数,其最小值是1+m ,所以1+m >1,即m >0.

所以实数m 的取值范围是{m |m >0}.

变式1 已知对任意x ∈R ,不等式()x mx m x x -+++>2

2241122恒成立,求m 的取值范围.

变式2 函数()x

f x x -=

-21

的定义域为集合A ,关于x 的不等式ax a x +<222(x ∈R)的解集为B ,求使A ∩B =A 的实数a 的取值范围.

题型2 指数函数的图像及性质 思路提示

解决指数函数有关问题,思路是从它们的图像与性质考虑,按照数形结合的思路分析,从图像与性质找到解题的突破口,但要注意底数对问题的影响. 一、指数函数的图像 例2.51 函数()x b

f x a

-=的图象如图2-14所示,其中a ,b 为常数,则下列结论中正确的是( ).

A. a >1,b <0

B. a >1,b >0

C. 0

D. 0

解析:由图2-14可知00,得b <0,故选D. 评注:若本题中的函数变为()x

f x a b =-,则答案又应是什么?由图2-14

可知?(x )

单调递减,即0

y a b =-的图像,故00且a ≠1)的图像经过第二、三、四象限,则一定有( ). A. 00 B. a >1且b >0 C. 01且b <0 变式2 (2012四川理5)函数x y a a

=-

1

(a >0,a ≠1)的图象可能是( ).

变式3 已知实数a ,b 满足()()a b =11

23

,下列5个关系式:①0

其中不可能...成立的有( ). A. 1个

B. 2个

C. 3个

D. 4个

例2.52 函数?(x )=x a +1(a >0且a ≠1)的图像过定点_________. 分析:指数函数的图像恒过定点(0,1),即a 0=1.

解析:因为函数?(x )=a x (a >0且a ≠1)的图像过定点(0,1),又函数?(x )=x a +1(a >0且a ≠1)的图像是由函数?(x )=a x (a >0且a ≠1)的图像向左平移一个单位得到的,故函数?(x )=x a +1(a >0且a ≠1)的图像过定点(-1,1). 变式1 函数?(x )=a x +1(a >0且a ≠1)的图像过定点________. 变式2 函数?(x)=ax+x-2的图像过定点________.

变式3 ?(x )=x a -1(a >0且a ≠1)的图像恒过定点A ,若点A 在直线mx +ny -1=0(m ,n >0)上,则m n

+11

的最小值为________.

二、指数函数的性质(单调性、最值(值域))

例2.53 函数?(x )=a x (a >0且a ≠1)在[1,2]上的最大值比最小值大a

2

,则a 的值是_______. 分析:本题考查指数函数的单调性.

解析:当0

,得

a a =22,又0

; 当a >1时,函数?(x )=a x 在[1,2]上单调递增,故在[1,2]上最大值为a 2,最小值为a ,那么a a a -=22,得a

a =232

,又a >1,所以a =

3

2

. 综上所述,a 的值是12或3

2

.

评注:函数?(x )=a x (a >0且a ≠1),不论01都是单调的,故最大值和最小值在端点处取得. 所以||a a a -=22,解得a =12或a =32

. 变式1 函数?(x )=a x (a >0且a ≠1)在区间[a ,a +2]上的最大值是最小值的3倍,则a =_____.

变式2 定义区间[x 1,x 2](x 1

变式3 若y =3|x |(x ∈([a ,b ])的值域为[1,9],则a 2+b 2-2a 的取值范围是( ).

A. [2.4]

B. [4,16]

D. [4,12]

例2.54 函数x

x y a --+=+2

481

45(0

分析:复合函数x

x y a --+=+2

481

45内层为二次函数,外层为指数型函数,根据复合函数单调性判定法求解.

解析:因为u =-4x 2-8x +1=-4(x +1)2+5在[-1,+∞)上单调递减,在(-∞,-1]上单调递增,且y =a x (0

x y a --+=+2

481

45(0

变式1 函数()

f x 1________.

变式2 求函数()()()x x f x =-+11

142(x ∈[-3,2])的单调区间及值域.

变式3 已知0≤x ≤2,求函数x x

a y a -=-?++1

2

2

4

212

的最大值和最小值.

变式4 设函数y =?(x )在(-∞,+∞)内有定义,对于给定的正数k ,定义函数(),(),k f x f x k ?=??

()()f x k

f x k ≤>,取函数

?(x )=2-|x |,当k =

1

2

时,函数?k (x )的单调增区间为( ). A. (-∞,0] B. [0,+∞) C. (-∞,-1] D. [1,+∞)

变式5 若函数||()x y m -=+11

2的图像与x 轴有公共点,则m 的取值范围是________.

变式6 已知函数()||x f x -=-21,x ∈R ,若方程?(x )=a 有两个不同实根,则a 的取值范围是__________. 题型3 指数函数中的恒成立问题 思路提示

(1)利用数形结合思想,结合指数函数图像求解.

(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题求解.

例2.55 设()x x f x a =++?124(x ∈R),当x ∈(-∞,-1]时,?(x )的图象在x 轴上方,求实数a 的取值范围. 分析:本题等价于当x ≤1时,x x a ++?124>0恒成立.分离自变量x 与参变量a ,转化为求解函数的最值. 解析:因为当x ∈(-∞,1]时,?(x )的图像在x 轴上方,所以对于任意x ≤1,x x a ++?124>0恒成立,即

x x a +>-21

4

(x ≤1)恒成立.

令()()()x x x x u x +=-=--2111

424(x ≤1),a >u (x )max ,x ∈(-∞,1].

因为()x y =12,()x y =1

4

均是减函数,

所以u (x )在(-∞,1]上单调递增,故当x =1时,max ()()u x u ==-314,故a >-3

4.

故实数a 的取值范围为(-3

4

,+∞).

变式1 已知函数()()x x a

f x a a a -=

--2

1

(a >0且a ≠1). (1)判断函数?(x )的奇偶性; (2)讨论函数?(x )的单调性;

(3)当x ∈[-1,1]时,?(x )≥b 恒成立,求实数b 的取值范围. 变式2定义域为R 的函数12()2x x b

f x a

+-+=+是奇函数.

(1) 求a,b 的值.

(2) 若对任意的t R ∈,不等式2

2

(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围. 变式3 已知函数1()22

x x

f x =-,若2(2)()0t

f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.

最有效训练题

1.函数2

(33)x

y a a a =-+是指数函数,则有( )

A a=1或a=2

B a=1

C a=2

D 0a >且1a ≠ 2.设0.90.48 1.51231

4,8,()2

y y y -===,则( )

A 312y y y >>

B 213y y y >>

C 123y y y >>

D 132y y y >>

3.设函数()f x 定义在实数集上,其图像关于直线x=1对称,且当1x ≥时,()31x

f x =-,则有( )

A 132()()()323f f f <<

B 231()()()323f f f <<

C 213()()()332f f f <<

D 321()()()233

f f f <<

4. 函数()22x

x

f x -=-是( ) A 奇函数,在区间(0,)+∞上单调递增 B 奇函数,在区间(0,)+∞上单调递减 C 偶函数,在区间(,0)-∞上单调递增 D 偶函数,在区间(,0)-∞上单调递减.

5.若关于x 的方程9(4)340x

x

a ++?+=有解,则实数a 的取值范围是( ) A (,8)[0,)-∞-+∞U B (,4)-∞- C [8,4)- D (,8]-∞- 6.函数

221(0)

(1)(0)

(){

ax ax x a e x f x +≥-<=在R 上单调,则a 的取值范围是( )

A (,-∞U

B [1))-+∞U

C (1)

D )+∞ 7.不等式2223330x x a a ?-+-->,当01x ≤≤时,恒成立,则实数a 的取值范围为 .

8. 函数1(2

y =的单调递增区间是 .9.已知关于x 的方程923310x x k -?+-=有两个

不同实数根,则实数k 的取值范围为 .

10. 偶函数()f x 满足 (1)(1)f x f x -=+,且在[0,1]x ∈时,()f x x =,则关于x 的方程1()()10

x

f x =,在[0,2014]x ∈上的解的个数是 .

11.已知函数()x

f x b a =?(其中a,b 为常数且0,1)a a >≠的图像经过点A (1,6),B (3,24). (1)确定()f x .

(2)若不等式11()()0x x m a b

+-≥在(,1]x ∈-∞时恒成立,求实数m 的取值范围.

12.已知函数1()(),[1,1]3

x f x x =∈-,函数2

()[()]2()3g x f x af x =-+的最小值为h(a). (1)求h(a);

(2)是否存在实数m,n 同时满足下列条件:①3m n >>;②当h(a)的定义域为[n,m]时,值域为2

2

[,]n m .若存在,求出m,n 的值;若不存在,说明理由.

(完整word版)指数函数题型归纳

指数函数及其性质应用 1.指数函数概念 叫做指数函数,其中是自变量,函数的定义域为. 一般地,函数 2. 函数 名称 指数函数 定义函数且叫做指数函数 图象 定义域 值域 过定点图象过定点,即当时,. 奇偶性非奇非偶 单调性在上是增函数在上是减函数 函数值的 变化情况 变化对图 象的影响 在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针 方向看图象,逐渐减小.

指数函数题型训练 题型一 比较两个值的大小 1、“同底不同指”型 (1)21 51- ? ?? ?? 3 251?? ? ?? (2) 2.51.7 3 1.7 (3)0.8 14?? ? ?? 1.8 12?? ??? (4) 0.5 a ()0.6 0,1a a a >≠ 归纳: 2、“同指不同底”型 (1)5 6 311?? ? ?? 5 6 833?? ? ?? (2)9 2 4 归纳: 3、“不同底不同指”型 (1)0.3 1.7 3.1 0.9 (2) 2.5 1.7 30.7 (3)0.1 0.8 - 0.2 9 - (4)b a (01)a b a b <<< (5) 1 23-?? ? ?? 13 3 归纳: 综合类:(1)已知232()3 a =,132()3 b =,232 ()5c =则a 、b 、c 的大小关系为 (2)如果0m <,则2m a =,1 ()2 m b =,0.2m c =则a 、b 、c 的大小关系为 题型二 过定点问题 1、函数33x y a -=+恒过定点 2、函数()150,1x y a a a +=->≠图像必过定点,这个定点是 3、已知对不同的a 值,函数()()120,1x f x a a a -=+>≠的图像恒过定点P ,则P 点的坐标 是 归纳: 题型三 解指数函数不等式 1、2212 2≤?? ? ??-x 2、 8 21()33 x x --< 3、0.225x < 4、221(2)(2)x x a a a a -++>++

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

指数函数经典例题(问题详细讲解)

指数函数 1.指数函数の定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数の图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 の图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且の图象和性质。 a>1 0

()x f c の大小关系是_____. 分析:先求b c ,の值再比较大小,要注意x x b c ,の取值是否在同一单调区间. 解:∵(1)(1)f x f x +=-, ∴函数()f x の对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小の常用方法有:作差法、作商法、利用函数の单调性或中间量等.②对于含有参数の大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x の取值围是___________. 分析:利用指数函数の单调性求解,注意底数の取值围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x の取值围是14 ??+ ??? , ∞. 评注:利用指数函数の单调性解不等式,需将不等式两边都凑成底数相同の指数式,并判断底数与1の大小,对于含有参数の要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x の定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数の值域是[)01, .

指数函数知识点总结

指数函数知识总结 (一)指数与指数幂的运算 1.根式的概念: 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ①负数没有偶次方根;②0的任何次方根都是0,记作00=n 。 ③当n 是奇数时,a a n n =, 当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0()1(*>∈>=n N n m a a a n m n m )1,,,0(1 1)2(*>∈>= = - n N n m a a a a n m n m n m (3)0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 题型一、计算 1.44 等于( ) A 、16a B 、8a C 、4a D 、2 a 2.⑴ 33 )2(-= ⑵ 44 )2(-= ⑶ 66)3(π-= ⑷ 2 22y xy x ++= 3.① 625625++- ② 335252-++ 4.计算(1 + 2048 21)(1 + 1024 21)…(1 + 421)(1 + 2 21)(1 + 21 ). 5. 计算(0.0081)4 1-- [3×(87)0]1-·[8125 .0-+(38 3)31-]21 -.

题型二、化简 1. 3 2 13 2b a b a ?- ÷3 2 11- --??? ? ? ?a b b a 2. 322a a a ?(a >0). 3.化简: 3 32 b a a b b a (a >0,b >0). 题型三、带附加条件的求值问题 1. 已知a 2 1+ a 2 1-= 3,求下列各式的值: ⑴ a + a 1 - ⑵ a 2+ a 2 - ⑶ 2 12 1232 3- - --a a a a 2. 已知2a x x =+-2(常数),求8x x -+8的值。 3. 已知x + y = 12, xy = 9,且x <y ,求 2 12 1 212 1y x y x +-的值。 4.已知a 、b 是方程x 2 - 6x + 4 = 0的两根,且a >b >0,求b a b a +-的值。

必修一指数函数各种题型大全最新版

指数函数 【知识点梳理】 要点一、指数函数的概念: 函数y=ax(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?, 1 2x y =,31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x ==???时,在实数范围 内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点二、指数函数的图象及性质:

要点诠释: (1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1)①x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2, 3, (), ()2 3 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可

指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习 一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8- (2)() 2 10- (3)()44 3π- (4) 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. (二)分数指数幂

精华指数函数经典题型练习题不含答案

本节知识点 1、 (一般的,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈且.) 0的任何次方根都是0 2 3、 分数指数幂 4、 有理指数幂运算性质 ① (0,,)r s r s a a a a r s Q +=>∈ ② ()(0,,)r s rs a a a r s Q =>∈ ③()(0,0,)r r r ab a b a b r Q =>>∈ 5、 指数函数的概念 一般的,函数(0,1)x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R . 6、指数函数x y a =在底数 及这两种情况下的图象和性质: 指数与指数函数试题归纳精编 (一)指数 1、化简[32)5(-]4 3的结果为 ( ) A .5 B .5 C .-5 D .-5 2、将322-化为分数指数幂的形式为( ) A .212- B .312- C .212 -- D .6 52- 3、化简 4 216132332)b (a b b a ab ??(a, b 为正数)的结果是( ) A .a b B .ab C .b a D .a 2b

4、化简1111132168421212121212-----??????????+++++ ?????????? ?????????,结果是( ) A 、11321122--??- ??? B 、1 13212--??- ??? C 、13212-- D 、1321122-??- ??? 5、13256)71(027 .0143231+-+-----=__________. 6、32 11321 3 2 )(----÷a b b a b a b a =__________. 7、21203271037(2)0.1(2)392748 π-++-+—=__________。 8、)31()3)((65 6131212132b a b a b a ÷-=__________。 9 、41 60.2503 21648200549-+---)()() =__________。 10、若32121=+-x x ,求23222323-+-+--x x x x 的值。 11、已知1 1 22a a -+=3,求(1)1a a -+; (2)22a a -+; (二)指数函数 题型一:与指数有关的复合函数的定义域和值域 1、 含指数函数的复合函数的定义域 (1) 由于指数函数()1,0≠>=a a a y x 且的定义域是R ,所以函数()x f a y =的定义域与()x f 的定义域相同. (2) 对于函数()()1,0≠>=a a a f y x 且的定义域,关键是找出x a t =的值域哪些部分()t f y =的定义域中. 2、 含指数函数的复合函数的值域 (1) 在求形如()x f a y =()1,0≠>a a 且的函数值域时,先求得()x f 的值域(即()x f t =中t 的范围),再根据t a y =的单调性列出指数不等式,得出t a 的范围,即()x f a y =的值域. (2) 在求形如()x a f y =()1,0≠>a a 且的函数值域时,易知0>x a (或根据()x a f y =对x 限定的更加具 体的范围列指数不等式,得出x a 的具体范围),然后再()+∞∈,0t 上,求()t f y =的值域即可.

指数函数知识点总结

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函 数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 指数函数·例题解析

指数函数题型汇总

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-,∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25) x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2 (25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14 x > .∴x 的取值范围是1 4 ?? + ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响. 4.最值问题

指数及指数函数知识点

指数函数 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . (二)分数指数幂 1.分数指数幂:()102 5 0a a a ==>()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a =45a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。

指数函数知识点汇总

指数函数知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时, a a n n =,当n 是偶数时, ? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m ) 1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数 )1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a >1 0

指数与指数函数题型归纳(非常全)

指数式及指数函数题型归纳(2019.10.25)一.指数幂与根式的互化: 题组一:根式化为分数指数幂 (1)化简=________.(2) 计算=________. (3)若a<0,则=________. (4)的值为() 题组二:运用分数指数幂进行化简: (1)下列各式中错误的是() 1. A. B. C. D. 2.化简()×(-)÷()的结果() A. 6a B. C. D. 3.(1)计算:(2)化简:. (3)(×)6+()-4()-×80.25-(-2009)0. 题组三:指数式的条件求值问题: 1.已知,求下列各式的值(写出过程): (1) (2) (3)= 2.(1)已知,求的值.(2)已知2x+2-x=3,则 4x+4-x= ______ .

题组四:利用指数函数比较大小; 1.下列各式比较大小正确的是: ;; 2.已知,则a,b,c三者的大小关系是 A. B. C. D. 3.已知,b=,c=,则() A. B. C. D. 题组五:指数函数过定点问题; 1.函数f(x)=2-a x+1(a>0且a≠1)的图象恒过定点() A. B. C. D. 2.函数y=a x-3+1(a>0且a≠1)图象一定过点______ . 3.函数y(a>0,a≠1)的图象经过定点为______ 4.题组六:指数函数解方程(或不等式); 1.设集合A={x|-1<x<2},{x|<()x<1},则A∩B=() A. B. C. D. 2.(1)不等式的解集为________.(2)不等式2x-2>22x+4的解集为______ (3)求不等式a2x-7>a4x-1(a>0,且a≠1)中x的取值范围 3.方程4x-6×2x+8=0的解是______ . 题组七:指数函数有关图像问题; 1.函数其中且的图象一定不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2. 若函数y=a x+b的部分图象如图所示,则() A. , B. , C. , D. ,

指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212 3 13 5 25 8 38 9 49 3859=====

解 (2)0.6110.6∵>,>, ∴>. - --- 45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>, >, a a a a a n n n n n n n n n n n n -+-+-=-111 1 1 11 1(a 0a 1n 1)0a 1n 10() () ∴<,∴<当>时,∵>,>,∴>,>a a a n n a a a n n n n n n n n n n n n 1111 1111 1 1() () ()--+--+-1a 1n 101 【例5】作出下列函数的图像:

(精华)指数函数经典题型-练习题-(不含答案)

本节知识点 1、 (一般的,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈且.) ◆ 55n n n ?=??=-??正数的次方根是正数当是奇数时,负数的次方根是负数 ◆ 20,n a n n ?>????正数的次方根有个,且互为相反数如:则次方根为当是偶数时,负数没有偶次方根 ◆ 0的任何次方根都是0 2 ◆ n a =当 ◆ ,0,0a a n a a a ≥?==?-≤?当 3、 分数指数幂 ◆ **0,,,1)1(0,,,1)m n m n m n a a m n N n a a a m n N n a -?=>∈>???=>∈>??? 正分数指数幂的意义且当为正数时,负分数指数幂的意义且 ◆ 0 0???0的正分数指数幂等于当a 为时,0的负分数指数幂无意义 4、 有理指数幂运算性质 ① (0,,)r s r s a a a a r s Q +=>∈ ②()(0,,)r s rs a a a r s Q =>∈ ③()(0,0,)r r r ab a b a b r Q =>>∈ 5、 指数函数的概念 一般的,函数(0,1)x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R .

6、指数函数x y a =在底数及这两种情况下的图象和性质: 1a > 01a << 图 象 性 质 (1)定义域: R (2)值域: (0)+∞, (3)过点 ,即0x =时1y = (4)单调递增 (4) 指数与指数函数试题归纳精编 (一)指数 1、化简[32)5(-]4 3的结果为 ( ) A.5 B .5 C.-5? D.-5 2、将322-化为分数指数幂的形式为( ) A.212- B .312- C.212 -- D .6 52- 3、化简 4 216132332)b (a b b a ab ??(a, b 为正数)的结果是( ) A .a b ??? B.ab ? C.b a D .a 2b 4、化简1111132168421212121212-----??????????+++++ ?????????? ?????????,结果是( ) A、11321122--??- ??? B、1 13212--??- ??? C、13212-- D 、1321122-??- ??? 5、13256)7 1(027.0143 231 +-+-----=__________.

整理高一指数与指数函数基础练习题

枝江三中高一指数函数训练习题一

枝江三中高一指数函数训练习题(一) 一、选择题 1.下列函数中指数函数的个数是 ( ). ①②③④ A.0个 B.1个 C.2个 D.3个 2.若,,则函数的图象一定在() A.第一、二、三象限 B.第一、三、四象限 C.第二、三、四象限 D.第一、二、四象限 3.已知,当其值域为时,的取值范围是()A. B. C. D. 4.若,,下列不等式成立的是() A. B. C. D. 5.已知且,,则是() A.奇函数 B.偶函数 C.非奇非偶函数 D.奇偶性与有关 6.函数()的图象是()

7.函数与的图象大致是( ). 8.当时,函数与的图象只可能是() 9.在下列图象中,二次函数与指数函数的图象只可能是()

10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ). A.2400元 B.900元 C.300元 D.3600元 二、填空题 1.比较大小: (1)----- ;(2) ______ 1;(3) ______ 2.若,则的取值范围为_________ . 3.求函数的单调减区间为__________. 4.的定义域是__________.

5.函数的定义域是__________ . 6.已知的定义域为 ,则的定义域为__________. 7.当时, ,则的取值范围是__________. 8.时,的图象过定点________ . 9.若 ,则函数的图象一定不在第_____象限. 10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________. 11.函数的最小值为____________. 12.函数的单调递增区间是____________. 13.已知关于的方程有两个实数解,则实数的取值范围是_________. 14.若函数(且)在区间上的最大值是14,那么等于_________.

(完整版)指数函数、对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ g123 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

高一数学知识点总结:指数函数、函数奇偶性

高一数学知识点总结:指数函数、函数奇偶性这篇高一数学知识点总结:指数函数、函数奇偶性是特地为大家整理的,希望对大家有所帮助! (1)指数函数的定义域为所有实数的集合,这里的前提是a 大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y 轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性 注图:(1)为奇函数(2)为偶函数 1.定义 一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与 f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与 f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义 2.奇偶函数图像的特征: 定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。 f(x)为奇函数《==》f(x)的图像关于原点对称

相关文档 最新文档