文档库 最新最全的文档下载
当前位置:文档库 › 实验四 光 电 效 应

实验四 光 电 效 应

实验四 光 电 效 应
实验四 光 电 效 应

图2光电流与入射光强度的关系

实验四 光 电 效 应

在物理学史上,光电效应现象的发现,对光的本性------波粒二象性的认识,具有极为重要的意义,它给量子论以直观,明确的论证.光电效应有助于学习和理解量子理论。

【实验目的】

1、 了解光的量子性,光电效应的规律,加深对光的量子性的理解。

2、 验证爱因斯坦方程,并测定普朗克常数h 。

3、 学习作图法处理数据。

【实验仪器】

1、 光源

用高压汞灯做光源,配以专用镇流器,光谱范围为320.3nm~872.0nm 可用谱线为365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 共五条强线谱线。 2、 滤光片

滤光片的主要指标时半宽度和透过率。透过某种谱线的滤光片不允许其附近的谱线透过(我们精心设计制作了一组高性能的滤光片,保证了在测量某一谱显时无其他谱线干扰,避免了谱线相互干扰带来的测量误差)。高压汞灯发出的可见光中,强度较大的谱线有5条,仪器配以相应的5种滤光片。 3、光电管暗盒

采用测h 专用光电管,由于采用了特殊结构,使光不能直接照射到阳极,由阴极发射照到阳极的光也很少,加上采用新型的阴、阳极材料及制造工艺,使得阳极反向电流大大降低,暗电流也很低(≤2×10-12A )。 4、微电流测量仪

在微电流测量中采用了高精度集成电路构成电流放大器,对测量回路而言,放大器近似于理想电流表,对测量回路无影响,使测量仪具有高灵敏度(电流测量范围10-18~10-13A )搞稳定性(零漂小于满刻度的0.2%),从而使测量精度、准确度大大提高。测量结果由三位半LED 显示。

5、 光电管工作电源

普朗克常数测量仪提供了两组光电管工作电源(-2~+2V,-2~+30V ),连续可调,精度为0.1%,最小分辨率为0.01伏,电压值由三位半LED 数显。

【实验原理】

光电效应实验原理如图1所示:其中S 为真空光电管,K 为阴极,A 为阳极,当无光照射阴极时,由于阴极与阳极是断路,所以检流计G 中无电流通过,当用一波长比较短的单色光照射到阴极K 上时,将形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图2所示。 光电流随加速电位差U 电位差增加到一定量值后,光电流达到饱和值I H ,饱和电流与光强成正比,而与入射光的频率无关。当U A =U A -U K 变成负值时,光电流迅速减少。实验指出,有一个遏制电位差Ua 存在,当电位差达到这个值时,光电流为零。

1、 光电子的初动能与入射光频率之间的关

光电子从阴极逸出时,具有处动能,在减速电压下,光电子逆着电场力方向由K 极向A 极运动,当U=Ua 时,光电子不再能达到A 极,光电流为零,所以电子的初动能等于它克服电场力所做的功,即:

a eU mv =22

1 (1)

根据爱因斯坦关于光的本性的假设,光是一粒一粒运动着的粒子流,这些光粒子称为光子,每一光子的能量为E=hv ,其中h 为普朗克常量,v 为光波频率,所以不同频率的光波对应光子的能量不同,光电子吸收了光子的能量hv 之后,一部分消耗于克服电子的逸出功A,另一部分转换为电子动能,由能量守恒定律可知:

A mv h +=

2

2

1ν (2)

式(2)称为爱因斯坦光电效应方程。

由此可见,光电子的初动能与入射光频率v 呈线性关系,而与入射光的强度无关。 2、 光电效应有光电阈存在

实验指出,当光的频率V

爱因斯坦光电效应方程同时提供了测量普朗克常数的一种方法:由式(1)和(2)可得:

A U e h +=0ν , 当用不同频率(V 1,V 2,V 3 Vn )的单色光分别作光源时,就有:

A U e h +=11ν ,

A U e h +=22ν , ……..., A U e h n n +=ν

任意联立其中两个方程就可得到:

j

i j i v v U U e h --=

)( (3)

由此若测定了两个不同频率的单色光所对应的遏止电位差即可算出普朗克常数h,也可由V-U 直线的斜率求出h 。

因此,用光电效应方法测量普朗克常数的关键在于获得单色光,测量光电管的伏安特性曲线和确定遏止电位差值。

实验中,单色光可由汞灯光源经过滤光片选择谱线产生,汞灯是一种气体放电电源,点燃稳定后,在可见光区域内有几条波长相差较远的强谱线,与滤光片联合作用后可产生需要的单色光。

表 1、 可见光区汞灯强谱线

435.8 6.882 蓝

404.7 7.410 紫

365.0 8.216 近紫外

为了获得准确的遏止电位差值,本实验用的光电管应该具备下列条件:

①、对所有可见光谱都比较灵敏。

②、阳极包围阴极,这样当阳极为负电位时,大部分光电子仍能射到阳极。

③、阳极没有光电效应,不会产生反电流。

④、暗电流很小。

但是实际使用的真空型光电管并不完全满足以上条件,由于存在阳极光电效应所引起的反向电流和暗电流(即无光照射时的电流),所以测得的电流值,实际上包括上述两种电流和由阴极光电效应所产生的正向电流三个部分,所以伏安曲线并不与U轴相切,由于暗电流是由阴极的热电子发射及光电管管壳漏电等原因产生,与阴极正向光电流相比,其值很小,且基本上随电位差U呈线性变化,因此可近似忽略其对遏止电位差的影响。阳极反向光电流虽然在实验中较显著,但它服从一定的规律,据此,确定遏止电位差值可采用以下两种方法:

(1)交点法

光电管阳极用逸出功较大的材料制作,制作过程中尽量防止阴极材料蒸发,实验前对光电管阳极通电,减少其上溅射的阴极材料,实验中避免入射光直接照射到阳极上,这样可使它的反向电流大大减少,其伏安特性曲线与图2所示十分接近,因此曲线与U轴交点的电位差值近似等于遏止电位差Ua,此即交点法。

(2)拐点法

光电管阳极反向光电流虽然较大,但在结构设计上,若使反向电流能较快的饱和,则伏安特性曲线在反向电流进入饱和段后有着明显的拐点,如图3所示,此拐点的电位差U a’即为遏止电位差。

图3

【实验内容】

(1)测试前准备:

将测试仪及汞灯电源接通,预热20分钟。

把汞灯及光电管暗箱遮光盖盖上,将汞灯暗箱光输出口对准光电管暗箱光输入口,调整光电管与汞灯距离为约40cm并保持不变。

用专用连接线将光电管暗箱电压输入端与测试仪电压输出端(后面板上)连接起来(红-红,兰-兰)。将“电流量程”选择开关置于所选档位,仪器在充分预热后,进行测试前调零,旋转“调零”旋钮使电流指示为000.0。

用高频匹配电缆将光电管暗箱电流输出端K与测试仪微电流输入端(后面板上)连接起来。

(2)测光电管的伏安特性曲线:

将电压选择按键置于-2V~+30V,根据光电流的大小;将“电流量程”选择开关置于10-10A 或10-11A挡;将直径2mm的光阑及435.8nm的滤色片装在光电管暗箱光输入口上。

①从低到高调节电压,记录电流从零到非零点所对应的电压值作为第一组数据,以后电压每变化一定值记录一组数据到表2中。

注意:由于光电流会随光源、环境光以及时间的变化而变化,测量光电流时,选定U AK 后,应取光电流读数的平均值。

②在U AK为30V时,根据光电流的大小,将“电流量程”选择开关置于10-10A或10-9A挡,记录光阑分别为2mm,4mm,8mm时对应的电流值于表3中。

换上直径4mm的光阑及546.1nm的滤色片,重复a、b测量步骤。

用表2的数据在坐标纸上作对应于以上两种波长及光强的伏安特性曲线。

由于照到光电管上的光强与光阑面积成正比,用表3数据验证光电管的饱和光电流与入射光强度成正比。

关系

表2、I—U

理论上,测出各频率的光照下阴极电流为零时对应的U AK,其绝对值即该频率的截止电压,然而实际上由于光电管的阳极反向电流,暗电流,本底电流及极间接触电位差的影响,实测电流并非阴极电流,实测电流为零时对应U AK的也并非截止电压。

光电管的制作过程中阳极往往被污染,沾上少许阴极材料,入射光照射阳极或入射光从阴极反射到阳极之后都会造成阳极光电子发射,U AK为负值时,阳极发射的电子向阴极迁移构成了阳极反向电流。

暗电流和本底电流是热激发产生的光电流与杂质光照射光电管产生的光电流,可以在光电管制作或测量过程中采取适当措施以减少或消除它们的影响。

极间接触电位差与入射光频率无关,只影响U0的准确性,不影响U0-ν直线斜率,对测定h无影响。

此外,由于截止电压是光电流为零时对应的电压,如电流放大器灵敏度不够,或稳定性不好,都会给测量带来较大误差。本实验仪器的电流放大器灵敏度高,稳定性好。

本实验采用了新型结构的光电管。由于其特殊结构使光不能直接照射到阳极,由阴极反射到阳极的光也很少,加上使用的特殊阴阳极材料使得阳极反向电流大大减少,暗电流也很

小。

由于仪器特点,在测量各谱线的截止电压U 0时,可不用难以操作的“拐点法”,而用“零电流法”或“补偿法”。

零电流法是直接将各谱线照射下测得的电流为零时对应的电压U AK 的绝对值作为截止电压U 0。此法的前提是阳极反向电流,暗电流和本底电流都很小。用零电流法测得的截止电压与真实值相差很小。且各谱线的截止电压都相差ΔU ,对U 0-ν曲线的斜率无大的影响,因此对h 的测量也不会产生大的影响。

补偿法是调节电压U AK 使电流为零后,保持U AK 不变,遮挡汞灯光源,此时测得的电流I 1为电压接近截止电压时的暗电流和本底电流。重新让汞灯照射光电管,调节电压U AK 使电流值至I 1,将此时对应的电压U AK 的绝对值作为截止电压U 0。此法可补偿暗电流和本底电流对测量结果的影响。

测量:

将选择按键置于-2V~+2V ;将“电流量程”选择开关置于10-12A,将测试仪电流输入电缆断开,调零后重新接上;将直径4mm 的光阑即365.0nm 的滤色片装在光电管暗箱光输入口上。

从低到高调节电压,用“零电流法”或“补偿法”测量该波长对应的U 0,并将数据记录到表4。

依次换上404.7nm ,435.8nm ,546.1nm,577.0nm 的滤色片,重复以上测量步骤。

表4、U 0-ν关系

【数据处理】

可用以下三种方法之一处理数据,得出U 0-ν直线的斜率k 。

A . 根据线性回归理论,U 0-ν直线的斜率k 的最佳拟合值为: 2

2

0v

v U v U v k -?-?=

其中∑==n

i i v n v 11 表示频率ν的平均值

∑==n i i v n v 1

2

2

1 表示频率ν的平方的平均值

∑==n

i i U n U 1

001 表示截止电压U 0的平均值

∑=?=?n

i i i U v n U v 1

001 表示频率ν与截止电压U 0的乘积的平均值

B .根据 j

i j

i V V U U v U k --=

??=

000 ,可用逐差法从表的后四组数据中求出两个k ,将其平均值作为所求k 的数值。

C . 用表4数据在坐标纸上作U 0-ν直线,由图求出直线斜率k 。

求出直线斜率k 后,可用h=ek 求出普朗克常数,并与h 的公认值比较求出相对误差:

Er = (h-h 0) / h 0 , 式中 e = 1.602×10-19C, h 0= 6.626×10-34

J ﹒s.

【注意事项】

1、 汞灯关闭后,不要立即开启电源。必须待灯丝冷却后,再开启,否则影响汞灯寿命。

2、

光电管应保持清洁,避免用手摸,而且应放置在遮光罩中,不用时禁止用光照射。 3、

滤光片要保持清洁,禁止用手摸光学面。 4、

在光电管不使用时,要断掉施加在光电管阳极和阴极间的电压,保护光电管,防止意外的光线照射。下图为测试仪前面板图。

【思考题】

1、设定性解释极光电流伏安曲线上,光电流逐渐减小部分及遏止电压形成的原因。

2、计算一种波长的单色光照射阴极时,逸出光电子的最大初速度是多少?

3、在r=r m 和r=1/2r m 这两种情况下,光电子最大初动能是否相同?为什么?

电工实验报告答案_(厦门大学)

实验四线性电路叠加性和齐次性验证表4—1实验数据一(开关S3 投向R3侧) 表4—2实验数据二(S3投向二极管VD侧 ) 1.叠加原理中U S1, U S2分别单独作用,在实验中应如何操作?可否将要去掉的电源(U S1或U S2)直接短接? 答: U S1电源单独作用时,将开关S1投向U S1侧,开关S2投向短路侧; U S2电源单独作用时,将开关S1投向短路侧,开关S2投向U S2侧。 不可以直接短接,会烧坏电压源。 2.实验电路中,若有一个电阻元件改为二极管,试问叠加性还成立吗?为什么? 答:不成立。二极管是非线性元件,叠加性不适用于非线性电路(由实验数据二可知)。

实验五电压源、电流源及其电源等效变换表5-1 电压源(恒压源)外特性数据 表5-2 实际电压源外特性数据 表5-3 理想电流源与实际电流源外特性数据 3.研究电源等效变换的条件

图(a )计算)(6.117S S S mA R U I == 图(b )测得Is=123Ma 1. 电压源的输出端为什么不允许短路?电流源的输出端为什么不允许开路? 答:电压源内阻很小,若输出端短路会使电路中的电流无穷大;电流源内阻很大,若输出端开路会使加在电源两端的电压无穷大,两种情况都会使电源烧毁。 2. 说明电压源和电流源的特性,其输出是否在任何负载下能保持恒值? 答:电压源具有端电压保持恒定不变,而输出电流的大小由负载决定的特性; 电流源具有输出电流保持恒定不变,而端电压的大小由负载决定的特性; 其输出在任何负载下能保持恒值。 3. 实际电压源与实际电流源的外特性为什么呈下降变化趋势,下降的快慢受哪个参数影 响? 答:实际电压源与实际电流源都是存在内阻的,实际电压源其端电压U 随输出电流I 增大而降低,实际电流源其输出电流I 随端电压U 增大而减小,因此都是呈下降变化趋势。下降快慢受内阻R S 影响。 4.实际电压源与实际电流源等效变换的条件是什么?所谓‘等效’是对谁而言?电压源与电流源能否等效变换? 答:实际电压源与实际电流源等效变换的条件为: (1)实际电压源与实际电流源的内阻均为RS ; (2)满足S S S R I U =。 所谓等效是对同样大小的负载而言。 电压源与电流源不能等效变换。

模电实验教案实验

课程教案 课程名称:模拟电子技术实验 任课教师:何淑珍 所属院部:电气与信息工程学院 教学班级:自动化1301-02 教学时间:2014 —2015学年第二学期 湖南工学院 课程基本信息

实验一单管共射放大电路的研究 一、本次实验主要内容 按要求连接实验电路,调试静态工作点,测量电压放大倍数、输入电阻、输出电阻,分析静态工作点对输出波形失真的影响。 二、教学目的与要求 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响;掌握放大器各性能指标及最大不失真输出电压的测试方法;熟悉常用电子仪器及模拟电路实验设备的使用。 三、教学重点难点 1、静态工作点调试; 2、输入电阻、输出电阻的测量。 四、教学方法和手段 课堂讲授、操作、讨论; 五、作业与习题布置 完成实验报告

实验一单管共射放大电路的研究(验证性) 1. 实验目的 (1)学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响; (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法; (3)熟悉常用电子仪器及模拟电路实验设备的使用。 2. 实验设备与器材 实验所用设备与器材见表。 表实验1的设备与器材 序号名称型号与规格数量备注 1实验台1台 2双踪示波器1台 3交流毫伏表1只 4万用表1只 5晶体管1只 6电阻若干 7电容若干 3. 实验电路与说明 实验电路如图所示,为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。安装电路时,要注意电解电容极性、直流电源正负极和信号源的极性。

4模电实验四思考题答案(模电B)

实验指导书思考题及答案 实验2.6 电压比较器电压比较器、、波形发生电路 实验实验预习预习 1)理论计算图2-23电路中,上限门电压U T+= 0.73V ;下限门电压U T—= -0.73V 。答:112OH T RU U R R +=+, 112 OL T RU U R R ?=+,其中U OH =8V ,U OL = - 8V 2)计算 RC 正弦波发生器(图2-24)的输出振荡频率fo= 159Hz 。 答:12f RC π=,其中R=10K ,C=0.1μF 。 实验总结 1、总结电压比较器的工作原理。 答:比较器是一种用来比较输入信号ui 和参考信号U REF 的电路。这时运放处于开环状态,具有很高的开环电压增益,当ui 在参考电压U REF 附近有微小的变化时,运放输出电压将会从一个饱和值跳变到另一个饱和值。 2、将滞回比较器的门限电压理论值和实测值进行比较 ,并分析误差原因。 答:门限电压理论值为112OH T RU U R R += +,112 OL T RU U R R ?=+。稳压二极管稳压值不是正好±8V ,电阻R 1和R 2阻值的误差。 3、思考题:当滞回比较器输入交流信号U im 值小于门限电压U T 时,比较器输出会出现什么情况? 答:比较器的输出不会发生跳变,输出为保持为-8V 或者+8V 。 表2-20 选定正确的操作方法(正确的在方框内画√,错误的在方框内画×) 项 目 操作方法 运算放大器使用 运算放大器使用时须提供直流电源(±12V 和地)(√) 运算放大器须检测好坏,方法是开环过零(√) 电压比较器仍须要调零(╳) 滞回比较器 利用滞回比较器将输入的正弦波转换为输出的矩型波,对输入信号幅值大小没有要求(╳)

杭电计组实验报告10

计组实验十 老师:包健 一、源代码测试模块代码: module Top( inputinclk, inputmem_clk, inputrst, outputreg[7:0] LED, input [3:0] SW ); wireclk; MyButtonmb( .clk_100MHz(mem_clk), .BTN(inclk), .BTN_Out(clk) ); wire [31:0] ALU_F; wire [31:0] M_R_Data; wire ZF; wire OF; wire [31:0]PC; My_I_CPUmy_i_cpu( .clk(clk), .mem_clk(mem_clk), .rst(rst), .ALU_F(ALU_F), .M_R_Data(M_R_Data), .ZFF(ZF), .OF(OF), .PC_out(PC) ); always@(*) begin case(SW) 4'd0:LED=ALU_F[7:0]; 4'd1:LED=ALU_F[15:8]; 4'd2:LED=ALU_F[23:16]; 4'd3:LED=ALU_F[31:24]; 4'd4:LED=M_R_Data[7:0];

4'd5:LED=M_R_Data[15:8]; 4'd6:LED=M_R_Data[23:16]; 4'd7:LED=M_R_Data[31:24]; 4'd8:LED={ZF,6'd0,OF}; 4'd12:LED=PC[7:0]; 4'd13:LED=PC[15:8]; 4'd14:LED=PC[23:16]; 4'd15:LED=PC[31:24]; default:LED=8'b0000_0000; endcase end endmodule 顶层模块代码: moduleMy_I_CPU( inputclk, inputmem_clk, inputrst, output [31:0] ALU_F, output [31:0] M_R_Data, output ZFF, output OF, output [31:0]PC_out ); //wire clk_n = ~clk; wire[31:0] codes; wire [31:0]PC_new; reg [31:0]PC; Inst_Fetch1 inst_fetch( .PC(PC), .rst(rst), .clk(clk), .Inst_codes(codes), .PC_new(PC_new) ); wire[5:0] OP; wire[5:0] func;

模电实验(附答案)

实验一 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、 信号发生器 2、 双踪示波器 3、 交流毫伏表 4、 模拟电路实验箱 5、 万用表 四、实验内容 1.测量静态工作点 实验电路如图1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +? 图1 共射极单管放大器实验电路图

I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表1中。 表1 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E =E E R U 或I C =C C CC R U U - U BE =U B -U E U CE =U C -U E 计算出放大器的静态工作点。 2.测量电压放大倍数 各仪器与放大器之间的连接图 关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。 1)检查线路无误后,接通电源。从信号发生器输出一个频率为1KHz 、幅值为10mv (用毫伏表测量u i )的正弦信号加入到放大器输入端。 2)用示波器观察放大器输出电压的波形,在波形不失真的条件下用交流毫

厦门大学电子技术实验报告_实验五

实验五场效应管放大器 一、实验目的 1. 学习场效应管放大电路设计和调试方法; 2. 掌握场效应管基本放大电路的设计及调整、测试方法。 二、实验原理 1. 场效应管的主要特点 场效应管是一种电压控制器件,由于它的输入阻抗极高(一般可达上百兆、甚至几千兆),动态范围大,热稳定性好,抗辐射能力强,制造工艺简单,便于大规模集成。 因此,场效应管的使用越来越广泛。 场效应管按结构可分为MOS型和结型,按沟道分为N沟道和P沟道器件,按零栅压源、漏通断状态分为增强型和耗尽型器件,可根据需要选用。那么,场效应管由于结构上 的特点源漏极可以互换,为了防止栅极感应电压击穿要求一切测试仪器,都要有良好 接地。 2. 结型场效应管的特性 (1) 转移特性(控制特性):反映了管子工作在饱和区时栅极电压VGS对漏极电流ID 的控制作用。当满足|VDS|>|VGS|-|VP|时,ID对于VGS的关系曲线即为转移特性曲线。如图1所示。由图可知。当VGS=0时的漏极电流即为漏极饱和电流IDSS,也称 为零栅漏电流。使ID=0时所对应的栅极电压,称为夹断电压VGS=VGS(TH)。 ⑵转移特性可用如下近似公式表示: I D=I DSS1? V GS V GS TH 2 (当0≥V GS≥V p) 这样,只要I DSS和V GS TH确定,就可以把转移特性上的其他点估算出来。转移特性的斜率为: g m=ΔI D GS 它反映了VGS对ID的控制能力,是表征场效应管放大作用的重要参数,称为跨异。一般为0.1~5mS(mA/V)。它可以由式1求得:

g m=? 2I DSS GS(TH)?1? V GS GS TH ⑶输出特性(漏极特性)反映了漏源电压VDS对漏极电流ID的控制作用。图2为N 沟道场效应管的典型漏极特性曲线。 由图可见,曲线分为三个区域,即Ⅰ区(可变电阻区),Ⅱ区(饱和区),Ⅲ区(截止区)。饱和区的特点是VDS增加时ID不变(恒流),而VGS变化时,ID随之变化(受控),管子相当于一个受控恒流源。在实际曲线中,对于确定的VGS的增加,ID 有很小的增加。ID对VDS的依赖程度,可以用动态电阻rDS表示为: r DS=ΔV DS ΔI D 在一般情况下,rDS在几千欧到几百欧之间。 ⑶图示仪测试场效应管特性曲线的方法: ①连接方法:将场效应管G、D、S分别插入图示仪测试台的B、C、E。 ②输出特性测试:集电极电源为+10v,功耗限制电阻为1kΩ;X轴置集电极电压1V/度,Y轴置集电极电流0.5mA∕度;与双极型晶体管测试不同为阶梯信号,由于场效应管 为电压控制器件,故阶梯信号应选择阶梯电压,即:阶梯信号:重复、极性:一、阶 梯选择0.2V∕度,则可测出场效应管的输出特性,并从特性曲线求出其参数。 ③转移特性测试:在上述测试的基础上,将X轴置基极电压0.2V∕度,则可测出场效应管的转移特性,并从特性曲线求出其参数。 ⑷场效应管主要参数测试电路设计: ①根据转移特性可知,当VGS=0时,ID=IDSS,故其测试电路如图3所示。②根据 转移特性可知,当ID=0时,VGS=VGS(TH),故其测试电路如图4所示。 3. 自给偏置场效应管放大器 自给偏置N沟道场效应管共源基本放大器如图5所示,该电路与普通双极型晶体管放 大器的偏置不同,它利用漏极电流ID在源极电阻RS上的压降IDRs产生栅极偏压,即: VGSQ=-IDRS 由于N沟道场效应管工作在负压,故此称为自给偏置,同时Rs具有稳定工作点的作用。该电路主要参数为:电压放大倍数:AV=V0/Vi=-gmRL;?=RD‖RL‖rDS式中:RL;输入电阻:Ri≈RG输出电阻:RO=RD‖rDS;

模电实验教案实验

模电实验教案实验 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

课程教案 课程名称:模拟电子技术实验 任课教师:何淑珍 所属院部:电气与信息工程学院 教学班级:自动化1301-02 教学时间:2014 —2015学年第二学期

湖南工学院课程基本信息

实验一单管共射放大电路的研究 一、本次实验主要内容 按要求连接实验电路,调试静态工作点,测量电压放大倍数、输入电阻、输出电阻,分析静态工作点对输出波形失真的影响。 二、教学目的与要求 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响;掌握放大器各性能指标及最大不失真输出电压的测试方法;熟悉常用电子仪器及模拟电路实验设备的使用。 三、教学重点难点 1、静态工作点调试; 2、输入电阻、输出电阻的测量。 四、教学方法和手段 课堂讲授、操作、讨论; 五、作业与习题布置 完成实验报告

实验一单管共射放大电路的研究(验证性) 1. 实验目的 (1)学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响; (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法; (3)熟悉常用电子仪器及模拟电路实验设备的使用。 2. 实验设备与器材 实验所用设备与器材见表1.1。 3. 实验电路与说明 实验电路如图1.1所示,为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。安装电路时,要注意电解电容极性、直流电源正负极和信号源的极性。

杭电计组实验1-全加器设计实验

杭电计组实验1-全加器设计实验 杭州电子科技大学计算机学院实验报告实验项目:实验1-全加器设计实验课程名称:计算机组成原理与系统结构课程设计姓名: 学号: 同组姓名: 学号: 实验位置(机号): 自己的笔记本实验日期: 指导教师: 实验内容(算法、程序、步骤和方法)一、实验目的(1),学习ISE工具软件的使用及仿真方法(2)学习FPGA程序的下载方法(3)熟悉Nexys3实验板(4)掌握运用VerilogHDL进行结构描述与建模的技巧和方法(5)掌握二进制全加器的原理和设计方法二、实验仪器ISE工具软件三、步骤、方法(1)启动XilinxISE 软件,选择File-NewProject,输入工程名,默认选择后,点击Next按钮,确认工程信息后点击Finish按钮,创建一个完整的工程。 (2)在工程管理区的任意位置右击,选择NewSource命令。弹出NewSourceWizard对话框,选择VerilogModule,并输入Verilog文件名shiyan1,点击Next按钮进入下一步,点击Finish完成创建。 (3)编辑程序源代码,然后编译,综合;选择Synthesize--XST项中的CheckSyntax右击选择Run命令,并查看RTL视图;如果编译出错,则需要修改程序代码,直至正确。 (4)在工程管理区将View类型设置成Simulation,在任意位置右击,选择NewSource命令,选择VerilogTestFixture选项。输入文件名shiyan1_test,点击Next,点击Finish,完成。编写激励代码,观察仿真波形,如果验证逻辑有误,则修改代码,重新编译,仿真,直至正确。 (5)由于实验一并未链接实验板,所以后面的链接实验板的步骤此处没有。 操作过程及结果一、操作过程实验过程和描述: moduleshiyan1(A,B,C,F,Ci);inputA,B,C;outputF,Ci;wireA,B,C,F,Ci;wi reS1,S2,S3;xorXU1(F,A,B,C),XU2(S1,A,B);andAU1(S2,A,B),AU2(S3,S1,C);or OU1(Ci,S2,S3);endmodule仿真代码 moduleshiyan1_test;//InputsregA;regB;regC;//OutputswireF;wireCi;/ /InstantiatetheUnitUnderTest(UUT)shiyan1uut(.A(A),.B(B),.C(C),.F(F),. Ci(Ci));initialbegin//InitializeInputsA=0;B=0;C=0;//Wait100nsforgloba lresettofinish#100;//AddstimulushereA=0;B=0;C=0;#100A=0;B=0;C=1;#100A =0;B=1;C=0;#100A=0;B=1;C=1;#100A=1;B=0;C=0;#100A=1;B=0;C=1;#100A=1;B= 1;C=0;#100A=1;B=1;C=1;EndRTL图 二、结果 思考题: ((1)根据查看顶层模块RTL的最外层的输入输出接口,和实验指导书式(14.1)所示电路相比,该电路图的输入输出引脚和这个加法器的引脚图式是相符合的。 ((2))尝试使用数据流描述方式现实现

模电实验四思考题答案(模电A)

实验指导书思考题及答案 实验2.4 电压比较器 四、实验总结报告分析提示 1、将迟滞比较器的门限电压理论值和实测值进行比较 ,并分析误差原因。 答:门限电压理论值为112OH T RU U R R += +,112OL T RU U R R ?=+。稳压二极管稳压值不是正好±8V ,电阻R1和R2阻值的误差。 五、预习要求 阅读本实验内容,了解由运算放大器组成电压比较器的工作原理。填写表2-4-1中的内容。 理论计算图2-4-2(a )电路中,上限门电压U T+= 0.73V ;下限门电压U T—= -0.73V 。(112OH T RU U R R += +, 112OL T RU U R R ?=+,U OH =8V ,U OL = - 8V) 实验2.5 波形发生器 四、实验总结报告分析提示 1、整理实验数据,将波形周期的实测值和理论值进行比较,并分析误差原因。 答:正弦波频率为12f RC π=,主要是10K 电阻和0.1μF 电容不是标称值。 方波周期表达式为周期为122ln (12 )F R T R C R =+,可见R F 、C 、R 1和R 2的精度都影响周期。 2、RC 正弦波发生器图2-5-1中, 电位器R P 的作用是调节正弦波的频率吗?它的作用是什么? 表2-4-1 选定正确的操作方法(正确的在方框内画√,错误的在方框内画×) 项 目 操作方法 运算放大器使用 运算放大器使用时须提供直流电源(±12V 和地)(√) 运算放大器须检测好坏,方法是开环过零(√) 电压比较器仍须要调零(╳) 迟滞比较器 利用迟滞比较器将输入的正弦波转换为输出的矩型波, 对输入信号幅值大小没有要求(╳)

实验四(模电实验报告)

实验四负反馈放大电路 一.实验目的 1.加深理解负反馈对放大电路各项性能参数的影响。 2.掌握反馈放大器性能指标的测试方法。 二实验仪器 1.双踪示波器 2.信号发生器 3.数字多用表 4.直流稳压电源 三实验原理与电路图 原理图如下: 原理如下: 该电路是由两级阻容耦合放大器构成的电压串联负反馈电路。反馈放大器是由多级放大器(或单级放大器)加上负反馈网络组成。放大电路引入负反馈后,虽然放大能力降低了,但其它性能指标得到改善,而且放大电路的工作更加稳定。表现如下: 1.负反馈放大电路的放大倍数 A为基本放大器的放大倍数(开环)。 F为反馈网络的反馈系数。 A f为负反馈放大器的放大倍数(闭环)。 2.引入负反馈可以扩展放大器的通频带 放大器的管子确定后,其增益与带宽之积为一常数。因此引入负反馈后,带宽扩展了1+AF 倍。 3. 负反馈可以提高放大倍数的稳定性

4. 负反馈对输入(输出)电阻的影响 输入电阻(输出电阻)的变化与反馈网络在输入端(输出端)的连接方式有关。串联负反馈使输入电阻提高(1+AF)倍,并联负反馈使输入电阻减小1+AF倍;电压负反馈使输出电阻减小1+AF倍,电流负反馈使输出电阻提高1+AF倍。 5.引入负反馈可以减小非线性失真,抑制干扰和噪声等。 仿真结果如下: 1.静态工作点测量如下: 2.闭环电路

3、负反馈对非线性失真的改善 开环时:时, 闭环时: 负反馈对电路有所改善 当反馈接入VT1基极,电路接入正反馈,出现震荡。 4、负反馈对输入电阻的影响 当时 5、放大器的频率特性 闭环: 开环:

三实验内容 1.负反馈放大器开环和闭环放大倍数的测试 (1)开环电路测试 ①按图电路接线,反馈电阻R F和负载电阻先不接入。 ②在放大电路的输入端A接入U S=10mV、f=1kHz的正弦波,用示波器观察放大器的输出波形,使输出不失真且无振荡。 ③测量电路的输入U S、U i和输出电压U O值,记录在表中。 ④接入负载电阻R L,重复③实验步骤。 ⑤根据实测值计算开环电压放大倍数、输入电阻和输出电阻值。 (2)闭环电路测试 ①接通R F,调整输入信号幅值,使电路输出不失真且无振荡。 ②测量空载(R L=∞)和有载(R L=3kΩ)时,电路的输入U S、U i,输出U O、U OL的值,并记录。 ③根据实测值计算闭环电压放大倍数、输入电阻和输出电阻值。 2.负反馈对失真的改善作用 ①将电路中的R F断开,形成开环,调节信号发生器的输出幅度,使之逐步加大u i ,用示波器观察放大器的输出信号波形,使出现适当失真(注意不要过份失真)并记录失真波形幅度

厦门大学数电实验九

实验九触发器的工作特性 一、实验目的 1、掌握并验证基本RS触发器、维阻D触发器和主从JK触发器的逻辑功能; 2、掌握触发器之间的转换。 二、实验原理 1、基本RS触发器: 与非型直接RS触发器是最简单的触发器,其由两个与非门交叉耦合而成,电路如图1所示,其特性方程如下式,特性表如图1所示。 2、维阻D触发器: 维阻D触发器的逻辑符号和功能如下:

(1)低电平异步预置: D和Cp状态任意,Rd’=0,Sd’=1,Q=0;Rd’=1,Sd’=0,Q=1。 (2)上升沿边沿触发特性: 当Cp上升沿来时,输出Q按输入D的状态而变化,即Qn+1=Dn 3、主从JK触发器: 主从JK触发器的逻辑符号和功能如下: (1)低电平异步预置: J、K和Cp状态任意,Rd’=0,Sd’=1,Q=0;Rd’=1,Sd’=0,Q=1。 (2)下降沿电平触发特性: 当Cp下降沿来时,输出Q按Cp=1期间的JK状态变化(Cp=1期间,JK变化时,主触发器有一次翻转问题),即:Qn+1=JQ’n+K’Qn。 4、触发器间的转换: (1)转换:根据已有触发器(D、JK)和适当的逻辑门获得待求触发器。 (2)步骤: ①写出已有触发器和待求触发器状态方程。 ②变换待求触发器方程,使之形式与已有触发器形式一样。 ③根据逻辑函数相等原则,若变量相同,则:系数相等。 ④画出转换电路。

三、实验仪器及器件 1、示波器1台 2、函数信号发生器1台 3、数字万用表1台 4、多功能电路实验箱1台 四、实验内容 1、基本RS触发器: 按1搭接电路,Rd’、Sd’分别接逻辑开关K1、K2,用L1显示1Q,用L2显示1Q’,按照表1验证基本RS触发器功能。 2、维阻D触发器: SN74LS74是TTL型集成双D维阻触发器,管脚图如图: (1)连接电路,L1显示Q,L2显示Q’ (2)验证Rd’和Sd’低电平异步预置功能: 当Rd’=0,Sd’=1时,L1灯灭,L2灯亮; 当Rd’=1,Sd’=0时,L1灯亮,L2灯灭。(D和Cp任意) (3)验证上升沿触发特性和逻辑功能表 3、主从JK触发器: SN7476是TTL型集成双JK主从触发器,管脚图如图:

模电实验指导书

实验一、常用仪器的使用及常用器件的认识、检测一、实验目的 1.学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的技术指标、性能及正确使用方法。 2.初步掌握双踪示波器观察正弦信号波形和读书波形参数的方法。 3.认识常见的电子元器件及其检测方法。 二、实验原理 在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等。它们和万用电表在一起,可以完成对模拟电子电路的静态与动态工作情况的测试。 实验中要对各中电子仪器进行综合使用,可按照信号流向,一连先简捷,调节顺手,观察与读数方便等原则进行合理布局,个仪器与被册实验装置之间的布局与连线如图1——1所示。接线是应注意,为了防止外界的干扰,各仪器的公共接地端应连接在一起,称共地。信号源和交流伏安表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。 1.示波器 在本书实验附录中已对常用的GOS-620型双踪示波器的原理和使用做了较详细的说明,先着重指出下列几点: 1)寻找扫描光迹点 在开机半分钟后,如还找不到光点,可调节亮度旋钮,并按下“寻迹”键,从中判断光点的位置,然后适当调节垂直(↑↓)和水平()移位旋钮,将光点移至荧光屏的中心位置。 2)为了显示稳定的波形,需注意示波器面板上的下列几个控制开关(或旋钮)的位置。 a、“扫描速率”开关(t/div)——它的位置应根据被观察信号的周期来确定。 b、“触发源的选择”开关(内、外)——通常选为内触发。 c、“内触发源的选择”开关(拉YB)——通常至于常态(推进位置)。此时对单一从 YA或YB输入的信号均能同步,仅在作双路同时显示时,为比较两个波形的相对位置,才将其置于拉出(拉YB )位置,此时触发信号仅取自YB,故仅对YB输入的信号同

厦门大学电子技术实验报告实验三

电子技术实验报告

一、实验原理 1. 数字示波器显示波形原理 示波器是将入的周期性电信号以图像形式展现在显示器上,以便对电信号进行观察和测量的仪器。 示波器显示器是一种电压控制器件,根据电压有无控制屏幕亮灭,并根据电压大小控制光电在屏幕上的位置。 示波器显示屏必须加有幅度随时间线性增长的周期性锯齿波电压,才能让显示屏的光点反复自左端移向右端,屏幕上就出现一条水平光线,成为扫描线或时间基线。为使在显示屏上观察到稳定的波形。必须使锯齿波的周期Tx和被测信号的周期Ty相等或成整数倍关系。即Tx=nTy(n为正整数)。否则,所显示波形将不能同步。 2. 数字存储示波器的原理 数字存储示波器主要由信号调理部分、采集存储部分、触发部分、软件处理部分和其他组成。 3. 双通道数字存储示波器结构框图

4. 示波器的主要技术特性 (1)模拟带宽:由前置放大器的带宽决定; (2)采样速率:由模数转换电路决定; (3)存储深度:由存储器决定; (4)触发部分:由触发电路类型决定。 5. 示波器的使用方法 (1)打开电源开关(Power)30s后,屏幕上有光迹,否则检查有关控制旋钮的位置; (2)将示波器探头接到被测信号,确定触发源选择(Trigger)在所接通道位置;(3)键入相应的通道开关,启动该通道工作; (4)将垂直和水平灵敏度旋钮调到合适的位置,Vp-p/8≤选择Y轴灵敏度;T/10≤选择X轴灵敏度; (5)屏幕上应有被测信号波形; (6)若需要测量信号各点电平,耦合方式应选DC耦合,若只需观测信号幅度,则选AC耦合; (7)调节Y和X位移旋钮将被波形调到便于测量的位置 二、实验步骤与实验数据 1、校验示波器的灵敏度 对于首次接触的示波器,必须对其灵敏度进行校验。方法为:在示波器正常显示状态下,将探头接示波器本身提供的校准方波信号源(demo2端子),采用自动或手动方法观察校准信号,如果测量得到的波形幅度频率与校准信号(f=1kHZ,VPP=2.5V)相同,说明示波器准确,若不同,应记下其误差。 经测量,f=1.0012kHz,V-P-P=2.56V 2、调整测量含有直流电平的信号 若要求信号发生器输出的方波信号(f=1KHz、占空比50%、Vp-p=4V、HV=3V、LV=-1V),则调整测量方法为 (1)令信号发生器输出方波,调整信号频率为1 kHz (2)调整信号幅度为4V,偏移量为1V;或者通过设置高、低电平的方法设置HV=3V、LV=-1V。 (3)连接示波器和信号发生器,令两仪器“COM端”相接,并将示波器探头接信号发生器信号输出端。 (4)示波器设置直流耦合,手动或者自动观测信号发生器的输出信号。分别改变波形输出类型,此时示波器上分别显示下图所示波形。

厦门大学电子技术实验——实验十三

电子技术实验 实验报告 实验名称:实验十三 OTL功率放大器安装和调试系别:班号: 实验者姓名:学号: 实验日期:年月日 实验报告完成日期:年月日 指导教师意见:

一、实验目的 1. 掌握OTL 功率放大器的工作原理及其设计要点; 2. 掌握OTL 功率放大器的安装、调整与性能的测试。 二、实验原理 采用PNP 和NPN 互补晶体管组成的无输出变压器互补推挽(OTL )功率放大电路,具有频率响应好,非线性失真小,效率高等优点,获得了广泛的应用。 本实验采用的OTL 功率放大电路如图1所示,它包括前置放大级BG1,推动级BG2和互补推挽输出级BG3、BG4 。 前置放大级为甲类RC 耦合电压放大器,在发射极加有电压串联负反馈, 以改善音质,提高稳定性。R 1为输出音量调节电位器。由于前置级工作在小信号电压放大状态,静态工作电流I C1可取小一些以减少噪音,一般取: I C1 ≈0.3~0.1mA 1V <V CEQ1 ≤1/3E C 推动级要提供足够大的激励功率互补推挽功率输出级,所以推动级的静态工作电流应足够大,一般取 I C2≥(3~5)I B3MAX 式中I B3MAX 为输出功率最大是输出级的基极激励电流。为了提高输出级正向输出幅度,把BG 2的集电极负载电阻R 8接到放大器的输出端经R L 接电源正端,以获得自举的效果。为了克服输出级的交叉失真,在BG 3,BG 4两管的基极之间接有二极管D 和电阻R 9组成的偏置电路,其中二极管D 同时起偏置的温度补偿作用,电容C 5为相位校正电容,以防止产生高频寄生振荡。 功率放大器的输出功率为:)(812为电源电压利用系数式中:K K R E P L C O 当K≈1时,输出功率最大,为P OMAX ≈E 2C /8R L 考虑到晶体管的饱和压降因素,一般取:K≈0.65~0.7. 对该电路的电压增益,考虑到它加有电压串联负反馈,并满足A VO F >>1,所以中频段电压增益为: A V ≈1/F=(R 12+R 6)/R 6 本实验要求达到如下技术指标: 1. 不失真输出功率P O ≥500mV 2. 电压增益A V ≥37dB

[整理]东南大学信息学院 模电实验四.

实验四 差分放大器 实验目的: 1、掌握差分放大器偏置电路的分析和设计方法; 2、掌握差分放大器差模增益和共模增益特性,熟悉共模增益概念; 3、掌握差分放大器差模传输特性。 实验内容: 一、实验预习 根据图4-1所示电路,计算该电路的性能参数。已知晶体管的导通电压)(on BE V =0.55,β=500,|V |A =150V ,试求该电路中晶体管的静态电流CQ I ,节点1和2的直流电压1V 、2V ,晶体管跨导m g ,差模输入阻抗id R ,差模电压增益d A v ,共模电压增益vc A 和共模抑制比 CMR K ,请写出详细的计算过程,并完成表4-1。 图4-1. 差分放大器实验电路 表4-1: CQ I (mA ) 1V (V ) 2V (V ) m g (mS ) id R (k Ω) d A v vc A CMR K 1.03 2.94 2.94 39.62 11.16 -79.24 -2 19.81 计算过程如下:

58 178 5.0255.010?+= ?++BQ BQ I I β 所以,≈BQ I 2.06μA mA 03.1≈=BQ CQ I I β V I V V Q 94.22521=-== S V I g T CQ m m 62.39≈= Ω≈==k R g R r R e b id 16.11//2//27m 7)()(,β 24.79g //-g 2m 2m v -≈-≈=R r R A ce d ) ( 22- 1 2 vc -==R R A 81.19|2 /| vd ==vc CMR A A K 二、仿真实验 1、在Multisim 中设计差分放大器,电路结构和参数如图4-1所示,进行直流工作点分析(DC 分析),得到电路的工作点和电压,完成表4-2,并与计算结果对照。 表4-2: CQ I (mA ) 1V (V ) 2V (V ) 3V (V ) 5V (V ) 6V (V ) 1.00125 2.99750 2.99750 1.00341 1.57651 1.55492 仿真设置:Simulate--Analyses--DC Operating Point ,设置需要输出的电压或者电流。 2、在图4-1所示电路中,固定输入信号频率为2kHz ,输入不同信号幅度时,测量电路的差模增益。采用Agilent 示波器(Agilent Oscilloscope )观察输出波形,测量输出电压的峰峰值(peak-peak ),通过“差模输出电压峰峰值/差模输入电压峰峰值”计算差模增益d A v ,用频谱仪器观察节点1的基波功率和谐波功率,并完成表4-3。 表4-3: 输入信号单端幅度 (mV ) 1 10 20 d A v 145.89 140.5 126

厦门大学电子技术实验报告_实验十三

实验十三 OTL功率放大器安装和调试 一、实验目的 1. 掌握OTL功率放大器的工作原理及其设计要点; 2. 掌握OTL功率放大器的安装、调整与性能的测试。 二、实验原理 采用PNP和NPN互补晶体管组成的无输出变压器互补推挽功率放大电路,具有频率响应好,非线性失真小,效率高等优点,获得了广泛的应用。 本实验采用的OTL功率放大电路如图1所示,它包括前置放大级B G1,推动级B G2和互补推挽输出级B G3、B G4。 前置放大级为甲类RC耦合电压放大器,在发射极加有电压串联负反馈,以改善音质,提高稳定性。R1为输出音量调节电位器。由于前置级工作在小信号电压放大状态,静态工作电流I C1可取小一些以减少噪音,一般取: I C1≈0.3~0.1mA 1V<V CEQ1≤1/3E C 推动级要提供足够大的激励功率互补推挽功率输出级,所以推动级的静态工作电流应足够大,一般取I C2≥(3~5)I B3MAX 式中I B3MAX为输出功率最大是输出级的基极激励电流。为了提高输出级正向输出幅度,把B G2的集电极负载电阻R8接到放大器的输出端经R L接电源正端,以获得自举的效果。为了克服输出级的交叉失真,在B G3,B G4两管的基极之间接有二极管D和电阻R9组成的偏置电路,其中二极管D同时起偏置的温度补偿作用,电容C5为相位校正电容,以防止产生高频寄生振荡。功率放大器的输出功率为P O=E2C K/8R L(式中:K为电源电压利用系数)。 当K≈1时,输出功率最大,为P OMAX≈E2C/8R L 考虑到晶体管的饱和压降因素,一般取:K≈0.65~0.7. 对该电路的电压增益,考虑到它加有电压串联负反馈,并满足A VO F >>1,所以中频段电压增益为:A V≈1/F=(R12+R6)/R6

模电实验报告答案1汇总

简要说明:本实验所有内容是经过十一年的使用并完善后的定稿;已经出版的较为成熟的内容,希望同学们主要参考本实验内容进行实验。 实验一常用电子仪器使用 为了正确地观察电子技术实验现象、测量实验数据,实验人员就必须学会常用电子仪器及设备的正确使用方法,掌握基本的电子测试技术,这也是电子技术实验课的重要任务之一。在电子技术实验中,所使用的主要电子仪器有:SS-7804型双踪示波器,EE-1641D函数信号发生器,直流稳压电源,DT890型数字万用表和电子技术实验学习机。学习上述仪器的使用方法是本实验的主要内容,其中示波器的使用较难掌握,是我们学习的重点,要进行反复的操作练习,达到熟练掌握的目的。 一、实验目的 1.学习双踪示波器、函数信号发生器、直流稳压电源的正 确使用方法。 2.学习数字万用表的使用方法及用数字万用表测量元器 件、辩别二极管和三极管的管脚、类型。 3.熟悉实验装置,学会识别装置上各种类型的元件。 二、实验内容 (一)、示波器的使用 1.示波器的认识 示波器是一种测量、观察、记录电压信号的仪器,广泛应用于电子技术等领域。随着电子技术及数字处理技术的发展,示

波器测量技术日趋完善。示波器主要可分为模拟示波器和数字存贮示波器两大种类。 模拟示波器又可分为:通用示波器、取样示波器、光电存储示波器、电视示波器、特种示波器等。数字存贮示波器也可按功能分类。 即便如此,它们各有各的优点。模拟示波器的优点是: ◆可方便的观察未知波形,特别是周期性电压波形; ◆显示速度快; ◆无混叠效应; ◆投资价格较低廉。 数字示波器的优点是: ◆捕捉单次信号的能力强; ◆具有很强的存储被测信号的功能。 示波器的主要技术指标: ①. 带宽:带宽是衡量示波器垂直系统的幅频特性,它指的是输入信号的幅值不变而频率变化,使其显示波形的幅度下降到3dB时对应的频率值。 ②. 输入信号范围: ③. 输入阻抗: ④. 误差: ⑤. 垂直灵敏度:指垂直输入系统的每格所显示的电压值,通常为2mV-5V/DIV。 ⑥. 扫描时间:指水平系统的时间测量范围,通常低限

厦门大学电子技术实验九集成运算放大器组成的RC文氏电桥振荡器..

实 验 报 告 实验名称:实验九集成运算放大器组成的RC文氏电 桥振荡器 系别:班号:实验组别:实验者姓名: 学号: 实验日期: 实验报告完成日期: 指导教师意见:

目录 二、实验原理 (3) 三、实验仪器 (5) 四、实验内容及数据 (5) 1、电路分析及参数计算 (5) 2、振荡器参数测试 (7) 3、振幅平衡条件的验证 (8) 4、观察自动稳幅电路作用 (9) 五、误差分析 (10) 六、实验总结 (11)

一、实验目的 1. 掌握产生自激振荡的振幅平衡条件和相位平衡条件; 2. 了解文氏电桥振荡器的工作原理及起振的条件和稳幅原理。 二、实验原理 1. 产生自激振荡的条件: 当放大器引入正反馈时,电路可能产 生自激振荡,因此,一般振荡器都由放大 器和正反馈网络组成。其框图如图1所示。 振荡器产生自激振荡必须满足两个基本 条件: (1)振幅平衡条件:反馈信号的振幅应该等于输入信号的振幅,即 VF = Vi 或 |AF| = 1 (2)相位平衡条件:反馈信号与输入信号同相位,其相位差应为: π???n F A 2±=+=(n = 0、1、2……) 2. RC 串-并联网络的选频特性: RC 串-并联网络如图2(a)所示,其电压传输系数为:

2 ()1122F +=12R1211(1)(21)122R2112R VF jwR c R c VO R j wc R jwc jwR c c wc R ++==+++++-() 当R1= R2= R , C1= C2= C 时,则上式为: 1 ()13()F j wRc wRc +=+- 若令上式虚部为零,即得到谐振频率fo 为:1 =2RC o f π 当f = fo 时,传输系数最大,相移为0,即:F max =1/3,0=F ? 传输系数F 的幅频特性相频特性如图2(b)(c)所示。由此可见,RC 串—并联网络具有选频特性。对频率f o 而言,为了满足政府平衡条件| AF | = 1,要求放大器| A | = 3。为满足相位平衡条件:π??n F A 2=+,要求放大器为同相放大。 3. 自动稳幅: 由运算放大器组成的RC 文氏电桥振荡器原理图如图3所示,负反馈系数为: ()1(-)1F = F F V R Vo R R -=+ 在深度负反馈情况下: 1()1111F F F R R R A F R R -+===+ 因此,改变R F 或者R1就可以改变放大器的电压增益。

模电实验

实验一仪器 问题1已知实验用信号发生器产生一个电压信号,其频率为2KHZ,请问在示波器上读取到它的周期最可能为 正确答案: B. 0.5ms 问题2实验室中所用示波器的输入通道有 正确答案: C. 2 问题3毫伏表用来测量什么信号? 正确答案: D. 正弦交流电压 问题 4 示波器的校准信号是什么类型的波形? 正确答案: B. 方波 问题 5 在用示波器观察一个直流电压波形时,输入耦合方式应选在 正确答案: A. DC 问题 6 已知某同学应用交流毫伏表测得某个电压信号有效值为2V,请问该信号在示波器上峰峰值可能是多少 正确答案: B. 5.6V 问题7已知某同学在示波器上测得某个频率为1000HZ的正弦波电压信号峰值为2V,请问其如果用万用表测量,读数可能是多少? 正确答案: B. 1.4V 问题8已知某同学在示波器上测得某个频率为1000HZ的正弦波电压信号峰值为10V,请问其如果用交流毫伏表测量,读数可能是多少? 正确答案: B. 7V 问题9双踪示波器一般有五种显示方式,以下哪一种不是? 正确答案: D. 直流 问题10某同学在使用示波器时,发现找不到扫描光线,以下回答中不可能的是 正确答案: D. 垂直工作方式未选在CH1通道 问题11在第一次实验当中,做相位差测量时,示波器的显示方式开关应置于 正确答案: B. 断续 问题12在用示波器观察波形时,发现上下均超出范围,应调节的是 正确答案: A. 电压灵敏度开关 问题13 在用示波器观察波形时,发现在水平方向上波形显得太密集,应调节的是 正确答案: D. 时间灵敏度开关 问题14某同学需要用到10mV电压信号,但是他将信号源幅度旋钮已经调到最小,可测出来好像还大于该值,请问如何操作? 正确答案: C. 将衰减开关10dB按键按下去,再重新调节 问题15关于交流毫伏表的使用,下面哪种说法不正确? 正确答案: D. 当选择开关是以3开头的,应读第1行。 问题16 在用示波器CH1通道观察电压波形时发现非常不稳定,以下哪种情况不可能? 正确答案: C. 触发信号源选择了CH1 问题17 在做相位差测量实验时,有同学发现两个波形几乎重合了,相位差不能测量,不可能的原因有 正确答案: D. 输入耦合方式选择了CH1通道。 实验三multisim1 问题 1 电子设计软件MULTISIM可以对电路进行多种分析,如果做晶体管电路,需要计算该电路的静态工作点,请问该选用什么分析方式正确答案: A. 直流工作点分析 问题2在晶体管放大电路中,观察输出电压跟时间关系的波形应采用什么分析方式? 正确答案: D. 瞬态分析 问题3在晶体管放大电路中,观察输出电压跟输入信号频率关系应采用什么分析方式 正确答案: C. 交流分析 问题4电子设计软件MULTISIM可以对电路进行多种分析,如果一个电路中输入信号为直流信号,需要知道该电路输出与该输入的关系,请问该选用什么分析方式 正确答案: B. 直流分析

相关文档