文档库 最新最全的文档下载
当前位置:文档库 › 高等数学同济版大学微积分公式

高等数学同济版大学微积分公式

高等数学同济版大学微积分公式
高等数学同济版大学微积分公式

同济高数上册公式大全

第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次

) ()! 12()1(...!5!3sin ) (! ...!3!211 2125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! )) 1()...(1(...! 2) 1(1)1(2n n x o x n n x x x +---+ +-+ +=+ααααααα )(1 2)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则 定理1 设函数)(x f 、)(x F 满足下列条件: (1)0)(lim 0 =→x f x x ,0)(lim 0 =→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3)) ()(lim x F x f x x ''→存在(或为无穷大),则 这个定理说明:当) ()(lim x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)() (lim 0x F x f x x ''→;当 ) ()(lim x F x f x x ''→为无穷大时,)() (lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则. ∞ ∞ 型未定式 定理2 设函数)(x f 、)(x F 满足下列条件: (1)∞=→)(lim 0 x f x x ,∞=→)(lim 0 x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; )() (lim )()(lim 00x F x f x F x f x x x x ''=→→) ()(lim )()(lim 00x F x f x F x f x x x x ''=→→

同济大学高等数学教学大纲

《高等数学A》课程教学大纲 (216学时,12学分) 一、课程的性质、目的和任务 高等数学A是理科(非数学)本科个专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。 通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、向量代数与空间解析几何;4、多元函数微积分学; 5、无穷级数(包括傅立叶级数); 6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题 的能力。 二、总学时与学分 本课程的安排三学期授课,分为高等数学A(一)、(二)、(三),总学时为90+72+54,学分为5+4+3。 三、课程教学基本要求及基本内容 说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。 高等数学A(一) 一、函数、极限、连续、 1. 理解函数的概念及函数奇偶性、单调性、周期性、有界性。 2. 理解复合函数和反函数的概念。 3. 熟悉基本初等函数的性质及其图形。 4. 会建立简单实际问题中的函数关系式。 5. 理解极限的概念,掌握极限四则运算法则及换元法则。 6. 理解子数列的概念,掌握数列的极限与其子数列的极限之间的关系。

7. 理解极限存在的夹逼准则,了解实数域的完备性(确界原理、单界有界数列必有极限的原理,柯西(Cauchy),审敛原理、区间套定理、致密性定理)。会用两个重要极限求极限。 8. 理解无穷小、无穷大、以及无穷小的阶的概念。会用等价无穷小求极限。 9. 理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。 10.了解初等函数的连续性和闭区间上连续函数的性质(介值定理,最大最小值定理,一致连续性)。 二、一元函数微分学 1.理解导数和微分的概念,理解导数的几何意义及函数的可导性与连续性之间的关系。会用导数描述一些物理量。 2.掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的导数公式。了解微分的四则运算法则和一阶微分形式不变性。 3.了解高阶导数的概念。 4.掌握初等函数一阶、二阶导数的求法。 5.会求隐函数和参数式所确定的函数的一阶、二阶导数。会求反函数的导数。 6.理解罗尔(Ro lle)定理和拉格朗日(Lagrange)定理,了解柯西(Cauchy)定理和泰勒(Taylo r)定理。 7.会用洛必达(L’Ho sp ital)法则求不定式的极限。 8.理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法。会求解较简单的最大值和最小值的应用问题。 9.会用导数判断函数图形的凹凸性,会求拐点,会描绘函数的图形(包括水平和铅直渐进线)。 10.了解有向弧与弧微分的概念。了解曲率和曲率半径的概念并会计算曲率和曲率半径。 11.了解求方程近似解的二分法和切线法。 三、一元函数积分学 1.理解原函数与不定积分的概念及性质,掌握不定积分的基本公式、换元法和分步积分法。会求简单的有理函数及三角函数有理式的积分。 2.理解定积分的概念及性质,了解函数可积的充分必要条件。

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! ))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα )(1 2)1(...53arctan 121 2153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则

同济大学___高数上册知识点

高等数学上册复习要点 一、 函数与极限 (一) 函数 1、 函数定义及性质(有界性、单调性、奇偶性、周期性); 2、 反函数、复合函数、函数的运算; 3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数; 4、 函数的连续性与间断点; 函数)(x f 在0x 连续)()(lim 00 x f x f x x =→ 第一类:左右极限均存在. 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点 5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定 理及其推论. (二) 极限 1、 定义 1) 数列极限 εε<->?N ∈?>??=∞ →a x N n N a x n n n , , ,0lim 2) 函数极限 εδδε<-<-?>??=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00 时,当 左极限:)(lim )(0 0x f x f x x -→-= 右极限:)(lim )(0 0x f x f x x + →+=

)()( )(lim 000 + -→=?=x f x f A x f x x 存在 2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤ 2) a z y n n n n ==→∞ →∞lim lim a x n n =∞→lim 2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量 1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=?; Th2 αβαβαβββαα' ' =''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则; 3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→x x x b) e x x x x x x =+=++∞→→)11(lim )1(lim 1 0 5) 无穷小代换:(0→x ) a) x x x x x arctan ~arcsin ~tan ~sin ~ b) 2 2 1~cos 1x x -

大一同济上册高数(一些重要公式及知识点)

同济上册高数总结 微分公式与积分公式 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

同济高等数学公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππa x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

同济高等数学公式大全

同济高等数学公式大全 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数: 两个重要极限: 三角函数公式: ·诱导公式: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222?????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 2 2)ln(2 21 cos sin 22 2222 2222222 22222 2 22 2 ππa x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

高数上册公式大全(同济六版)

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

同济高数上册公式大全

第一章函数与极限 一. 函数的概念 1. 两个无穷小的比较 设 lim f(x) 0, limg(x) 0 且血丄凶 l g(x) (1) l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[ g(x)],称g(x) 是比f(x)低阶的无穷小。 (2) l 工0,称f (x)与g(x)是同阶无穷小。 (3) l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2. 常见的等价无穷小 当x - 0时 a 1 - cos.L X — sin x ~ x ,tan x ~ x , arcsinx ~ x , arccosx ~ x , x 1- cos x ~ x A 2/2 , e -1 ~ x , ln(1 x) ~ x , (1 x) 1~ x 求极限的方法 1 ?两个准则 准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g(x) < f (x) < h(x) 若 lim g(x) A,lim h(x) A ,则 lim f(x) A 2 ?两个重要公式 sin x 彳 公式1 lim 1 x 0 x 公式 2lim (1 x)1/x e x 0 3 ?用无穷小重要性质和等价无穷小代换 4?用泰勒公式 当x 0时,有以下公式,可当做等价无穷小更深层次 sin x cosx 2 x 3 x 2! 3! 3 5 x x 3! 5! 2 4 x x 2! 4! n! OX 〉 2n 1 1)n A / 2n 1 、 o(x ) 2n n x 2n x x

同样适用. 使用洛必达法则时必须注意以下几点: (1) 洛必达法则只能适用于“ 0 ”和“一”型的未定式,其它的未定式须 先化简变形成“ ”或“一”型才能运用该法则; (2) 只要条件具备,可以连续应用洛必达法则; (3) 洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不 能断 In(1 x) 3 f... ( 1) n n 1 x / n o(x ) n (1 x) (1) 2! x 2 (1)-( (n 1))x n n! o(x n ) arcta n x 2n 1 n 1 X 2n 1 1) o(x ) 2n 1 5 ?洛必达法 则 定理1 (1) f(x)、F(x)满足下列条件: lim F(x) 0 ; x x o (2) (3) 设函数 lim f (x) 0 , x x f(x)与F(x)在X 。的某一去心邻域内可导,且 上存在(或为无穷大),则im 丄? -■ ■ x x 0 F(x) 3存在时,佃出 x x 0 F(x) lim x x o F (x) F (x) 0 ; ..f (x) lim x x 0 F (x) 这个定理说明:当 匕为无穷大时, lim x 冷 F (x) lim 卫勺也是无穷大. x X o F(x) 也存在且等于lim x x 0 F (x) f (x).当 lim x x o F (x) 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值 的方法称为洛必达(L H ospital )法则. 一型未定式 X o 定理2设函数f(x)、 lim f(x) x X 0 f(x)与F(x)在X 。的某一去心邻域内可导,且 F(x) 0 ; ..f (x) lim x x F (x) (1) (2) F(x)满足下列条件: ,lim F(x) ; x x o 存在(或为无穷大),则叫鵲 注:上述关于x x 0时未定式一型的洛必达法则,对于x (3) ..f (x) lim x x o F (x) 时未定式一型

同济高等数学公式大全

同济高等数学公式大全文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222?????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 2 2)ln(221 cos sin 22 2222 2222222 22222 2 22 2 ππa x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次

) ()! 12()1(...!5!3sin ) (! ...!3!211 2125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! )) 1()...(1(...! 2) 1(1)1(2n n x o x n n x x x +---+ +-+ +=+ααααααα )(1 2)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则 定理1 设函数)(x f 、)(x F 满足下列条件: (1)0)(lim 0 =→x f x x ,0)(lim 0 =→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于) () (lim 0x F x f x x ''→;当 )()(lim 0x F x f x x ''→为无穷大时,) () (lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则. ∞ ∞ 型未定式 定理2 设函数)(x f 、)(x F 满足下列条件: (1)∞=→)(lim 0 x f x x ,∞=→)(lim 0 x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3)) () (lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞ 型的洛必达法则,对于∞→x 时未定式∞ ∞ 型 同样适用. 使用洛必达法则时必须注意以下几点: (1)洛必达法则只能适用于“00 ”和“∞ ∞ ”型的未定式,其它的未定式须先化简变形成“00 ”或“ ∞ ∞ ”型才能运用该法则;) () (lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→

同济大学---高数上册知识点

高等数学上册复习要点 」、函数与极限 (一)函数 1、函数定义及性质(有界性、单调性、奇偶性、周期性); 2、反函数、复合函数、函数的运算; 3、初等函数:幕函数、指数函数、对数函数、三角函数、反三角函数; 4、函数的连续性与间断点; 函数f(x)在X o连续> lim f(x)二f(x°) X T X o ‘第一类:左右极限均存在? 间断点可去间断点、跳跃间断点 .第二类:左右极限、至少有一个不存在? 无穷间断点、振荡间断点 5、闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其 推论. (二)极限 1、定义 1)数列极限 limX n=a= PEA。,m N EN,x/n>N, x^ a < s n T°o 2)函数极限 lim f (x) = A= * > 0,我> 0, %,当0^|x-x°|"时,f(x)-A —X r X o

左极限:f(X0) = lim f (X) 右极限:f(X。)= lim f (x) X T X o I X o

lim f (x)二 A 存在二 f (x0) = f(x 0 ) X _;Xo 2、 极限存在准则 1) 夹逼准则: 1) y^ X^ Z n ( n - n °) 2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量 1) 定义:若lim 〉二0则称为无穷小量;若lim 〉八:则称为无穷大量 2) 无穷小的阶:高阶无 穷小、同阶无穷小、等价无穷小、 k 阶无穷小 2 ) lim y n = lim z n = a 丿 n ^^ n -^c lim x n 二 a n 》:: Th1 :~ :二: o(: ) ? Th2 -?:,? ,lim 一存在, a r lim —= a lim —(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则; 3) 极限运算准则及函数连续性; 4) 两个重要极限: 「 sin x 彳 a) li 叫 1 b) X r ° x 1 lim (1 x)x X r 0 lim (V -)^ e x 』: x a) x ~ si n x ?tan x ?arcs in x ?arcta nx

高数公式大全

高等数学公式 (tanx) sec2 x 2 (arcsin x) 1 1 x2 (cot x) csc (secx) secx x tanx (arccos x) 1 1 x2 (cscx) cscx cot x 1 (a x) a x ln a (arctan x) 2 1 x (log a x) 1 x ln a (arccot x) 1 1 x2 导数公式:基本积分表: kdx kx C (k 为常数)x u dx x u 1 C u 1 1 dx x ln x C 1 1 x2 dx arctan x C 1 dx 1 x2 arcsin x C cosxdx sin x C sin xdx cosx C 1 cos2 x dx sec2 xdx tan x C 1 2 dx sin x 2 csc xdx cot x C secx tan xdx secx C cscxcot xdx cscx C e x dx e x C a x a x dx C ln a 两个重要极限: lim sin x 1 x 0 x lim(1 1 x e x x )

三角函数公式: sin 2 2sin cos cos 2 2cos 2 1 1 2sin 2cos2sin2 2 2 sin cos 1 2 2 sec 1 tan 零点定理:设函数 f x 在闭区间a, b 上连续,且 f a f b 0 ,那么在开区间a, b 上至少一点,使f 0 。(考点:利用定理证明方程根的存在性。当涉及唯一根时,还需证明方程对应的函数的单调 性) 罗尔定理:如果函数 f x 满足三个条件: (1 )在闭区间a, b 上连续; (2 )在开区间a, b 内可导; (3 )在区间端点处的函数值相等,即 f a f b , 那么在a, b 内至少有一点 a b ,使得f0 。(选择题:选择符合罗尔定理条件的函数;证 明题) 拉格朗日中值定理:如果函数 f x 满足 (1 )在闭区间a,b 上连续; (2 )在开区间a,b 内可导, 那么在a, b 内至少有一点 a b ,使等式 f b f a f b a 成立。(证明题) 定积分应用相关公式 1 b 函数的平均值y f x dx b a a 空间解析几何和向量代数: 空间两点的距离 d M 1 M 2 2 x2 x1 2 y1 y2 2 z1z2 '

同济高等数学公式大全

同济高等数学公式大全 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222?????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 2 2)ln(221 cos sin 22 2222 2222222 22222 2 22 2 ππa x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

同济大学---高数上册知识点

高等数学上册复习要点 一、函数与极限 (一)函数 1、函数定义及性质(有界性、单调性、奇偶性、周期性); 2、反函数、复合函数、函数的运算; 3、初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数; 4、函数的连续性与间断点; 函数在连续 第一类:左右极限均存在. 间断点可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点 5、闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定 理及其推论. (二)极限 1、定义 1)数列极限 2)函数极限 左极限:右极限:

2、极限存在准则 1)夹逼准则: 1) 2) 2)单调有界准则:单调有界数列必有极限. 3、无穷小(大)量 1)定义:若则称为无穷小量;若则称为无穷大量. 2)无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、阶无穷小 1 ; 2 (无穷小代换) 4、求极限的方法 1)单调有界准则; 2)夹逼准则; 3)极限运算准则及函数连续性; 4)两个重要极限: a)b) 5)无穷小代换:() a) b)

c)() d)() e) 二、导数与微分 (一)导数 1、定义: 左导数: 右导数: 函数在点可导 2、几何意义:为曲线在点处的切线的斜率. 3、可导与连续的关系: 4、求导的方法 1)导数定义; 2)基本公式; 3)四则运算; 4)复合函数求导(链式法则); 5)隐函数求导数; 6)参数方程求导; 7)对数求导法. 5、高阶导数

1)定义: 2)公式: (二)微分 1)定义:,其中与无关. 2)可微与可导的关系:可微可导,且 三、微分中值定理与导数的应用 (一)中值定理 1、罗尔定理:若函数满足: 1);2);3); 则. 2、拉格朗日中值定理*:若函数满足: 1);2); 则. 3、柯西中值定理:若函数满足: 1);2);3) 则 (二)洛必达法则

同济高等数学1归纳

高等数学归纳(第一章~第三章) 2010126137 彭伟奕 第一章 函数与极限 第一节 映射与函数 一 、 集合 ●集合概念:集合(集)是指具有某种特定性质的事物的总体。 ●元素(元):组成某个集合的事物称为该集合的元素(元)。 (a 属于A,记作a ∈A ; a 不属于A ,记作a ?A 。) ●表示集合的方法: (1) 列举法:把集合的全体元素一一列举出来,例:A={}123n a a a a ,, (2) 描述法:集合M={} x x ︱具有性质P ,例:M={} 210x -=︱x ●集合间关系:A 包含于B (A ?B ),A 不包含于B (A ?B ) A 是B 的真子集( A B ?) ,A 等于B (A=B ),空集?是任何非空集合的真子集。 ●集合的运算:并,交,差 {}A B |x x A x B =∈∈或 {}A B |x x A x B =?∈且 A\B={}|x x A x B ∈?且 I\A 为A 的余集或补集,亦记c A ●集合运算法则: 交换律:A ∪B=B ∪A,A ∩B=B ∩A 结合律:(A ∪B )∪C=A ∪(B ∪C) A ∩(B ∩C)=(A ∩B) ∩C 分配律:(A ∪B )∩C=(A ∩C) ∪(B ∩C) (A ∩B) ∪C=(A ∪C) ∩(B ∪C) 对偶律:c c (A B)A B c = ccc (AB)=AB 直积(笛卡尔乘积):A ?B={(x,y )|x ∈A 且x ∈B},例:R ×R={(x,y)|x ∈R,y ∈B}为XOY 面上全体点的集合,R ×R 记作2 R。 ● 区间与邻域: (1)区间 开区间:(a,b ),a,b 为开区间(a,b )的端点。 闭区间:[a,b] 半开区间:[a,b ﹚, ﹙a,b] (2)邻域:以a 为中心的任何开区间称以点a 为邻域,记作U (a ) 点a 的δ邻域,记U(a, δ),其中δ为任一正数, U(a, δ)={x|a-δ<x <a+δ}={x| |x-a|<δ} 点a 为邻域的中心,δ为邻域半径。

同济六版上册高数总结(一些重要公式及知识点)

同济六版上册高数 微分公式与积分公式 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高数上册归纳公式篇完整

高数上册归纳公式篇完整 The pony was revised in January 2021

公式篇 目录 一、函数与极限 1.常用双曲函数 2.常用等价无穷小 3.两个重要极限 二、导数与微分 1.常用三角函数与反三角函数的导数公式 2.n阶导数公式 3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较 4.参数方程求导公式 5.微分近似计算 三、微分中值定理与导数的应用 1.一阶中值定理 2.高阶中值定理 3.部分函数使用麦克劳林公式展开

4.曲率 四、定积分 1.部分三角函数的不定积分 2.几个简单分式的不定积分 五、不定积分 1.利用定积分计算极限 2.积分上限函数的导数 3.牛顿-莱布尼茨公式和积分中值定理 4.三角相关定积分 5.典型反常积分的敛散性 6.Γ函数(选) 六、定积分的应用 1.平面图形面积 2.体积 3.弧微分公式 七、微分方程

1.可降阶方程 2.变系数线性微分方程 3.常系数齐次线性方程的通解 4.二阶常系数非齐次线性方程(特定形式)的特解形式 5.特殊形式方程(选) 一、函数与极限 1.常用双曲函数(sh(x).ch(x).th(x)) 2.常用等价无穷小(x→0时) 3.两个重要极限 二、导数与微分 1.常用三角函数与反三角函数的导数公式 (凡是“余”求导都带负号) 2.n阶导数公式 λ 特别地,若n = 3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较函数的0阶导数可视为函数本身

4.参数方程求导公式 5.微分近似计算(x ?很小时) (注意与拉格朗日中值定理比较) 常用: (与等价无穷小相联记忆) 三、微分中值定理与导数的应用 1.一阶中值定理()(x f 在],[b a 连续,),(b a 可导) 罗尔定理(端点值相等)()(b f a f =) 拉格朗日中值定理 柯西中值定理(0)('≠x g ≠0) 2.高阶中值定理()(x f 在),(b a 上有直到)1(+n 阶导数) 泰勒中值定理 n R 为余项

相关文档
相关文档 最新文档