文档库 最新最全的文档下载
当前位置:文档库 › 滞回电压比较器原理及特性

滞回电压比较器原理及特性

滞回电压比较器原理及特性
滞回电压比较器原理及特性

滞回电压比较器原理及特性

滞回电压比较器

滞回比较器又称施密特触发器,迟滞比较器。这种比较器的特点是当输入信号ui逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状。

滞回比较器也有反相输入和同相输入两种方式。

UR是某一固定电压,改变UR值能改变阈值及回差大小。

以图4(a)所示的反相滞回比较器为例,计算阈值并画出传输特性

图4 滞回比较器及其传输特性

(a)反相输入;(b)同相输入

1,正向过程

正向过程的阈值为

形成电压传输特性的abcd段

2,负向过程

负向过程的阈值为

形成电压传输特性上defa段。由于它与磁滞回线形状相似,故称之为滞回电压比较器。

利用求阈值的临界条件和叠加原理方法,不难计算出图4(b)所示的同相滞回比较器的两个阈值

两个阈值的差值ΔUTH=UTH1–UTH2称为回差。

由上分析可知,改变R2值可改变回差大小,调整UR可改变UTH1和UTH2,但不影响回差大小。即滞回比较器的传输特性将平行右移或左移,滞回曲线宽度不变。

图5 比较器的波形变换

(a)输入波形;(b)输出波形

例如,滞回比较器的传输特性和输入电压的波形如图6(a)、(b)所示。根据传输特性和两个阈值(UTH1=2V, UTH2=–2V),可画出输出电压uo的波形,如图6(c)所示。从图(c)可见,ui在UTH1与UTH2之间变化,不会引起uo的跳变。但回差也导致了输出电压的滞后现象,使电平鉴别产生误差。

图6 说明滞回比较器抗干扰能力强的图

(a)已知传输特性;(b)已知ui 波形;

(c)根据传输特性和ui波形画出的uo波形

电压比较器原理介绍

一、电压比较器原理 电压比较器是集成运放非线性应用电路,常用于各种电子设备中,那么什么是电压比较器呢? 它将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。比较器可以组成非正弦波形变换电路及应用于模拟与数字信号转换等领域。 图1所示为一最简单的电压比较器,UR为参考电压,加在运放的同相的输入端,输入电压ui加在反相的输入端。 图1电压比较器原理图(a)及传输特性(b) (a)电路图 (b)传输特性当ui<U R时,运放输出高电平,稳压管Dz反向稳压工作。输出端电位被其箝位在稳压管的稳定电压U Z,即 u O=U Z 当ui>U R时,运放输出低电平,DZ正向导通,输出电压等于稳压管的正向压降U D,即 uo=-U D 因此,以U R为界,当输入电压ui变化时,输出端反映出两种状态,高电位和低电位。 表示输出电压与输入电压之间关系的特性曲线,称为传输特性。图1(b)为(a)图比较器的传输特性。 常用的电压比较器有过零电压比较器、具有滞回特性的过零比较器、滞回电压比较器,窗口(双限)电压比较器。 二、集成电压比较器简介 作用:可将模拟信号转换成二值信号,即只有高电平和低电平两种状态的离散信号。应用:作为模拟电路和数字电路的接口电路。 特点:比集成运放的开环增益低,失调电压大,共模抑制比小;但其响应速度快,传输延迟时间短,而且不需外加限幅电路就可直接驱动TTL、CMOS和ECL等集成数字电路;有些芯片带负载能力很强,还可直接驱动继电器和指示灯(例如LM311)。 三、电压比较器的应用 电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。 电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这是个单电源比较器),同相端输入电压V A,反相端输入V B。V A和V B的变化如图1(b)所示。

常见电压比较器分析比较

常见电压比较器分析比较 电压比较器通常由集成运放构成,与普通运放电路不同的是,比较器中的集成运放大多处于开环或正反馈的状态。只要在两个输入端加一个很小的信号,运放就会进入非线性区,属于集成运放的非线性应用范围。在分析比较器时,虚断路原则仍成立,虚短及虚地等概念仅在判断临界情况时才适应。 一、零电平比较器(过零比较器) 电压比较器是将一个模拟输入信号ui与一个固定的参考电压UR进行比较和鉴别的电路。 参考电压为零的比较器称为零电平比较器。按输入方式的不同可分为反相输入和同相输入两种零电位比较器,如图1(a)、(b)所示 图1 过零比较器 (a)反相输入;(b)同相输入 通常用阈值电压和传输特性来描述比较器的工作特性。 阈值电压(又称门槛电平)是使比较器输出电压发生跳变时的输入电压值,简称为阈值,用符号UTH表示。

估算阈值主要应抓住输入信号使输出电压发生跳变时的临界条件。这个临界条件是集成运放两个输入端的电位相等(两个输入端的电流也视为零),即U+=U–。对于图1(a)电路,U–=Ui, U+=0, UTH=0。 传输特性是比较器的输出电压uo与输入电压ui在平面直角坐标上的关系。 画传输特性的一般步骤是:先求阈值,再根据电压比较器的具体电路,分析在输入电压由最低变到最高(正向过程)和输入电压由最高到最低(负向过程)两种情况下,输出电压的变化规律,然后画出传输特性。 二、任意电平比较器(俘零比较器) 将零电平比较器中的接地端改接为一个参考电压UR(设为直流电压),由于UR的大小和极性均可调整,电路成为任意电平比较器或称俘零比较器。

图2 任意电平比较器及传输特性 (a)任意电平比较器;(b)传输特性 图3 电平检测比较器信传输特性 (a)电平检测比较器;(b)传输特性 电平电压比较器结构简单,灵敏度高,但它的抗干扰能力差。也就是说,如果输入信号因干扰在阈值附近变化时,输出电压将在高、低两个电平之间反复地跳变,可能使输出状态产生误动作。为了提高电压比较器的抗干扰能力,下面介绍有两个不同阈值的滞回电压比较器。 三、滞回电压比较器 滞回比较器又称施密特触发器,迟滞比较器。这种比较器的特点是当输入信号ui逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状。 滞回比较器也有反相输入和同相输入两种方式。

滞回比较器

第一部分 模拟电子课程设计

目录 1 课程设计的目的与作用 (1) 1.1设计目的、主要任务及设计思想 (1) 1.2设计作用 (1) 1.2.1滞回比较器 (1) 1.2.2双限比较器 (1) 2 设计任务及所用multisim软件环境介绍 (1) 2.1设计任务 (1) 2.2 Multisim软件环境介绍: (2) 3 电路模型的建立 (2) 3 .1滞回比较器 (2) 3 .2双限比较器 (2) 4 理论分析及计算 (3) 4 .1滞回比较器理论分析及计算 (3) 4 .2双限比较器 (4) 5 仿真结果分析 (5) 5 .1滞回比较器 (5) 5 .2双限比较器 (5) 6 设计总结和体会 (6) 7 参考文献 (6)

1 课程设计的目的与作用 1.1设计目的、主要任务及设计思想 根据设计要求完成对滞回比较器和双限比较器的设计,进一步加强对模拟电子技术的理解。了解比较器的工作原理,掌握外围电路设计与主要性能参数的测试方法。 1.2设计作用 1.2.1.滞回比较器:又称施密特触发器,其抗干扰能力强,如果输入电压受到干扰或噪声的影响,在门限电平上下波动,而输出电压不会在高、低两个电平间反复的跳动。 1.2.2.双限比较器:在实际工作中,有时需要检测输入模拟信号的电平是否处在两个给定的电平之间,此时要求比较器有两个门限电平,这种比较器称为双限比较器。 2设计任务及所用multisim软件环境介绍 2.1设计任务 初步了解和掌握滞回比较器和双限比较器的设计、调试过程,能进一步巩固课堂上学到的理论知识,了解滞回比较器和双限比较器的工作原理

2.2 Multisim软件环境介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 3 电路模型的建立 3.1.滞回比较器 图3.1 3.2.双限比较器

电压比较器原理分析(学年论文)

电压比较器原理分析 目录 第一章绪论 (2) 第二章电压比较器原理图 (2) 第三章电压比较器工作原理及应用 (3) 3.1 什么是电压比较器 (3) 3.2 电压比较器的工作原理 (5) 3.3 比较器与运放的差别 (5) 第四章比较器典型应用电路分析 (6) 4.1 散热风扇自动控制电路 (6) 4.2窗口比较器 (9) 参考文献 (11)

第一章绪论 电压比较器是对输入信号进行鉴幅与比较的电路,是组成非正弦波发生电路的基本单元电路,在测量和控制中有着相当广泛的应用。本文主要讲述各种电压比较器及其对应的应用电路,讲述各种电压比较器的特点及其电压传输特性,同时阐述电压比较器的组成特点和分析方法。 电压比较器是集成运放非线性应用电路,他常用于各种电子设备中,那么什么是电压比较器呢?下面我给大家介绍一下,它将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。比较器可以组成非正弦波形变换电路及应用于模拟与数字信号转换等领域。 图1 图1所示为一最简单的电压比较器,UR为参考电压,加在运放的同相的输入端,输入电压UI加在反相的输入端。 第二章电压比较器原理图 电压比较器可将模拟信号转换成二值信号,即只有高电平和低电平两种状态的离散信号。因此,可用电压比较器作为模拟电路和数字电路的接口电路。集成电压比较器虽然比集成运放的开环增益低,失调电压大,共模抑制比小,但其响应速度快,传输延迟时间短,而且一般不需要加限幅电路就可以直接驱动TTL、CMOS和ECL等集成数字电路;有些芯片带负载能力强,还可以直接驱动继电器和指示灯。 按一个器件上所含有电压比较器的个数,可分为单、双和四电压比较器;按功能,可分为通用性高速型低功耗型低电压型和高精度型电压比较器;按输出方式,可分为普通集电极(或漏极)开路输出或互补输出三种情况。集电极(或漏极)开路输出电压必须在输出端接一个电阻至电源,若一个为高电平,则另一个必为低电平。 此外,还有的集成电压比较器带有选通断,用来控制电路是处于工作状态,还是处于禁止状态。所谓工作状态,是指点乱编电压传输特性工作;所谓禁止状态,是指电路不按电压传输特性工作,从输出端看进去相当于开路,即处于高阻状态。 下面是对具体电压比较器的功能电路分析:(A)电路图1传输特性当UI<UR时,运放输出高电平,稳压管DZ反向稳压工作。输出端电位被其箝位在稳压管的稳定电压UZ,即UO=UZ

滞回电压比较器原理及特性

滞回电压比较器原理及特性 滞回电压比较器 滞回比较器又称施密特触发器,迟滞比较器。这种比较器的特点就是当输入信号ui逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状。 滞回比较器也有反相输入与同相输入两种方式。 UR就是某一固定电压,改变UR值能改变阈值及回差大小。 以图4(a)所示的反相滞回比较器为例,计算阈值并画出传输特性 图4 滞回比较器及其传输特性 (a)反相输入;(b)同相输入 1,正向过程

正向过程的阈值为 形成电压传输特性的abcd段 2,负向过程 负向过程的阈值为 形成电压传输特性上defa段。由于它与磁滞回线形状相似,故称之为滞回电压比较器。 利用求阈值的临界条件与叠加原理方法,不难计算出图4(b)所示的同相滞回比较器的两个阈值 两个阈值的差值ΔUTH=UTH1–UTH2称为回差。 由上分析可知,改变R2值可改变回差大小,调整UR可改变UTH1与UTH2,但不影响回差大小。即滞回比较器的传输特性将平行右移或左移,滞回曲线宽度不变。 图5 比较器的波形变换 (a)输入波形;(b)输出波形

例如,滞回比较器的传输特性与输入电压的波形如图6(a)、(b)所示。根据传输特性与两个阈值(UTH1=2V, UTH2=–2V),可画出输出电压uo的波形,如图6(c)所示。从图(c)可见,ui在UTH1与UTH2之间变化,不会引起uo的跳变。但回差也导致了输出电压的滞后现象,使电平鉴别产生误差。 图6 说明滞回比较器抗干扰能力强的图 (a)已知传输特性;(b)已知ui 波形; (c)根据传输特性与ui波形画出的uo波形

电压比较器实验报告

85 专业:电气工程卓越 人才 姓名:卢倚平 学号: ________ 验 … 一 二、实验内容 五、思考题及实验心得 一、实验目的 了解电压比较器与运算放大器的性能区别: 二、实验数据记录、处理与分析 ①【过零电压比较器电路】 过零电压比较器是电压比较电路的基本结构,它可将交流信号转化为同频率 的双极性矩形波。常用于测量正弦波的频率相位等。当输入电压in< 输出out = 0L ;反之,当输入电压in N out 时,输出out = OH 。 实验仿真: 课程名称: 电路打电r 技术实於 指导老师: 周箭 成绩: 实验名称: 电压比较器及其应用 实验类型: 电子电路实验同组 学生姓名: 邓江毅 三、主要仪器设备 四、实验数据记录、处理与分析 一、实验目的 2. 举握电压比较器的结构及特点; 3. 掌握电压比较器电圧传输特性的测试方法: 4. 学习比较器在电路设计中的应用。

不疲器?5(£C1I JS J 时同270.001ms 270.001 ms 0.000s JIf 「反向—] 通道 上 ?4.998 V -4.998 V 0.000 V 通道丿 -17.847V -17.847 V 0.000 V H as 12^1 时基_ 标度:10 msX)iv X轴位移(格):0 通ilA 刻度: 20 VQ2 Y轴位移 (格):0 通ilB ____ 刻度:5 VQiv Y轴位移 (榆:0 L保Q外触发 触发 边沿:SB 0回国] 水 平:0 ~ 实测实验记录: 由于时间不足,没有做过零比较器的相关实测 ②【基本单门限比较器电路】 单门限比较器的输入信号Vin接比较器的同相输入端,反相输入端接参考电 压Vref (门限电平)。当输入电压Vin>Vref 输出为高电平VOH:当输入电压Vin

电压比较器工作原理及应用实例

电压比较器工作原理及应用实例 时间:2011-11-24来源:作者:方佩敏 来源:https://www.wendangku.net/doc/cf15266368.html, 本文主要介绍电压比较器基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。 电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。 什么是电压比较器 简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+”端)及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。VA和VB的变化如图1(b)所示。在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。在这种情况下,Vout 的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout 输出低电平。根据输出电平的高低便可知道哪个电压大。 如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。与图1(c)比较,其输出电平倒了一下。输出电平变化与VA、VB的输入端有关。 图2(a)是双电源(正负电源)供电的比较器。如果它的VA、VB输入电压如图

1(b)那样,它的输出特性如图2(b)所示。VB>VA时,Vout输出饱和负电压。 如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。此VB称为参考电压、基准电压或阈值电压。如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。 比较器的工作原理 比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。 图4(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为: Vout=(1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。若R1=R2,R3=RF,则 Vout=RF/R1(VA-VB),RF/R1为放大器的增益。当R1=R2=0(相当于R1、R2短路),R3=RF=∞(相当于R3、RF开路)时,Vout=∞。增益成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比较器电路。实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。

神奇的滞回电压比较器

神奇的滞回电压比较器 初学者感觉滞回电压比较器比较奇妙,是因为它有两个转折的门限电压,为了容易理解,不妨从一个更通俗的例子说起。比如我们常用饮水机中的温控开关.就是比较简单也是比较典型的具有滞回特性的器件。假如我们设定开关工作的温度是T1,如果开关没有滞回的特点,当达到这个温度时,电热器断开,温度下降,当低于这个温度时,电加热器接通。这样就会出现一种情况,电热器在这个温度附近会频繁接通和断开,温度达到T1一加热器件断开一温度下降一导致电热器接通一温度上升-加热器件又断开,如此反复,在临界区附近产生振荡。这是我们不希望的结果,所以,温控开关一般是具有滞回的特点,动作(断开)温度TH和复位(接通)温度TL有一定的温度差一回复误差。比如:设定开关断开的温度是大于95℃,复位接通的温度是小于90℃,回复误差根据需要可以调整,这样就解决了温控开关频繁接通和断开的问题。接通到断开,断开到接通沿着不同的路径,不走回头路,故此称为滞回控制开关。 滞回电压比较器和上述的温控开关是一样的道理,可以类比理解。大家知道运算放大器在开环状态下可以用作比较器,其理想和实际的电压传输特性如附图所示,实际特性是只有当它的差模输入电压足够大时,输出电压Uo才为正负最大值。Uo在从+Uce变为-Uss或从-Uss变为+Uce的过程中,随着Ui的变化,将经过线性区,并需要一定的时间。可以知道,在单限比较器中,输入电压在阀值电压附近的微小变化,都将引起两个不同的输出状态之间产生不期望的频繁穿越跳变,不管这种微小变化是来源于输入信号还是外部干扰。因此,虽然单限比较器很灵敏,但是抗干扰能力差。而滞回比较器具有滞回特性,即具有惯性,因此也就具有一定的抗干扰能力。用带有内部滞回电路的比较器代替开环运算放大器能够抑制输出的频繁跳变和振荡。 滞回电压比较器电路有两个阀值电压,类似本文开始提到的温控开关,有两个门限值UH、UL。输入电压Ui从小变大过程中使输出电压Uo产生跃变的阔值电压UH,不等于Ui从大变小过程中使输出电压Uo产生跃变的阀值电压UL.电路具有滞回特性。举个例子,如附图所示为从反向输入端输入的滞回比较器电路.由分压电阻Rl:R2构成正反馈。假设Rl=lOkn,R2=lOOn,电源供电电压为:U CC=13V,Uss=-13V,反馈系数F=R2/(R 1+R2)。比较器的反相输入电压从0开始线性变化,当Ui=0时,加到同相的输入瑞电压为Uref=RI/(R1+R2)Eref,Uo=Uce,同相端总电压UH=1 V,同相端电压大于反相端电压,这是一个稳定的状态。 输入电压由零向正方向增长,只要它还小于UH,即Ui<1V,输出电压Uo都保持最大正的电征Ucc不变,即Uo=13V。当Ui一旦超过UH一点点,平衡即被破坏,由于反向输入电压大于正向输入电压,输出电压Uo就会从最大正向电压Ucc(+13V)向负向最大电压Uss(-13V)转换。而且由于R1、R2引入的正向反馈作用将加速这种转换,形成跳变,获得理想的传输电压特性,Uo从+13V跳变到-13V。 跳变完成后,加到同相端的总电压为:UL=0.86V,显然只要输入电压保持大干UL即U>0.86V,输出电压将保持负的最大值Uss(-13V)不变。但是当输入电压U从大到小下降到小于UL(0.86V)时,一个相反的连锁反馈又将使输出电压Uo从负的最大值Vss(-13V)跳变到正的最大值Ucc(+13 V)。通过改变Eref的大小可方便改变滞回区间。 斯密特滞回触发器只有-个触发端子,比较方便灵活,在实际中具有广泛的应用,如一开始提到的温控开关就可以用滞回触发器实现。再比如开关电源中的欠压保护就是滞回比较器的典型应用,当市电电压低于一定值时.通过滞回比较器使开关电源停止工作,保护电网和机器的安全。 我们以常用的UC3842为例简单说明其原理,UC3842⑦脚为电压输入端,内接施密特滞回触发器,利用其回滞特性实现锁存,其启动电压范围为16V-34V。 在电源启动,Vcc<16V时,输入电压施密器比较器输出为0,此时无基准电压产生,电路不工作;当Vcc>16V时输入电压施密特比较器送出高电平到5v稳压器,产生5v基准电压,此电压一方面供内部电路工作,另一方面通过⑧脚向外部提供参考电压。一旦施密特比较器翻转为高电平(芯片开始工作以后),Vcc可以在10V-34V范围内变化而不影响电路的工作状态。当Vcc低于10V时.施密特比较器又翻转为低电平,电路停止工作。当出现机器启动困难的故障时,就要考虑该脚外围元件是否正常,该部分电路比较简单,维修应该不复杂,关键是判断故障,要抓住其故障特点。由于保护电路的滞回特点,-般是启动困难,一旦启动成功,能长时间稳定工作。

比较器原理

比较器原理,比较器的工作原理 电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。 什么是电压比较器以其原理 简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+”端)及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。VA和VB的变化如图1(b)所示。在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。在这种情况下,Vout的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout输出低电平。根据输出电平的高低便可知道哪个电压大。 比较器原理:对两个或多个数据项进行比较,以确定它们是否相等,或确定它们之间的大小关系及排列顺序称为比较。能够实现这种比较功能的电路或装置称为比较器。比较器是将一个模拟电压信号与一个基准电压相比较的电路。比较器的两路输入为模拟信号,输出则为二进制信号,当输入电压的差值增大或减小时,其输出保持恒定。 比较器两大类别 1.模拟比较器 将模拟量与一标准值进行比较,当高于该值时,输出高(或低)电平.反之,则输出低(或高)电平.例如,将一温度信号接于运放的同相端,反相端接一电压基准(代表某一温度),当温度高于基准值时,运放输出高电平,控制加热器关闭,反之当温度信号低于基准值时,运放输出低电平,将加热器接通.这一运放就是一个简单的比较器,因为输入与输出同相,称为同相比较器..有的模拟比较器具有迟滞回线,称为迟滞比较器,用这种比较器,有助于消除寄生在信号上的干扰. 2.数字比较器 用来比较二组二进制数是否相同,相同时输出(或低)高电平,反之,则输出相反的电平. 最简单的数字比较器是一位二进制数比较器,是一个异或门(或同或门). 比较器的工作原理 比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。 图4(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为:Vout= (1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。若R1=R2,R3=RF,则Vout=RF/R1(VA-VB),RF/R1为放大器的增益。当R1=R2=0(相当于R1、R2短路),R3=RF=∞(相当于R3、R F开路)时,Vout=∞。增益成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比较器电路。实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。

电压比较器原理及使用

实验十电压比较器的安装与测试 一.实验目的 1.了解电压比较器的工作原理。 2.安装和测试四种典型的比较器电路:过零比较器、电平检测器、滞回比较器和窗口比较器。 二.预习要求 1.预习过零比较器、电平检测器、滞回比较器和窗口比较器的工作原理。 2.预习使用示波器测量信号波形和电压传输特性的方法。 三.实验原理 电压比较器的基本功能是能对两个输入电压的大小进行比较,判断出其中那一个比较大。比较的结果用输出电压的高和低来表示。电压比较器可以采用专用的集成比较器,也可以采用运算放大器组成。由集成运算放大器组成的比较器,其输出电平在最大输出电压的正极限值和负极限值之间摆动,当要和数字电路相连接时,必须增添附加电路,对它的输出电压采取箝位措施,使它的高低输出电平,满足数字电路逻辑电平的要求。 下面讨论几种常见的比较器电路。 基本过零比较器(零电平比较器) 过零比较器主要用来将输入信号与零电位进行比较,+15V 以决定输出电压的极性。电路如图1所示:u i 2 7 放大器接成开环形式,信号u i从反向端输入,同μA7416u o 相端接地。当输入信号u i< 0时,输出电压u o为正极限34 值U OM;由于理想运放的电压增益A u→∞,故当输-15V 入信号由小到大,达到u i = 0 时,即u -= u + 的时刻, 输出电压u o 由正极限值U OM 翻转到负极限值-U OM。图 1 反向输入过零比较器 当u i >0时输出u o为负极限值-U OM。因此,输出翻转的临界条件是u + = u - = 0。 即:+U OM u i< 0 u o = (1) -U OM u i >0 其传输特性如图2(a)所示。所以通过该电路输出的电压值,就可以鉴别输入信号电压u i是大于零还是小于零,即可用做信号电压过零的检测器。

电压比较器

模拟电子技术自主设计实验 姓名:林启震班级:04101 学号1120410121 实验日期:5.27 台号:教师签字: 电压比较器 一、实验目的 1、掌握电压比较器的分析及其计算 2、学习测试比较器的方法 二、实验仪器 1、双踪示波器 2、信号发生器 3、数字万用表 4、直流电源。 三、实验原理及测量方法 电压比较器(通常称为比较器)的功能是比较两个电压的大小。例如,将一个信号电压Ui和另一个参考电压Ur进行比较,在Ui>Ur和Ui0时,Uo为低电平 Ui<0时,Uo为高电平 集成运放输出的高低电平值一般为最大输出正负电压值U om (a)电路图(b)电压传输特性曲线 图1 过零比较器 2、滞回电压比较器 滞回电压比较器是由集成运放外加反馈网络构成的正反馈电路,如图2所示。Ui为信号电压,Ur为参考电压值,输出端的稳压管使输出的高低电平值为±Uz。可以看出,此电路形成的反馈为正反馈电路。

(a )电路图 (b )电压传输特性曲线 图2 反向滞回电压比较器 电压比较器的特性可以用电路的传输特性来描述,它是指输出电压与输入电压的关系曲线,如图1(b )为过零比较器的电压传输特性曲线。 可以看出,当输入电压从低逐渐升高或从高逐渐降低经过0电压时,Uo 会从一个电平跳变为另一个电平,称0为过零比较器的阈值。阈值定义为当比较器的输出电平从一个电平跳变到另一个电平时对应的输入电压值。 滞回电压比较器的电压传输特性曲线如图2(b )所示。 曲线表明,当输入电压由低向高变化,经过阈值1TH U 时,输出电平由高电平(Uz )跳变为低电平(-Uz )。 2123z TH R U U R R = + 当输入电压由高向低变化,经过阈值2TH U 时,输出电平由低电平(-Uz)跳变为高电平(Uz)。 2123z TH R U U R R -= + 3、电压比较器的测试 测试过零比较器时,可以用一个低频的正弦信号输入至比较器中,直接用双踪示波器监看输出和输入波形,当输入信号幅度适中时,可以发现输入电压大于零、小于零时,输出的高、低电平变化波形,即将正弦波变换为方波。 滞回电压比较器测试时也可由用同样的方法,但在示波器上读取上、下阈值时,误差较大。采用直流输入信号的方案较好,调节输入信号变化,测出输出电平跳变时对应的输入电压值即为阈值。 四、实验内容 1、 过零比较器 (1)连接图1(a )实验电路,检查无误后,接通12V ±直流电源 (2)测量当Ui 悬空时,Uo 的值 (3)调节信号源,使输出频率为100Hz ,有效值为1V 的正弦波信号,并输入至Ui 端,用示波器观察比较器的输入Ui 与输出Uo 波形并记录 (4)改变信号发生器的输出电压Ui 幅值,用示波器观察Uo 变化,测出电压传

滞回比较器

滞回比较器文件管理序列号:[K8UY-K9IO69-O6M243-OL889-

实验十电压比较器的安装与测试 一.实验目的 1.了解电压比较器的工作原理。 2.安装和测试四种典型的比较器电路:过零比较器、电平检测器、滞回比较器和窗口比较器。 二.预习要求 1.预习过零比较器、电平检测器、滞回比较器和窗口比较器的工作原理。 2.预习使用示波器测量信号波形和电压传输特性的方法。 三.实验原理 电压比较器的基本功能是能对两个输入电压的大小进行比较,判断出其中那一个比较大。比较的结果用输出电压的高和低来表示。电压比较器可以采用专用的集成比较器,也可以采用运算放大器组成。由集成运算放大器组成的比较器,其输出电平在最大输出电压的正极限值和负极限值之间摆动,当要和数字电路相连接时,必须增添附加电路,对它的输出电压采取箝位措施,使它的高低输出电平,满足数字电路逻辑电平的要求。 下面讨论几种常见的比较器电路。 基本过零比较器(零电平比较器) 过零比较器主要用来将输入信号与零电位进行比较, +15V

以决定输出电压的极性。电路如图1所示: u i 2 7 放大器接成开环形式,信号u i 从反向端输入,同 μA741 6 u o 相端接地。当输入信号u i < 0时,输出电压u o 为正极限 3 4 值U OM ;由于理想运放的电压增益A u →∞,故当输 ?15V 入信号由小到大,达到 u i = 0 时,即 u ?= u + 的时刻, 输出电压 u o 由正极限值 U OM 翻转到负极限值 ?U OM 。 图 1 反向输入过零比较器 当u i > 0时输出u o 为负极限值 ?U OM 。因此,输出翻转的临界条件是u + = u ? = 0。 即: +U OM u i < 0 u o = (1) ?U OM u i > 0 其传输特性如图2(a )所示。所以通过该电路输出的电压值,就可以鉴别输入信号电压u i 是大于零还是小于零,即可用做信号电压过零的检测器。

LM339电压比较器原理应用

四电压比较器LM339的8个典型应用例子 LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,图1为外型及管脚排列图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。 单限比较器电路 图2a给出了一个基本单限比较器。输入信号Uin,即待比较电压,它加到同相输入端,在反相输入端接一个参考电压(门限电平)Ur。当输入电压Uin>Ur时,输出为高电平UOH。图2b为其传输特性。

电压比较器教程文件

电压比较器

实验十集成运放基本应用之三——电压比较电路 姓名:班级:学号:实验时间: 一、实验目的 1、掌握比较器的电路构成及特点 2、学会测试比较器的方法 二、实验原理 1、图1所示为一最简单的电压比较器,UR为参考电压,输入电压Ui加在反相输入端。图1(b)为(a)图比较器的传输特性。 (a) 图1 电压比较器 (b) 当UiUR时,运放输出低电平,Dz正向导通,输出电压等于稳压管的正向压降UD,即:Uo=-UD。 因此,以UR为界,当输入电压Ui变化时,输出端反映两种状态。高电位和低电位。 2、常用的幅度比较器有过零比较器、具有滞回特性的过零比较器(又称Schmitt触发器)、双限比较器(又称窗口比较器)等。 (1)、图2过零比较器 D1D2为幅稳压管。信号从运放的反相端输入,参考电压为零。当u1>0 时,u0=-(Uz+U D),当u1<0时,u0=+(Uz+U D)

(a) 图2 过零比较器 (b) (2)、图3为滞回比较器。 过零比较器在实际工作时,如果Ui恰好在过零值附近,则由于零点漂移的存在,Uo将不断由一个极限值转换到另一个极限值,这在控制系统中,对执行机构将是很不利的。为此就需要输出特性具有滞回现象。如图3所示: (a) (b) 图3 滞回比较器 从输出端引入一个电阻分压支路到同相输入端,若Uo 改变状态,U∑ 点也随着改变点位,使过零点离开原来位置。当Uo 为正(记作U D )U∑=[ R2/( R2+ R f )]* U D ,则当UD> U∑后,Uo 再度回升到UD,于是出现图(b)中所示的滞回特性。- U∑ 与U∑ 的差别称为回差。改变R2 的数值可以改变回差的大小。 三、实验设备与器件 1、±12V直流电源 2、直流电压表 3、函数信号发生器 4、交流毫伏表 5、双踪示波器 6、运算放大器μA741×2 7、稳压管2CW231×1 8、二极管4148×2 9、电阻器等

电压比较器电路图

电压比较器电路。 电压比较器是比较两个电压和开关输出或高或低的状态,取决于电压较高的电路。一个基于运放电压比较器上显示。图1显示了一个电压比较器的反相模式图显示了在非反相模式下的电压比较。 电压比较器 非反相比较 在非反相比较器的参考电压施加到反相输入电压进行比较适用于非反相输入。每当进行比较的电压(Vin)以上的参考电压进入运放的输出摆幅积极饱和度(V+),和副反之亦然。实际上发生了什么是VIN和Vref(VIN-VREF)之间的差异,将是一个积极的价值和由运放放大到无穷大。由于没有反馈电阻Rf,运放是在开环模式,所以电压增益(AV)将接近无穷。+所以最大的可能值,即输出电压摆幅,V。请记住公式AV=1+(Rf/R1)。当VIN低于VREF,反向发生。 反相比较

在相比较的情况下,参考电压施加到非反相输入和电压进行比较适用于反相输入。每当输入电压(Vin)高于VREF,运放的输出摆幅负饱和。倒在这里,两个电压(VIN-VREF)之间的差异和由运放放大到无穷大。记住公式AV=-Rf/R1。在反相模式下的电压增益的计算公式是AV=-Rf/R1.Since没有反馈电阻,增益将接近无穷,输出电压将尽可能即负,V-。 实际电压比较器电路 一种实用的非基于UA741运放的反相比较器如下所示。这里使用R1和R2组成的分压器网络设置参考电压。该方程是VREF=(五+/(R1+R2)的)×R2的。代入这个方程电路图值,VREF=6V。当VIN高于6V,输出摆幅?+12V直流,反之亦然。从A+/-12V 直流双电源供电电路。 电压比较器的使用741

一些其他的运放,你可能会感兴趣的相关电路 1求和放大器:总结放大器可以用来找到一个信号给定数量的代数和。 2。集成使用运放:对于一个集成的电路,输出信号将输入信号的积分。例如,一个集成的正弦波使余弦波,方波一体化为三角波等。 3。反相放大器:在一个反相放大器,输出信号将输入信号的倒版,是由某些因素放大。 4,仪表放大器:这是一个类型的差分放大器输入额外的缓冲阶段。输入阻抗高,易于匹配结果。仪表放大器具有更好的稳定性,高共模抑制比(CMRR),低失调电压和高增益。

滞回比较器

电压比较器的安装与测试实验十 实验目的一. .了解电压比较器的工作原理。 1 .安装和测试四种典型的比较器电路:过零比较器、电平检测器、滞回比较器和窗口2 比较器。 预习要求二. .预习过零比较器、电平检测器、滞回比较器和窗口比较器的工作原理。1 2.预习使用示波器测量信号波形和电压传输特性的方法。 三.实验原理 电压比较器的基本功能是能对两个输入电压的大小进行比较,判断出其中那一个比较 大。比较的结果用输出电压的高和低来表示。电压比较器可以采用专用的集成比较器,也可由集成运算放大器组成的比较器,其输出电平在最大输出电压的正以采用运算放大器组成。极限值和负极限值之间摆动,当要和数字电路相连接时,必须增添附加电路,对它的输出电压采取箝位措施,使它的高低输出电平,满足数字电路逻辑电平的要求。下面讨论几种常见的比较器电路。 基本过零比较器(零电平比较器)过零比较器主要用来将输入信号与零电位进行比较,+15V u 以决定输出电压的极性。电路如图1所示: 2 7i 6u u从反向端输入,同放大器接成开环形式,信号μA741oi相端接地。当输入信号u< 时,输出电压u为正极限430oi 值U ;由于理想运放的电压增益A→∞,故当输15V?uOM入信号由小到大,达到u0 时,即u = u 的时刻,= ?i + 输出电压u由正极限值U翻转到负极限值?U。图 1 反向输入过零比较器OMo OM 当u>0时输出u为负极限值?U 。因此,输出翻转的临界条件是u = u = 0。?oi OM+ 即:+U u< 0 iOM u= (1)o ?U u>0 i OM其传输特性如图2(a)所示。所以通过该电路输出的电压值,就可以鉴别输入信号电压u是大于零还是小于零,即可用做信号电压过零的检测器。i

滞回比较器详解

滞回比较器 关于比较器滞回的讨论需要从“滞回”的定义开始, 与许多其它技术术语一样, “滞回”源于希腊语, 含义是“延迟”或“滞后”, 或阻碍前一状态的变化。工程中, 常用滞回描述非对称 绝大多数比较器中都设计带有滞回电路, 通常滞回电压为5mV到10mV。内部滞回电路可以避免由于输入端的寄生反馈所造成的比较器输出振荡。但是内部滞回电路虽然可以使比较器免于自激振荡, 却很容易被外部振幅较大的噪声淹没。这种情况下需要增加外部滞回, 以提高系统的抗干扰性能。 首先, 看一下比较器的传输特性。图1所示是内部没有滞回电路的理想比较器的传输特性, 图2所示为实际比较器的传输特性。从图2可以看出, 实际电压比较器的输出是在输入电压(VIN)增大到2mV时 才开始改变。 图1. 理想比较器的传输特性 图2. 实际比较器的传输特性 运算放大器在开环

图3. 无滞回电路时比较器输出的模糊状态和频繁跳变 举个例子, 考虑图4所示简单电路, 其传输特性如图5所示。比较器的反相输入电压从0开始 线性变化, 由分压电阻R1、R2构成正反馈。当输入电压从1点开始增加(图6), 在输入电压超过同相阈值VTH+ = VCCR2/(R1 + R2)之前, 输出将一直保持为VCC。在阈值点, 输出电压迅速从VCC跳变为VSS, 因为, 此时反相端输入电压大于同相端的输入电压。输出保持为低电平, 直到输入经过新的阈值点 5 , VTH- = VSSR2/(R1 + R2)。在5点, 输出电压迅速跳变回VCC, 因为这时同相输入电压高于反相输 入电压。 图4. 具有滞回的简单电路

图5. 图4电路的传输特性 图6. 图4电路的/输出电压波形 图4所示电路中的输出电压VOUT与输入电压VIN的对应关系表明, 输入电压至少变化2VTH时, 输出电压才会变化。因此, 它不同于图3的响应情况(放大器无滞回), 即对任何小于2VTH的噪声或干扰都不会导致输出的迅速变化。在实际应用中, 正、负电压的阈值可以通过选择适合的反馈设置。 其它设置可以通过增加不同阈值电压的滞回电路获得。图7电路使用了两个MOSFET和一个电阻网络调节正负极性的阈值。与图4所示比较器不同, 电阻反馈网络没有加载到负载环路, 图8给出了输入 信号变化时的输出响应。

电压比较器原理分析

电压比较器原理分析 第一章绪论 电压比较器是对输入信号进行鉴幅与比较的电路,是组成非正弦波发生电路的基本单元电路,在测量和控制中有着相当广泛的应用。本文主要讲述各种电压比较器及其对应的应用电路,讲述各种电压比较器的特点及其电压传输特性,同时阐述电压比较器的组成特点和分析方法。 电压比较器是集成运放非线性应用电路,他常用于各种电子设备中,那么什么是电压比较器呢?下面我给大家介绍一下,它将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。比较器可以组成非正弦波形变换电路及应用于模拟与数字信号转换等领域。 图1 图1所示为一最简单的电压比较器,UR为参考电压,加在运放的同相的输入端,输入电压UI加在反相的输入端。

第二章电压比较器原理图 电压比较器可将模拟信号转换成二值信号,即只有高电平和低电平两种状态的离散信号。因此,可用电压比较器作为模拟电路和数字电路的接口电路。集成电压比较器虽然比集成运放的开环增益低,失调电压大,共模抑制比小,但其响应速度快,传输延迟时间短,而且一般不需要加限幅电路就可以直接驱动TTL、CMOS和ECL等集成数字电路;有些芯片带负载能力强,还可以直接驱动继电器和指示灯。 按一个器件上所含有电压比较器的个数,可分为单、双和四电压比较器;按功能,可分为通用性高速型低功耗型低电压型和高精度型电压比较器;按输出方式,可分为 普通集电极(或漏极)开路输出或互补输出三种情况。集电极(或漏极)开路输出电压必须在输出端接一个电阻至电源,若一个为高电平,则另一个必为低电平。 此外,还有的集成电压比较器带有选通断,用来控制电路是处于工作状态,还是处于禁止状态。所谓工作状态,是指点乱编电压传输特性工作;所谓禁止状态,是指电路不按电压传输特性工作,从输出端看进去相当于开路,即处于高阻状态。 下面是对具体电压比较器的功能电路分析:(A)电路图 1传输特性当UI<UR时,运放输出高电平,稳压管DZ反向稳压工作。输出端电位被其箝位在稳压管的稳定电压UZ,即UO=UZ 当UI>UR时,运放输出低电平,DZ正向导通,输出电压等于稳压管的正向压降UD,即 UO=-UD 因此,以UR为界,当输入电压UI变化时,输出端反映出两种状态,高电位和低电位。 表示输出电压与输入电压之间关系的特性曲线,称为传输特性。图3-1(B)为(A)

相关文档
相关文档 最新文档