文档库 最新最全的文档下载
当前位置:文档库 › (完整版)导数练习题(精编)

(完整版)导数练习题(精编)

(完整版)导数练习题(精编)
(完整版)导数练习题(精编)

函数与导数经典例题(含答案)(训练习题)

函数与导数 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,3 2 2 ()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:2 2 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-=或 因为0t ≠,以下分两种情况讨论: (1)若0,,2 t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: x ,2t ??-∞ ?? ? ,2t t ?? - ??? (),t -+∞ ()f x ' + - + ()f x 所以,()f x 的单调递增区间是(), ,,;()2t t f x ? ?-∞-+∞ ? ??的单调递减区间是,2t t ?? - ??? 。 (2)若0,2 t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: x (),t -∞ ,2t t ??- ??? ,2t ?? +∞ ??? ()f x ' + - + ()f x

2020高考文科数学:函数与导数主观题专项练习

函数与导数主观题专项练习 1.[2018·北京卷]设函数f (x )=[ax 2 -(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解析:(1)因为f (x )=[ax 2 -(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2 -(2a +1)x +2]e x . 所以f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e≠0. 所以a 的值为1. (2)由(1)得f ′(x )=[ax 2 -(2a +1)x +2]e x =(ax -1)(x -2)e x . 若a >12,则当x ∈? ????1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值. 若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤1 2x -1<0, 所以f ′(x )>0. 所以2不是f (x )的极小值点. 综上可知,a 的取值范围是? ?? ??12,+∞. 2.[2019·安徽省安庆市高三模拟]已知函数f (x )=eln x -ax (a ∈R ). (1)讨论f (x )的单调性; (2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 解析:解法一 (1)f ′(x )=e x -a (x >0), ①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增. ②若a >0,则当00; 当x >e a 时,f ′(x )<0. 所以f (x )在? ?? ??0,e a 上单调递增,

函数与导数经典例题高考压轴题含答案

函数与导数经典例题-高考压轴 1. 已知函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21 ()3 2 f x x =+,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33lg[(1)]2lg ()2lg (4)2 4 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1()()[(1)(2)()]6 f n h n h h h n -+++≥. 3. 设函数ax x x a x f +-=22ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 = a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a , b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自 然对数的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

函数与导数大题部分-高考数学解题方法归纳总结专题训练

专题03 函数与导数大题部分 【训练目标】 1、 理解函数的概念,会求函数的定义域,值域和解析式,特别是定义域的求法; 2、 掌握函数单调性,奇偶性,周期性的判断方法及相互之间的关系,会解决它们之间的综合问题; 3、 掌握指数和对数的运算性质,对数的换底公式; 4、 掌握指数函数和对数函数的图像与性质; 5、 掌握函数的零点存在定理,函数与方程的关系; 6、 熟练数形结合的数学思想在解决函数问题的运用; 7、 熟练掌握导数的计算,导数的几何意义求切线问题; 8、 理解并掌握导数与函数单调性之间的关系,会利用导数分析函数的单调性,会根据单调性确定参数的取 值范围; 9、 会利用导数求函数的极值和最值,掌握构造函数的方法解决问题。 【温馨小提示】 本章内容既是高考的重点,又是难点,再备考过程中应该大量解出各种题型,总结其解题方法,积累一些常用的小结论,会给解题带来极大的方便。 【名校试题荟萃】 1、(2019届新余四中、上高二中高三第一次联考)已知函数 .,R n m ∈ (1)若函数()x f 在()()2,2f 处的切线与直线0=-y x 平行,求实数n 的值; (2)试讨论函数()x f 在区间[)+∞,1上最大值; (3)若1=n 时,函数()x f 恰有两个零点,求证:221>+x x 【答案】(1)6n =(2)1ln m n --(3)见解析 【解析】(1)由, ,由于函数()f x 在(2,(2))f 处的切线与直线0x y -=平行, 故 2 14 n -=,解得6n =。 (2) ,由()0f x '<时,x n >;()0f x '>时,x n <,所以 ①当1n ≤时,()f x 在[)1,+∞上单调递减,故()f x 在[)1,+∞上的最大值为 ;

函数与导数解答题训练

函数与导数解答题训练2 1.设函数ax x x a x f +-=22ln )(,0>a . (1)求)(x f 的单调区间; (2)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立.注:e 为自然对数的底数. 2.已知函数322()4361,f x x tx t x t x R =+-+-∈,其中t R ∈. (1)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)当0t ≠时,求()f x 的单调区间; (3)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 3.设01a <<,集合{|0}A x R x =∈>,2{|23(1)60}B x R x a x a =∈-++>,D A B =. (1)求集合D (用区间表示); (2)求函数32()23(1)6f x x a x ax =-++在D 内的极值点.

4.已知函数321()3 f x x x ax =++. (1)讨论()f x 的单调性; (2)设()f x 有两个极值点12,x x ,若过两点11(,())x f x ,22(,())x f x 的直线l 与x 轴的交点在曲线()y f x =上,求a 的值. 5.已知函数32()f x x ax bx c =+++在23 x =-与1x =时都取得极值. (1)求a 、b 的值与函数()f x 的单调区间; (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围. 6.设函数2()ln f x x ax b x =++,曲线()y f x =过(1,0)P ,且在P 点处的切斜线率为2. (1)求,a b 的值; (2)证明:()2 2.f x x ≤-

(完整版)函数与导数专题(含高考试题)

函数与导数专题1.在解题中常用的有关结论(需要熟记):

考点一:导数几何意义: 角度一 求切线方程 1.(2014·洛阳统考)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′? ?? ?? π4,f ′(x )是f (x ) 的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( ) A .3x -y -2=0 B .4x -3y +1=0 C .3x -y -2=0或3x -4y +1=0 D .3x -y -2=0或4x -3y +1=0 解析:选A 由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x ,则a = f ′? ?? ??π4=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,过曲线y =x 3上一点P (a ,b )的切线的斜率k =3a 2=3×12=3.又b =a 3,则b =1,所以切点P 的坐标为(1,1),故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1),即3x -y -2=0. 角度二 求切点坐标 2.(2013·辽宁五校第二次联考)曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( ) A .(0,1) B .(1,-1) C .(1,3) D .(1,0) 解析:选C 由题意知y ′=3 x +1=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3). 角度三 求参数的值 3.已知f (x )=ln x ,g (x )=12x 2+mx +7 2(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( )

高三数学-理科函数与导数-专题练习(含答案与解析)

(Ⅰ)当(0,1)x ∈时,求()f x 的单调性; (Ⅱ)若2()()()h x x x f x =-?,且方程()h x m =有两个不相等的实数根1x ,2x .求证:121x x +>.

联立212y x y x ax =-??'=-+-? 消去y 得:2(1)10x a x +-+=, 由题意得:2(1)40a -=-=△, 解得:3a =或1-; (Ⅱ)由(1)得:l 1(n )x f x =+', 1(0,)e x ∈时,)0(f x '<,()f x 递减, 1(,)e x ∈+∞时,)0(f x '>,()f x 递增, ①1104e t t <<+≤,即110e 4 t <≤-时, min 111)ln )444 ()()((f x f t t t ==+++, ②110e 4t t <<<+,即111e 4e t -<<时, min e ()1e )(1f x f -==; ③11e 4t t ≤<+,即1e t ≥时,()f x 在[1,4]t t +递增, min ())ln (f x f t t t ==; 综上,min 1111)ln ),044e 41111,e e 4e 1l (e (,()n f x t t t t t t t ++<≤--???-<<≥?=?????; 因此(0,)x ∈+∞时,min max 1()()e f x m x ≥-≥恒成立, 又两次最值不能同时取到, 故对任意(0,)x ∈+∞,都有2ln e e x x x x >-成立.

∴()0g x '>, ∴函数()g x 在定义域内为增函数, ∴(1)(0)g g >,即12 e (1)(0) f f >,亦即(1) f > 故选:A . 2.解析:∵()1cos 0f x x '=+≥, ∴()sin f x x x =+在实数R 上为增函数, 又∵()sin ()f x x x f x -=--=-, ∴()sin f x x x =+为奇函数, ∴2222222222(23)(41)0(23)(41) (23)(41)2341(2)(1)1f y y f x x f y y f x x f y y f x x y y x x x y -++-+≤?-+≤--+?-+≤-+-?-+≤-+-?-+-≤, 由22(2)(1)11x y y ?-+-≤?≥? 可知,该不等式组所表示的区域为以点(2,1)C 为圆心,1为半径的上半个圆,1 y x +表示的几何意义为点(,)P x y 与点(1,0)M -连接的斜率,作出半圆与点P 连线,数形结合可得1 y x +的取值范围为13,44?????? . 3.解析:依题意,可得右图:()2f x =

函数与导数大题训练试题+答案

函数与导数大题训练 1已知函数.2 3)32ln()(2x x x f -+= (I )求f (x )在[0,1]上的极值; (II )若对任意0]3)(ln[|ln |],3 1,61[>+'+-∈x x f x a x 不等式成立,求实数a 的 取值范围; (III )若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个不同的实根,求实数b 的 取值范围. 2. 设.2)(ln )()(2)(--==-- =e p qe e g x x f x f x q px x g ,且,其中(e 为自然对数的底数) (Ⅰ)求p 与q 的关系; (Ⅱ)若)(x g 在其定义域内为单调函数,求p 的取值范围; (Ⅲ)证明:①)1(,1)(->-≤x x x f ②).2,()1(412ln 33ln 22ln 2222≥∈+--<+++n N n n n n n n Λ 3.设函数a x x a x f +++-=1)(2,]1,0(∈x ,+ ∈R a . (1)若)(x f 在]1,0(上是增函数,求a 的取值范围; (2)求)(x f 在]1,0(上的最大值.

答案 1解:(I )2 3)13)(1(33323)(+-+-=-+= 'x x x x x x f , 令13 10)(-==='x x x f 或得(舍去) )(,0)(,3 10x f x f x >'<≤∴时当单调递增; 当)(,0)(,13 1x f x f x <'≤<时单调递减. ……………………………………3分 ]1,0[)(613ln )31(在为函数x f f -=∴上的极大值 ……………………………4分 (II )由0]3)(ln[|ln |>+'+-x x f x a 得 x x a x x a 323ln ln 323ln ln ++<+->或, …………① ……………………5分 设3 32ln 323ln ln )(2 x x x x x h +=+-=, x x x x x g 323ln 323ln ln )(+=++=, 依题意知]31,61[)()(∈<>x x g a x h a 在或上恒成立, 0)32(2) 32(33)32(3332)(2>+=+?-+?+='x x x x x x x x g Θ, 03262)62(31323)(22>++=+?+= 'x x x x x x x h ,………………………………6分 ]3 1,61[)()(都在与x h x g ∴上单增,要使不等式①成立, 当且仅当.5 1ln 31ln ),61()31(<><>a a g a h a 或即或 ………………………8分 (III )由.0223)32ln(2)(2=-+-+?+-=b x x x b x x f 令x x x x x b x x x x 329723323)(,223)32ln()(2 2+-=+-+='-+-+=??则, 当]3 7,0[)(,0)(,]37,0[在于是时x x x ??>'∈上递增;

函数与导数专题复习

函数与导数专题复习 类型一 导数的定义 运算及几何意义 例1:已知函数)(x f 的导函数为)('x f ,且满足x xf x f ln )1(2)(' +=,则=)1('f ( ) A .-e B.-1 C.1 D.e 解:x f x f 1)1(2)(''+=,1)1(1)1(2)1('''-=∴+=f f f 【评析与探究】求值常用方程思想,利用求导寻求)('x f 的方程是求解本题的关键。 变式训练1 曲线33+-=x x y 在点(1,3)处的切线方程为 类型二 利用导数求解函数的单调性 例2:d cx bx x x f +++= 233 1)(何时有两个极值,何时无极值?)(x f 恒增的条件是什么? 解:,2)(2'c bx x x f ++=当0442>-=?c b 时, 即c b >2时,0)('=x f 有两个异根2,1x x ,由)('x f y =的图像知,在2,1x x 的左右两侧)('x f 异号,故2,1x x 是极值点,此时)(x f 有两个极值。 当c b =2时,0)('=x f 有实数根0x ,由)('x f y =的图像知,在0x 左右两侧)(' x f 同号,故0x 不是)(x f 的极值点 当c b <2时,0)(' =x f 无根,当然无极值点 综上所述,当时c b ≤2,)(x f 恒增。 【评析与探究】①此题恒增条件c b ≤2易掉“=”号,②c b =2 时,根0x 不是极值点也易错。 变式训练2 已知函数b x x g ax x x f +=+=232)(,)(,它们的图像在1=x 处有相同的切线 ⑴求函数)(x f 和)(x g 的解析式;

函数与导数练习题(有答案)

函数与导数练习题(高二理科) 1.下列各组函数是同一函数的是 ( ) ①()f x = ()g x =()f x x = 与()g x =; ③0()f x x =与01 ()g x x = ;④2()21f x x x =--与2()21g t t t =--. A 、①② B 、①③ C 、③④ D 、①④ 2.函数2 4 ++= x x y 的定义域为 . 3.若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 4.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 5.下列函数中,在()0,2上为增函数的是( ) A .12 log (1)y x =+ B .2 log y =C .2 1log y x = D .2 log (45)y x x =-+ 6.)(x f y =的图象关于直线1-=x 对称,且当0>x 时,,1 )(x x f =则当2-

导数与函数的单调性练习题

2.2.1导数与函数的单调性 基础巩固题: 1.函数f(x)= 21 ++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.021 C.a>2 1 D.a>-2 答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>2 1 . 2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( ) A .a ≥0 B .a <-4 C .a ≥0或a ≤-4 D .a >0或a <-4 答案:C 解析:∵f ′(x )=2x +2+a x ,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1) 上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),02 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +

2021年高考数学二轮复习专项训练:函数与导数

一、选择题 1.函数的界说域为() A.B.C.D. 2.下列函数中,既是奇函数,又在区间上递加的是()A.B. C.D. 3.函数y=x2﹣2x﹣1在闭区间[0,3]上的最大值与最小值的和是() A.﹣1B.0C.1D.2 4.界说在上的函数满意,,恣意的,函数在区间上存在极值点,则实数m的取值规模为() A.B.C.D. 5.已知,,,则的巨细联系是() A.B.C.D. 6.已知函数的图象如图所示,则函数的单调递加区间为() A.,B.,

C.,D., 7.界说在上的偶函数满意,且当时,,函数是界说在上的奇函数,当时,,则函数的零点的的个数是() A.9B.10C.11D.12 8.已知函数,若关于,,使得,则的最大值为()A.eB.1-eC.1D. 9.已知为界说在上的奇函数,当时,有,且当时,,下列出题正确的是() A.B.函数在界说域上是周期为的函数 C.直线与函数的图象有个交点D.函数的值域为 10.曲线在点处的切线方程为() A.B. C.D. 11.已知函数的导函数,且满意,则=() A.B.C.1D. 12.已知,直线与函数的图象在处相切,设,若在区间[1,2]上,不等式恒建立.则实数m()

A.有最大值B.有最大值e C.有最小值e D.有最小值 二、填空题 13.函数的界说域为 14.已知函数的导函数是,设、是方程的两根.若,, 则的取值规模为 . 15.若函数在区间两个不同的零点,则的取值规模是_____ 16.已知界说域为的函数,若关于恣意,存在正数,都有建立,那么称函数是上的“倍束缚函数”,已知下列函数:①; ②;③;④, 其间是“倍束缚函数”的是_____________.(将你以为 正确的函数序号都填上) 17.关于三次函数有如下界说:设是函数的导函数,是 函数的导函数,若方程有实数解,则称点为函数的“拐点”.若点是函数的“拐点”,也是函数图画上的点,则当时,函数的函数值是__________. 参考答案 1.B

函数单调性与导数练习题含有答案

函数单调性与导数练习题 一、选择题 1.下列说法正确的是 A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值 B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值 C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值 D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2.下列四个函数,在x =0处取得极值的函数是 ①y =x 3 ②y =x 2+1 ③y =|x | ④y =2x A.①② B.②③ C.③④ D.①③ 3.函数y = 2 )13(1 -x 的导数是 A. 3)13(6-x B.2)13(6-x C.-3)13(6-x D.-2 )13(6 -x 4.函数y =sin 3(3x + 4π )的导数为 A.3sin 2(3x +4π)cos(3x +4π) B.9sin 2(3x +4π)cos(3x +4π ) C.9sin 2(3x +4π) D.-9sin 2(3x +4π)cos(3x +4 π ) 5.设f (x )=ax 3+bx 2+cx +d (a >0),则f (x )为R 上增函数的充要条件是( ) A .b 2-4ac >0 B .b >0,c >0 C .b =0,c >0 D .b 2-3ac <0 6.函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞) 7.已知函数y =f (x )(x ∈R)上任一点(x 0,f (x 0))处的切线斜率 k =(x 0-2)(x 0+1)2, 则 该函数的单调递减区间为( ) A .[-1,+∞) B .(-∞,2] C .(-∞,-1)和(1,2) D .[2,+∞)

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

导数大题经典练习及答案.pdf

导数大题专题训练 1.已知f(x)=xlnx-ax,g(x)=-x2-2, (Ⅰ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围; (Ⅱ)当a=-1时,求函数f(x)在[m,m+3](m>0)上的最值;(Ⅲ)证明:对一切x∈(0,+∞),都有lnx+1>成立. 2、已知函数.(Ⅰ)若曲线y=f (x)在点P(1,f (1))处的切线与直线y=x+2垂直,求函数y=f (x)的单调区间;(Ⅱ)若对于都有 f (x)>2(a―1)成立,试求a的取值范围;(Ⅲ)记g (x)=f (x)+x―b(b∈R).当a=1时,函数g (x)在区间[e―1,e]上有两个零点,求实数b的取值范围. 3.设函数 f (x)=lnx+(x-a)2,a∈R.(Ⅰ)若a=0,求函数 f (x)在[1,e]上的最小值; (Ⅱ)若函数 f (x)在上存在单调递增区间,试求实数a的取值范围; (Ⅲ)求函数 f (x)的极值点. 4、已知函数. (Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的

取值范围. 5、已知函数 (Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间; (Ⅱ)若对于任意成立,试求a的取值范围; (Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间上有两个零点,求实数b的取值范围. 6、已知函数. (1)若函数在区间(其中)上存在极值,求实数a的取值范围; (2)如果当时,不等式恒成立,求实数k的取值范围. 1.解:(Ⅰ)对一切恒成立,即恒成立.也就是在恒成立;令,则, 在上,在上,因此,在处取极小值,也是最小值, 即,所以. (Ⅱ)当,,由得. ①当时,在上,在上

新课标2018届高考数学二轮复习题型专项训练8函数与导数解答题专项理

题型专项训练8 函数与导数(解答题专项) 1.已知函数f(x)=x ln x+ax(a∈R). (1)当a=0时,求f(x)的最小值; (2)若函数g(x)=f(x)+ln x在区间[1,+∞)上为增函数,求实数a的取值范围. 2.已知函数f(x)=a ln x+x2+bx(a,b∈R)在x1=2,x2=3处取得极值. (1)求a,b的值; (2)求f(x)在点P(1,f(1))处的切线方程. 3.(2017浙江绍兴鲁迅中学模拟)已知函数f(x)=ln x- (1)若函数f(x)在(0,+∞)上单调递增,求实数a的取值范围; (2)设m>n>0,求证:ln m-ln n> 4.(2017浙江湖州、丽水、衢州三地市4月联考)已知函数f(x)=lo x-m log2x+a,g(x)=x2+1. (1)当a=1时,求f(x)在x∈[1,4]上的最小值; (2)当a>0,m=2时,若对任意的实数t∈[1,4],均存在x i∈[1,8](i=1,2),且x1≠x2,使得=f(t)成立,求实数a的取值范围.

5.已知二次函数f(x)=x2+bx+c,其中常数b,c∈R. (1)若任意的x∈[-1,1],f(x)≥0,f(2+x)≤0,试求实数c的取值范围; (2)若对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,试求实数b的取值范围. 6.已知a∈R,函数f(x)=+a ln x. (1)若函数f(x)在(0,2)上递减,求实数a的取值范围; (2)当a>0时,求f(x)的最小值g(a)的最大值; (3)设h(x)=f(x)+|(a-2)x|,x∈[1,+∞),求证:h(x)≥2. 参考答案 题型专项训练8函数与导数(解答题专项) 1.解 (1)f(x)的定义域为(0,+∞),f'(x)=ln x+1,令f'(x)=0,得x=. 当∈(0,)时,(),()的变化的情况如下: ∴f(x)的最小值是f=-. (2)由题意得g'(x)=ln x+a+1+. ∵函数g(x)在区间[1,+∞)上为增函数, ∴当x∈[1,+∞)时,g'(x)≥0,即ln x+≥-(a+1)在[1,+∞)上恒成立, 设h(x)=ln x+, ∴h'(x)=, ∴h(x)=ln x+在[1,+∞)上递增, ∴-(a+1)≤h(x)min=h(1)=1, ∴a≥-2. 2.解 (1)f'(x)=+x+b=, 令f'(x)==0,

函数与导数练习题(有标准答案)

函数与导数练习题(有答案)

————————————————————————————————作者:————————————————————————————————日期:

函数与导数练习题(高二理科) 1.下列各组函数是同一函数的是 ( ) ①3()2f x x =-与()2g x x x =-;②()f x x =与2()g x x =; ③0()f x x =与01 ()g x x = ;④2()21f x x x =--与2()21g t t t =--. A 、①② B 、①③ C 、③④ D 、①④ 2.函数2 4 ++= x x y 的定义域为 . 3.若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 4.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 5.下列函数中,在()0,2上为增函数的是( ) A .12 log (1)y x =+ B .22 log 1y x =- C .2 1log y x = D .2 12 log (45)y x x =-+ 6.)(x f y =的图象关于直线1-=x 对称,且当0>x 时,,1 )(x x f =则当2-

2020年高考数学解答题核心:函数与导数综合问题(专项训练)(教师版)

专题02 函数与导数综合问题(专项训练) 1.(2019·河北武邑中学月考)已知函数f (x )=2a ln x -x 2 . (1)若a =2,求函数f (x )的图象在点(1,f (1))处的切线方程; (2)若a >0,判断函数f (x )在定义域上是否存在最大值或最小值,若存在,求出函数f (x )的最大值或最小值. 【答案】见解析 【解析】(1)当a =2时,f (x )=4ln x -x 2 .f ′(x )=4x -2x ,f ′(1)=2,f (1)=-1,所以函数f (x )的图象在点 (1,f (1))处的切线方程为y +1=2(x -1),即2x -y -3=0. (2)f ′(x )=2a x -2x =-2(x 2 -a ) x ,x >0. 令f ′(x )=0,由a >0,解得x 1=a ,x 2=-a (舍去). 当x 在(0,+∞)上变化时,f ′(x ),f (x )的变化情况如下表. 无最小值. 2.(2017·全国卷Ⅱ)设函数f (x )=(1-x 2 )e x . (1)讨论f (x )的单调性; (2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 【答案】见解析 【解析】(1)f ′(x )=(1-2x -x 2 )e x .令f ′(x )=0,得x =-1-2或x =-1+ 2.当x ∈(-∞,-1-2)时,f ′(x )<0;当x ∈(-1-2,-1+2)时,f ′(x )>0;当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增. (2)f (x )=(1+x )(1-x )e x .当a ≥1时,设函数h (x )=(1-x )e x ,h ′(x )=-x e x <0(x >0),因此h (x )在[0,+∞)上单调递减,而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当00(x >0),所以g (x )在[0,+∞)上单调递增,而g (0)=0,故e x ≥x +1.当0(1-x )(1+x )2 ,(1-x )(1+x )2 -ax -1=x (1-a -x -x 2 ),取x 0= 5-4a -1 2 ,则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0,故f (x 0)>ax 0+1.当a ≤0时,取x 0= 5-12 ,则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2 =1≥ax 0+1.综上,a 的取值范围是[1,+∞). 3.已知函数f (x )=a ln x (a >0),e 为自然对数的底数. (1)若过点A (2,f (2))的切线斜率为2,求实数a 的值;

函数与导数综合练习题

函数与导数数学专题练习 21.14二卷(本小题满分12分) 已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ; (2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点. 21.15二卷(本小题满分12分) 已知函数()ln (1)f x x a x =+-。 (1)讨论()f x 的单调性; (2)当()f x 有最大值,且最大值大于2a - 2时,求a 的取值范围。 21.13二卷(本小题满分12分) 己知函数f(X) = x 2e -x (I)求f(x)的极小值和极大值;(II)当曲线y = f(x)的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 21. 12二卷(本小题满分12分) 设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间(Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值。 21.11二卷(本小题满分l2分) 已知函数()32()3(36)+124f x x ax a x a a R =++--∈ (Ⅰ)证明:曲线()0y f x x ==在处的切线过点(2,2); (Ⅱ)若00()f x x x x =∈在处取得最小值,(1,3),求a 的取值范围。

21. 14一卷(12分) 设函数()()21ln 12 a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0 (1)求b; (2)若存在01,x ≥使得()01a f x a <-,求a 的取值范围。

相关文档
相关文档 最新文档