文档库 最新最全的文档下载
当前位置:文档库 › 第09章 溶酶体与微体

第09章 溶酶体与微体

第09章 溶酶体与微体
第09章 溶酶体与微体

张君奇高尔基体的功能3

高尔基体的结构与生物功能及最新研究进展1·形态结构

图1烟草根尖细胞高尔基体的电镜照片 高尔基复合体由平行排列的扁平膜囊、大囊泡和小囊泡等三种膜状结构所组成。它有两个面:形成面和成熟面,来自内质网的蛋白质和脂从形成面逐渐向成熟面转运(图2)。 图2高尔基体的膜囊结构及其排列 高尔基体的顺面是囊泡结构,靠近粗面内质网,中间部分是扁平膜囊,反面也是囊泡结构。 ●扁平膜囊(saccules)是高尔基复合体的主体部分。一般由3~10层扁平膜囊平行排列在一起组成一个扁平膜囊堆(stack of saccules),每层膜囊之间的距离为150~300?,每个扁平囊是由两个平行的单位膜构成,膜厚6~7nm.

●小泡(vesicle)在扁平囊的周围有许多小囊泡,直径400-800?。这些小囊泡较多地集中在高尔基复合体的形成面。一般认为它是由附近的粗面内质网出芽形成的运输泡。它们不断地与高尔基体的扁平膜囊融合,使扁平膜囊的膜成分不断得到补充。 ●液泡(vacuoles)多见于扁平膜囊扩大之末端,可与之相连。直径0.1-0.5微米,泡膜厚约80。 ■高尔基体的极性 ●结构上的极性:高尔基体的结构可分为几个层次的区室;①靠近内质网的一面称为顺面(cis face),或称形成面(forming face);②高尔基体中间膜囊(medial Golgi);③靠近细胞质膜的一面称为反面高尔基网络(trans Golgi network,TGN)。 ●功能上的极性:高尔基体执行功能时是“流水式”操作,上一道工序完成了,才能进行下一道工序。 ■数量和分布 ●数量 生物体中高尔基复合体的数量不等,平均为每细胞20个。在低等真核细胞中,高尔基复合体有时只有1~2个,有的可达一万多个。在分泌功能旺盛的细胞中,高尔基复合体都很多。如胰腺外分泌细胞、唾液腺细胞和上皮细胞等。而肌细胞和淋巴细胞中高尔基复合体较少见。 ●分布 高尔基复合体只存在于真核细胞中,原核细胞中则无。在一定类型的细胞中,高尔基复合体的位置比较恒定,如外分泌细胞中高尔基体常位于细胞核上方,其反面朝向细胞质膜;神经细胞的高尔基体有很多膜囊堆分散于细胞核的周围。 2·高尔基体的功能 高尔基体的主要功能是参与细胞的分泌活动,将内质网合成的多种蛋白质进行加工、分类与包装,并分门别类地运送到细胞的特定部位或分泌到细胞外。内质网上合成的脂类一部分也要通过高尔基体向细胞质膜等部位运输。因此,高尔基体是细胞内物质运输的交通枢纽。 ■蛋白质和脂的运输 高尔基复合体位于内质网和质膜之间,是膜结合核糖体合成的蛋白质的分选和运输的中间站。 ● ER与高尔基体顺面间的蛋白质运输 除了内质网结构和功能蛋白质外,其他由内质网合成的蛋白质都是通过小泡转运到高尔基体的顺面,小泡与顺面高尔基体网络融合之后,转运的蛋白质进入高尔基体腔,这

p27Kip1在神经前体细胞分化中的作用

p27Kip1在神经前体细胞分化中的作用 作者:许秋岩张海燕赵咏梅 【关键词】 p27Kip1;神经前体细胞;细胞周期;分化 脊椎动物的神经系统发育过程是由细胞增殖与分化共同协调完成的,细胞周期调控蛋白参与了神经系统细胞周期的调节。受细胞周期调控蛋白严格调控的作用,多潜能神经前体细胞分化为神经元和神经胶质细胞,并在特异性形成的过程中,一些细胞周期调节蛋白起了关键的作用。p27Kip1作为细胞周期蛋白激酶抑制剂(CKI)家族的重要成员已经被广泛研究。本文将对p27Kip1在神经前体细胞分化中的作用及其调节机制作一综述。 1 p27Kip1与cyclins/CDKs结合促使细胞分化 在细胞分化过程中,G1期所有的周期蛋白激酶(CDKs)的活性都是降低的,在很多细胞的分化过程中都能观察到CKIs的聚集,作为CKIs家族主要成员的p27Kip1在细胞分化中发挥了关键的作用。p27Kip1是1994年由Polyak等〔1〕首先发现的一种周期蛋白依赖性激酶抑制剂,参与细胞周期的负向调控。p27Kip1能与很多细胞周期蛋白(cyclins)/CDKs结合,但主要与cyclinD/CDK4/6、cyclinE/CDK2结合,同时它对每种cyclins/CDKs活性的抑制也不同,对cyclinE/CDK2的抑制作用最强,cyclinD/CDK4次之,cyclinA/CDK2再次之,cyclinB/CDK2最弱。它的主要作用机制是与cyclins/CDKs 结合形成三聚体,并通过至少两个环节抑制cyclins/CDKs的活性:一方面,p27Kip1能够与CDK的亚单位结合,抑制CDK激活激酶 (CAK)

细胞生物学溶酶体

9.4溶酶体(l y s o s o me) 溶酶体是动物细胞中一种膜结合细胞器,含有多种水解酶类,在细胞内起消化和保护作用,可与吞噬泡或胞饮泡结合,消化和利用其中的物质。也可以消化自身细胞破损的细胞器或残片,有利于细胞器的重新组装、成分的更新及废物的消除。 9.4.1溶酶体的形态结构 ■溶酶体的形态 溶酶体是一种异质性(h e t e r o g e n e o u s)的细胞器,不同来源的溶酶体形态、大小,甚至所含有酶的种类都有很大的不同。溶酶体呈小球状,大小变化很大,直径一般0.25~0.8μm,最大的可超过1μm,最小的直径只有25~50n m。图9-36是肝组织的K u p p e r细胞(肝星形细胞)中不同大小的溶酶体,该细胞主要是吞噬衰老的红细胞。

图9-36溶酶体的形态大小 具吞噬作用的肝K u p p e r细胞中不同大小的溶酶体,图中示出至少10个不同大 小的溶酶体。 ■溶酶体膜的稳定性 溶酶体的外被是一层单位膜,内部没有任何特殊的结构。由于溶酶体中含有各种不同的水解酶类,所以溶酶体在生活细胞中必须是高度稳定的。溶酶体的稳定性与其膜的结构组成有关: ●溶酶体膜中嵌有质子运输泵(H+-AT P a s e),将H+泵入溶酶体内,使溶酶体中的H+浓度比细胞质中高;同时,在溶酶体膜上有C l-离子通道蛋白,可向溶酶体中运输C l-离子,两种运输蛋白作用的结果,就等于向溶酶体中运输了H C l,以此维持溶酶体内部的酸性环境(p H约为 4.6~4.8)。 ●溶酶体膜含有各种不同酸性的、高度糖基化膜整合蛋白,这些膜整合蛋白的功能可能是保护溶酶体的膜免遭溶酶体内酶的攻击,有利于防止自身膜蛋白的降解。 ●溶酶体膜含有较高的胆固醇,促进了膜结构的稳定。 9.4.2溶酶体的发现与溶酶体的酶类 溶酶体内含有50多种酶类,这些酶的最适p H值是5.0,故均为酸性水解酶(a c i d h yd r o l a s e s)。图9-37是典型的溶酶体的大小、所含主要酶类及膜中的V-型质子泵等。 酸性磷酸酶是溶酶体的标志酶,正是对这种酶的细胞定位研究导致溶酶体的发现。

前体细胞淋巴瘤(1)

B cell lymphoma DLBCL,37% FL,29% MALT,9% MCL,7% CLL,12% others T cell lymphoma PTCL,NOS,25.9% AITL,18.5% E/NK T cell lymphoma,10.4% ATLL,9.6% ALCL,ALK+,6.6% ALCL,ALK-,5.5% ETTL,4.7% Others,18.8% 这基本概括了淋巴瘤的相对发生率,由此可见,在B细胞淋巴瘤中,我们只要了解5种基本常见的淋巴瘤,就可以诊断大约95%以上的B细胞淋巴瘤;T细胞淋巴瘤的诊断相对复杂,分类也较多,一个原因是它与NK细胞来源的肿瘤被共同分在一组,还因为TCR的不同以及T细胞功能的多样化,导致了T细胞淋巴瘤在临床中的诊断相对于B细胞要困难一些。前面已经讲过分类的原则,是基于细胞分化所对应的阶段,还有一个重要原则就是预后和治疗手段。

前体细胞淋巴瘤 B淋巴母细胞淋巴瘤/B急性淋巴母细胞白血病 B淋巴母细胞淋巴瘤/白血病是来源于B前体细胞的肿瘤.前面已经讲解过淋巴瘤与白血病 的区别,即对于淋巴瘤的诊断来讲,当病变带有巨大肿块并表现为无外周血和骨髓或少量 外周血和骨髓浸润;当病变主要以骨髓和外周血浸润为主的情况下,诊断为白血病更为合适。但是如果既有巨大肿块又有骨髓病变应该如何来明确的区分两种诊断呢,WHO血液 系统分类将25%骨髓母细胞浸润来定义白血病。于髓系白血病相比,没有下线的限制,但 是通常如果母细胞少于20%的骨髓浸润,则应该避免诊断为白血病。 ALL: 75%的病例发生于小于6岁的儿童。全世界范围内的发病率在1-4.75/100,000人。遗 传性病变可能占有一小部分病例。 骨髓病变为主,通常具有外周血浸润。髓外浸润也很常见,如中枢神经系统,淋巴结,脾,肝和睾丸。 临床特征主要为血小板减少,贫血,中性粒细胞减少。白细胞计数可能减少,不变或 显著增加。淋巴结病变,肝脾肿大常见。骨痛和关节痛多见。 LBL: 主要为淋巴结或结外病变,最常见的侵犯部位有皮肤,软组织和骨。在无白血病相时 可能无症状,大多数病例为临床I/II级,头颈部表现较为常见,特别是儿童病例。骨髓和 外周血浸润可能存在,但是通常母细胞小于25%。 细胞形态学:组织切片表现为细胞中等大小,核圆形/椭圆形,或轻微的内陷,染色质 均质性弥散。核仁在不同病例中差异较大,有时不明显。有丝分裂情况也因为病例不同富 于变化。天星现象可见。低倍镜下主要是弥漫性生长,有时也呈现副皮质区生长,但较为 少见。在软组织切片上,肿瘤细胞呈单线排列,即single-file pattern。印片时,细胞可能 为小的带有少量细胞质和浓缩的核染色质肿瘤细胞,至大的中等量淡蓝染色的细胞质,弥 散的染色质及显著细胞核的大细胞。核圆形,不规则或呈回旋状。细胞质空泡可见,嗜天 青颗粒大约见于10%的病例。有时一些肿瘤细胞表现为“手镜”样(hand mirror cells)的 形态.

少突胶质前体细胞

少突胶质细胞前体细胞(OPCs)对髓鞘再生的影响 作者:裴星瑶 0905010326 动医093班 【关键词】少突胶质细胞;前体细胞(OPCs);髓鞘再生;多发性硬化病(MS);因素;炎症 髓鞘再生是一个在脱髓鞘的轴突上重新形成髓鞘的过程。在多发性硬化症中出现的非连续性髓鞘化,以及后继的轴突完整性丧失,使得增强髓鞘再生成为一个重要的治疗靶标。前体细胞(OPCs)分化为成熟的少突胶质细胞是髓鞘再生成功的一个关键步骤。而髓鞘再生遇到许多障碍,少突胶质细胞及其OPCs在的聚集不足或分化失败,受到了多种因素的调控。 少突胶质细胞前体细胞OPCs 募集:包括细胞活化、增殖和迁移,受多种信号系统调控。正常情况下,少突胶质细胞前体细胞存在于前脑脑室下区、后脑和脊髓的腹侧区,处于相对静止状态,数量也相对稳定。当CNS脱髓鞘时,OPCs被激活,体积增大,出现粘蛋白NG2阳性细胞标志。其中OPCs增殖与血小板源性生长因子(PDGF)关系密切。PDGF是胎儿OPCs的有丝分裂原,在脑发育阶段能调节OPCs数量。证明PDGF—Ot是调控OPCs增殖的重要因素。 分化:OPCs达到一定数量,即停止增殖并进入分化阶段。OPCs的分化是指在裸露的轴突周围,OPCs形成了能生成新的髓鞘的少突胶质细胞及其它胶质细胞的过程。 少突胶质细胞前体细胞(OPCs)及少突胶质细胞介导在中枢神经系统(CNS)中起着重要的作用,髓鞘再生是脱髓鞘疾病发生后的重要修复方式,其过程中OPCs 分化形成具有功能性的少突胶质细胞,而少突胶质细胞形成髓鞘。近来研究表明,前体细胞也可以分化成为星形胶质细胞,小胶质细胞等其它神经胶质细胞,但少突胶质细胞是形成中枢神经系统有髓神经纤维髓鞘的重要形成细胞,包裹髓磷脂于中枢神经的轴突周围,而且目前有大量的间接的证据表明少突胶质细胞不仅形成髓鞘,它们释放的营养因子,对于轴突生存是必要的。其中的一部分证据来源于对Cnpl基因在干细胞中功能的研究。在中枢神经系统中,这个编码2"-3 环核苷酸磷酸二酯酶的基因无一例外地只在少突胶质细胞中表达。实验表明少突胶质细胞在保护轴突完整性方面起着重要的作用,而该保护功能的实现,依赖于2"-3 环核苷酸磷酸二酯酶的表达。少突胶质细胞的这个营养功能与其形成正常髓鞘的功能有很大的不同。 多发性硬化病(MS) 多发性硬化(MS)是以中枢神经系统炎性脱髓鞘为特征的自身免疫性疾病。其发生机制与遗传易感性和环境因素(致病微生物)有关,引起T细胞介导的免疫系统紊乱,导致神经髓鞘破坏和继发轴索损害。是中枢神经系统脱髓鞘疾病。治疗这种疾病,首先要了解髓鞘再生和修复。 多发性硬化(MS)病人OPCs募集和分化均存在障碍,导致OPCs髓鞘不能修复,影响跳跃性传导,进而影响神经功能恢复。脱髓鞘化轴突的动作电位传导是非跳跃性的,在传导过程中的衰减也很快,而髓鞘再生可以恢复轴突高效的跳跃式动作电位传导功能。近来,研究者开始关注,髓鞘可以通过营养支持而提高轴突的寿命,从而保护神经元。由于其指出在脱髓鞘中更有效的保护轴突的方法是诱导

高尔基体的功能

高尔基体的功能 关键词:细胞 atcc 北纳创联 关于高尔基体功能的两个模型阐述了高尔基体合成和遗传机制。第一,“稳定的区室模型”,高尔基体包含稳定的潴泡和其中的囊泡携带蛋白。在这个模型中,高尔基体是一个独立的实体,通过模板依赖或者非依赖的过程产生。第二.“潴泡渐进模型”,高尔基体是一个动态的膜系统,它可以通过内质网膜的融合从新生成。它通过膜由顺面向反面的持续运动介导蛋白质运输。 在巴斯德毕赤酵母中的研究结果支持了这种模型。结果表明后高尔基体膜是在tER和内质网亚结构域形成之后才形成的。内质网亚结构域是COP Ⅱ运输囊泡形成的位点,与内质网的其他部分在形态和功能上均不相同。在这些研究中,分别使用sec7-DsRed和Sec13p-GFP检测到了tER和后高尔基体的明显形成。与此一致的是,在毕赤酵母中,tER位于与高尔基体堆叠十分接近的区域。这些观察为一个精简的高尔基体遗传模型提供了进一步的支持,在这个模型中COPⅡ囊泡融合导致了高尔基体潴泡的从新合成。 在酿酒酵母中没有检测到tER。实际上,芽殖酵母中的高尔基体似乎不是以高尔基体堆叠形式组装的。恰恰相反,它们分散在整个细胞质中。然而,高尔基体遗传被认为是一个细胞周期依赖的非随机的过程。使用Sec7p-GFP融合蛋白作为标记,在初始出芽位点检测到了后高尔基体膜,这种膜系统分布在整个芽中。而且,已有文献报道了Sec7p-GFP由芽颈向芽尖的运动。由于Myo2p马达蛋白结构域的突变导致后高尔基体定位受阻,所以很有可能在遗传过程中后高尔基体的运动是由Myo2p驱动的过程介导的。 在芽殖酵母的后高尔基体遗传中,检测到一个与首次在线粒体遗传中观察到的相似的捕获机制。那就是后高尔基体元件在芽顶端积累,并在细胞分裂之前从芽顶端的滞留位点释放。最后,在细胞分裂时,高尔基体潴泡与分泌囊泡在细胞壁合成的位点组合在一起,以便累积或存放细胞表面物质。由于F肌动蛋白的去稳定作用会降低Sec7p-GFP在芽顶端的积累量,后高尔基体在芽顶端的滞留,正如线粒体在那个位点的滞留一样,似乎是依赖肌动蛋白。与此一致的是,Cdc1p 的突变会导致芽殖酵母中肌动蛋白骨架的去极化,也会使后高尔基体元件在芽顶端的滞留受到影响,但对早期高尔基体的遗传没有影响。 高尔基体的分泌囊泡与极性生长的关系是当前研究高尔基体功能的一个重要领域。细胞内蛋白质合成是由粗面内质网上的核糖体开始的,核糖体只是初步合成了多肽链,之后运送到粗面内质网中进行折叠,翻转,加糖基等,初步加工

溶酶体的结构、功能与疾病

真核生物细胞器 溶酶体的研究综述 摘要:溶酶体(lysosomes)是具有一组水解酶、并起消化作用的细胞器。溶酶体为细胞内的一种细胞器,外被单位膜,内含多种更至些壁堕,能分解各种内生性或外源性物质,被视为细胞内的消化装置。所有动物细胞(除成熟的红细胞外)和许多植物细胞均有溶酶体。它是细胞普遍存在的一种细胞器。内部基质含有多种高浓度的酸性水解酶。许多研究表明,溶酶体态细胞的正常生理活动、病理过程和药理作用等方面都多有非常重要的作用。本文将从溶酶体的发现、化学组成、结构、发生、功能极其与人类的关系等多个方面对之展开深入探讨。 关键词:溶酶体发现化学组成结构发生功能 前言:溶酶体(lysosome)为细胞浆内由单层脂蛋白膜包绕的内含一系列酸性水解酶的小体。是细胞内具有单层膜囊状结构的细胞器,溶酶体内含有许多种水解酶类,能够分解很多种物质,溶酶体被比喻为细胞内的“酶仓库”“消化系统”。Christian de Duve(1955)在大鼠肝脏中,从比线粒体分区稍轻的地方得到含有水解酶的颗粒分区,并以可进行水解(lyso)的小体(some)这个意义而命名为溶解体(lysosome)。溶酶体中含有40种以上的酸性水解酶,是在酸性区域具有最适pH的水解酶组。据电子显微镜观察,溶酶体是由6~8毫微米厚的单层膜所围着的直径为0.4微米至数微米的颗粒或小泡。由于其形态极其多样化,所以把对酸性磷酸酶活性为阳性的物质鉴定为溶酶体。溶酶体可分为三大类,初级溶酶体(primary lysoso-me)、次级溶酶体(secondary lysosome)和残余小体。溶酶体是由高尔基体断裂产生,单层膜包裹的小泡,数目可多可少,大小也不等,溶酶体的pH为5左右,是其中酶促反应的最适pH。 1 溶酶体的发现 1955年de Duve与Novikoff首次发现溶酶体(lysosome)。德迪夫(DE Duve,Christian Rene)比利时细胞学家。在二十世纪的五十年代初期,Christian de Duve 和他的同事在研究亚细胞组分时发现了溶酶体,不过,溶酶体的发现带有很大的偶然性。 de Duve 对胰岛素在碳水化合物代谢中的作用很感兴趣, 他打算通过对葡糖-6-磷酸酶在细胞内的定位来研究胰岛素对碳水化合物代谢的影响, 该酶在细胞内的作用是向血液中释放葡萄糖。 在试验中,他们选用酸性磷酸酶作为对照,因为酸性磷酸酶并不参与碳水化合物的代谢。他们先用0.25M的蔗糖对肝组织进行匀浆,然后用差速离心分离细胞组分。实验中发现葡糖-6-磷酸酶总是与微粒体在一起被分离。这一发现非常重要,因为当时人们普遍认为微粒体就是破碎的线粒体囊泡,由于葡糖-6-磷酸酶只与微粒体相关, 并不与线粒体一起被分离, 这就有理由推测, 微粒体是不同于线粒体的细胞结构。

细胞器的结构和功能详解

细胞器的结构和功能(一) 班级 姓名 上课时间:______设计人:赵家铎 【教学目标】 知识目标: 1. 了解细胞质的概念、组成成分; 2. 了解细胞器的种类; 3. 掌握线粒体的分布、化学成分、结构及主要功能; 4. 掌握叶绿体结构、成分和主要功能。 能力目标: 通过学习和比较线粒体和叶绿体,培养学生的比较思维能力。 【重、难点】 1. 线粒体的结构和功能; 2. 叶绿体的结构和功能。 【教学环节】 复习: 1. 原生质分化为那几部分? 2. 细胞膜的结构和功能是什么? 【讲授新课】: 细胞质: 1. 定义: 细胞膜以内细胞核以外的原生质。 2. 组成部分: 定 义:细胞中未分化的部分。 细胞质基质 组成成分:水、无机盐、糖类、脂类、氨基酸、核苷 酸、还有许多酶。 作 用:是活细胞进行新陈代谢的主要场所,为新陈代谢的正 常进行提供所需的物质和环境条件。 细 胞 器:是指悬浮在细胞质基质中的一些具有一定形态和功能的结构; 一. 线粒体: 1. 分布: 动物细胞和植物细胞中都有。 2. 形态: 光学显微镜:粒状、棒状; 电子显微镜: 外膜 内膜 量 说明:内、外膜在化学成分上有显著的差异,如蛋白质的含量、类脂的分布很不相 同 嵴增大了线粒体的内膜面积; 3. 主要成分: 1)含有少量的DNA 24. 分布: 广范地分布的细胞质中。 说明: 1) 在不同的细胞中,在生命活动旺盛的细胞中多;线粒体最多的细胞是肝 脏的肝细胞,肝细胞是体内生命活动最活跃的细胞。 2) 线粒体在细胞中的分布是不均匀的,代谢旺盛的部位,线粒体较多。如 精子的尾部线粒体数目多; 5. 作用: 是进行有氧呼吸的主要场所。 它为生命活动提供95%的能量, 因此人们把它称为细胞内供应能量的“动力工厂”!或“能量转换站” 说明: 1) 2) 由于线粒体内消耗O 2 ,产生CO 2 ,所以它是生物体内二氧化碳浓度最高, 氧气浓度最低的部位。 【练习】: 1、 在肾小管的细胞内发现了大量的线粒体,这说明肾小管和对物质的复吸收作用属于下列那一种方式( ) A. 自由扩散 B. 主动运输 C. 内吞 D. 外排 2、 在成人的心肌细胞中明显比腹肌细胞中较多的细胞器是( ) 提示:从“结构与功能相统一”这一角度来考虑 A .核糖体 B .线粒体 C .内质网 D .高尔基体 二. 叶绿体: 1 分布:

浅谈高尔基体与溶酶体的研究进展

浅谈高尔基体与溶酶体的研究进展 内容摘要:随着科学的突飞猛进,人们对于细胞器的认识越来越深刻,逐渐形成了一致的概念,对于各种细胞器的功能也有的一定的了解,而对于认知较晚、结构复杂、形状多样的细胞器——高尔基体的功能,至今还有许多争议。而溶酶体是动物细胞中重要的细胞器, 其存在的完整性与动物生理病理均密切相关。溶酶体是真核细胞中为单层膜所包围的细胞质结构,内部pH 4~5,含丰富的水解酶,具有细胞内的消化功能。新形成的初级溶酶体经过与多种其他结构反复融合,形成具有多种形态的有膜小泡,并对包裹在其中的分子进行消化。因此,溶酶体具有溶解或消化的功能,为细胞内的消化器官。本文对高尔基体以及溶酶体的研究进展,即已经得到人们的一致认可的观点、研究成果等做了介绍。 关键词:细胞高尔基体功能溶酶体细胞器生命活动 前言:随着科技发展,人们对于细胞的认识越来越深刻,认为细胞是个小小的生命,细胞中构造不同的细胞器时时刻刻进行着精确而复杂的一系列生化活动。对于结构精致、功能专一特化的细胞器,如染色体、线粒体、叶绿体、细胞核、细胞膜、核膜的主要功能,随着研究的深入,人们逐渐形成了比较一致的概念。而对于高尔基体及溶酶体的功能,也已经形成了一些共识。 真核细胞的高尔基体是分泌途径中最重要的细胞器,它既控制细胞内新蛋白质和脂类合成后的修饰、分选和运翰到目的位里等重要过程,又参与细胞外物质进入细胞内的物质运输和信号转导过程。 溶酶体( Lysosome) 于20 世纪50 年代被发现,经过半个世纪的研究发现其在动物大多数门中存在。植物的液泡也可被认为是一种溶酶体。单细胞的原生动物也具有与高等动物十分相似的溶酶体,其功能是作为细胞内的消化管道。只有原核生物没有溶酶体。典型的细胞中含有约数百个溶酶体, 直径介于几百纳米至几个微米之间, 在不同的细胞类型中, 其数量和形态有很大差异, 即使在同一种细胞中, 其大小、形态也不尽相同( 异质性细胞器)。

溶酶体研究进展

溶酶体的研究进展 摘要:溶酶体是动物细胞中重要的细胞器, 其存在的完整性与动物生理病理均密切相关。溶酶体是真核细胞中为单层膜所包围的细胞质结构,内部pH 4~5,含丰富的水解酶,具有细胞内的消化功能。新形成的初级溶酶体经过与多种其他结构反复融合,形成具有多种形态的有膜小泡,并对包裹在其中的分子进行消化。因此,溶酶体具有溶解或消化的功能,为细胞内的消化器官。 关键词:溶酶体; 细胞器; 生命活动 一、前言 溶酶体( Lysosome) 于20 世纪50 年代被发现,经过半个世纪的研究, 发现其在动物大多数门中存在。植物的液泡也可被认为是一种溶酶体。单细胞的原生动物也具有与高等动物十分相似的溶酶体,其功能是作为细胞内的消化管道。只有原核生物没有溶酶体。典型的细胞中含有约数百个溶酶体, 直径介于几百纳米至几个微米之间, 在不同的细胞类型中, 其数量和形态有很大差异, 即使在同一种细胞中, 其大小、形态也不尽相同( 异质性细胞器) 。利用密度梯度离心可分离出较高纯度的溶酶体, 通过对酸性磷酸酶的组织化学染色, 可进行光镜和电镜观察, 目前还可以利用免疫亲和抗体或荧光染料进行原位观察。 二、溶酶体的结构与功能 溶酶体最外层为单层脂膜,7 ~10 nm 厚,其磷脂成分与质膜接近,而与其他细胞器膜组成不同,这可能是由于质膜与溶酶体膜融合的结果。一般认为,溶酶体膜主要是从高尔基体出芽生成,再与细胞内的吞噬泡融合。鞘磷脂可通过胆固醇与膜紧密结合稳定溶酶体,可能是其与胆固醇结合影响了膜的流动性,形成了有利于膜稳定的结构。溶酶体膜与细胞其他膜结构上的不同之处在于溶酶体膜上有V型H+-ATPase,通过水解ATP将质子转运到溶酶体内,以维持其酸性环境;膜上含有多种转运蛋白,可将有待降解的生物大分子转运进溶酶体,并将水解的产物转运出去;膜内表面含有大量糖链,可以防止其被水解酶水解,膜外表面带负电荷,主要为唾液酸,可能与膜融合的识别有关。 溶酶体内部pH比胞液的pH低大约2个单位,该酸性环境不仅有利于维持其水解酶活性, 还有利于催化酶的水解过程。碱性物质可以升高溶酶体内的pH,抑制其对蛋白质的降解。低pH也是多种生物大分子跨溶酶体膜转运的调控因素之一,溶酶体的大多数转运体系都对跨膜pH 梯度敏感。溶酶体的质子漏出(质子梯度改变)会影响其他离子的通透平衡, 进而影响溶酶体的渗透稳定性。此外,V型H+-ATPase抑制剂( Bafilomycin A 或Concanamycin A1) 可引起凋亡,而F型H+-ATPase抑制剂寡霉素( Oligomycin)则无此作用。 溶酶体内Ca2+含量约为400μmol,比胞液的浓度高很多,升高溶酶体内pH可以使其Ca2+浓度下降,因此溶酶体也被认为是细胞内的钙库。GPN通过选择性渗透膨胀,使溶酶体通透,细胞内Ca2+浓度上升了近10倍。该现象是否会对细胞的钙离子信号途径产生影响尚有待进一步研究。此外,溶酶体膜可保证其内部金属离子的富集,这些金属离子如Fe3+产生的自由基可加速溶酶体内物质的降解。溶酶体内含有约60 种水解酶,大多是糖蛋白。可溶性的酶多以阴离子复合形式存在, 结合性酶多以水溶性多聚阳离子复合形式结合于带负电的膜上(在溶酶体内低于pH 5 的环境下),并不水解所结合的膜脂分

1内质网的结构和功能

拓展资料 第一单元第二章第一节 济南三中邱晨(整理) 1.内质网的结构和功能 内质网是由Porter等人在1945年发现的。他们利用电镜在成纤维细胞中观察到一些形态和大小略有不同的网状结构,并集中在内质中,因此将这些结构称为内质网。 内质网是由一层膜形成的囊状、泡状和管状结构,并形成一个连续的网膜系统。内质网通常占细胞的生物膜系统的一半左右,占细胞体积的10%以上。根据内质网上是否附有核糖体,将内质网分为粗面内质网和光面内质网两类。粗面内质网多呈大的扁平膜泡,排列整齐。它是核糖体和内质网共同组成的复合结构,普遍存在于细胞中,特别是合成分泌蛋白的细胞。在结构上,粗面内质网与细胞核的外层膜相连。无核糖体附着的内质网称为光面内质网,通常为小的管状和小的泡状,广泛存在于各种类型的细胞中。光面内质网是脂质合成的重要场所。内质网可通过出芽方式,将合成的蛋白质或脂质转运到高尔基体。 2.高尔基体的结构和功能 高尔基体是意大利科学家高尔基(C.Golgi)在1898年发现的,是普遍存在于真核细胞中的一种细胞器。在电镜下观察到,由一些排列较为整齐的扁平膜囊堆叠在一起,构成了高尔基体的立体结构。扁平膜囊多呈弓形,也有的呈半球形,均由光滑的膜围绕而成。在扁平膜囊外还包括一些小的膜泡。整个高尔基体结构分为形成面和成熟面,来自内质网的蛋白质和脂质从形成面逐渐向成熟面转运。 高尔基体与细胞的分泌功能有关,能够收集和排出内质网所合成的物质,它也是聚集某些酶原的场所,参与糖蛋白和黏多糖的合成。高尔基体还与溶酶体的形成有关,并参与细胞的胞吞和胞吐作用。 3.溶酶体的结构和功能 溶酶体是动物细胞中一种由膜构成的细胞器,呈小球状,外面由一层非渗透性单位膜包被。溶酶体是一种动态结构,它不仅在不同类型细胞中形态大小不同,而且在同一类细胞的不同发育阶段也不相同。溶酶体的主要功能是消化作用,其消化底物的来源有三种途径:一是自体吞噬,吞噬的是细胞内原有物质;二是吞噬体吞噬的有害物质;三是内吞作用吞入的营养物质。溶酶体除了具有吞噬消化作用外,还具有自溶作用,即某些即将老死的细胞靠溶酶体破裂释放出各种水解酶将自身消化。此外,溶酶体的酶也可释放到细胞外,对细胞外基质进行消化。 根据溶酶体处于完成其生理功能的不同阶段,大致可分为初级溶酶体和次级溶酶体。初级溶酶体是刚刚从高尔基体形成的小囊泡,仅含有水解酶类,但无作用底物,而且酶处于非活性状态。次级溶酶体中含有水解酶和相应底物,是一种将要或正在进行消化作用的溶酶体。 4.核糖体的结构和功能 核糖体是一种颗粒状的结构,没有被膜包裹,其直径为25 nm,主要成分是蛋白质与rRNA。蛋白质含量约占40%,rRNA约占60%。核糖体蛋白分子主要分布在核糖体的表面,而rRNA 则位于内部,二者靠非共价键结合在一起。 在真核细胞中很多核糖体附着在内质网的膜表面,成为附着核糖体。在原核细胞的细胞膜内侧也常有附着核糖体。还有些核糖体不附着在膜上,而呈游离状态,分布在细胞质基质内,称为游离核糖体。附着核糖体和游离核糖体所合成的蛋白质种类不同,但核糖体的结构和化学组成是完全相同的。

内质网和高尔基体

一)内质网的作用:进行蛋白质的修饰与加工,主要包括糖基化、羟基化、酰基化、二硫键形成等,其中最主要的是糖基化,几乎所有内质网上合成的蛋白质最终被糖基化。糖基化的作用是:①使蛋白质能够抵抗消化酶的作用;②赋予蛋白质传导信号的功能;③某些蛋白只有在糖基化之后才能正确折叠。 (二)高尔基体的主要功能:将内质网合成的蛋白质进行加工、分类、与包装,然后分门别类地送到细胞特定的部位或分泌到细胞外。 1、蛋白质的糖基化 N-连接的糖链合成起始于内质网,完成与高尔基体。在内质网形成的糖蛋白具有相似的糖链,由Cis面进入高尔基体后,在各膜囊之间的转运过程中,发生了一系列有序的加工和修饰,原来糖链中的大部分甘露糖被切除,但又被多种糖基转移酶依次加上了不同类型的糖分子,形成了结构各异的寡糖链。糖蛋白的空间结构决定了它可以和那一种糖基转移酶结合,发生特定的糖基化修饰。 许多糖蛋白同时具有N-连接的糖链和O-连接的糖链。O-连接的糖基化在高尔基体中进行,通常的一个连接上去的糖单元是N-乙酰半乳糖,连接的部位为Ser、Thr和Hyp的OH基团,然后逐次将糖基转移到上去形成寡糖链,糖的供体同样为核苷糖,如UDP-半乳糖。糖基化的结果使不同的蛋白质打上不同的标记,改变多肽的构象和增加蛋白质的稳定性。 在高尔基体上还可以将一至多个氨基聚糖链通过木糖安装在核心蛋白的丝氨酸残基上,形成蛋白聚糖。这类蛋白有些被分泌到细胞外形成细胞外基质或粘液层,有些锚定在膜上。 2、参与细胞分泌活动 负责对细胞合成的蛋白质进行加工,分类,并运出,其过程是SER上合成蛋白质→进入ER腔→以出芽形成囊泡→进入CGN→在medial Gdgi中加工→在TGN形成囊泡→囊泡与质膜融合、排出。 高尔基体对蛋白质的分类,依据的是蛋白质上的信号肽或信号斑。 3、进行膜的转化功能 高尔基体的膜无论是厚度还是在化学组成上都处于内质网和质膜之间,因此高尔基体在进行着膜转化的功能,在内质网上合成的新膜转移至高尔基体后,经过修饰和加工,形成运输泡与质膜融合,使新形成的膜整合到质膜上。 4、将蛋白水解为活性物质 如将蛋白质N端或C端切除,成为有活性的物质(胰岛素C端)或将含有多个相同氨基序列的前体水解为有活性的多肽,如神经肽。 5、参与形成溶酶体。 6、参与植物细胞壁的形成。 7、合成植物细胞壁中的纤维素和果胶质。 内质网对分泌蛋白有初步加工、运输的作用,高尔基体对分泌蛋白有加工的作用,经高尔基体最后加工后的分泌蛋白才能运出细胞外 递质神经冲动在突触间的传递,是借助于神经递质来完成的。当神经冲动到达轴突末梢时,有些突触小泡突然破裂,并通过突触前膜的张口处将存储的神经递质释放出来。当这种神经递质经过突触间隙后,就迅速作用于突触后膜,并激发突触后神经元内的分子受体(另一种化学物质),从而打开或关掉膜内的某些离子通道,改变了膜的通透性,并引起突触后神经元的电位变化.实现神经兴奋的传递。这种以化学物质为媒介的突触传递,是脑内神经元信号传递的主要方式。 神经递质在使用之后,并未被破坏。它借助离子泵从受体中排出,又回到轴突末梢,重新包装成突触小泡.再重复得到利用。 突触分兴奋性突触和抑制性突触两种。兴奋性突触是指突触前神经元兴奋时,由突触小泡释放出具有兴奋作用的神经递质.如乙酰胆碱、去甲肾上腺素、5羟色胺。这些递质可使突触后神经元产生兴奋。某些障碍乙酷胆碱释放的药物能引起致命性的肌肉瘫痪。例如,南美印第安人使用的箭毒,由于占据了受体的位置,妨碍乙酷胆碱的活动,因而能使人瘫痪。抑制性突触是指突触前神经元兴奋时,由突触小泡联放出具有抑制作用的神经递质,如多巴胺、甘氨酸等。这些递质使突触后膜“超极化”,从而显示抑制性的效应。

高尔基体概述

高尔基体 概述 高尔基体(Golgi apparatus)是由许多扁平的囊泡构成的以分泌为主要功能的细胞器。又称高尔基器或高尔基复合体;在高等植物细胞中称分散高尔基体。最早发现于1855年,1898年由意大利人卡米洛?高尔基(Camillo Golgi,1844-1926)在光学显微镜下研究银盐浸染的猫头鹰神经细胞内观察到了清晰的结构,因此定名为高尔基体。因为这种细胞器的折射率与细胞质基质很相近,所以在活细胞中不易看到。高尔基体从发现至今已有100多年的历史,其中一半以上的时间是进行关于高尔基体的形态甚至是它是否真实存在的争论。细胞学家赋予它几十种不同的名称,也有很多人认为高尔基体是由于固定和染色而产生的人工假像。直到20世纪50年代应用电子显微镜才清晰地看出它的亚显微结构。它不仅存在于动植物细胞中,而且也存在于原生动物和真菌细胞内。 形态与组成 高尔基体是由数个扁平囊泡堆在一起形成的高度有极性的细胞器。常分布于内质网与细胞膜之间,呈弓形或半球形,凸出的一面对着内质网称为形成面(forming face)或顺面(cis face)。凹进的一面对着质膜称为成熟面(mature face)或反面(trans face)。顺面和反面都有一些或大或小的运输小泡,在具有极性的细胞中,高尔基体常大量分布于分泌端的细胞质中。 顺面和反面都有一些或大或小的运输小泡(图6-24),在具有极性的细胞中,高尔基体常大量分布于分泌端的细胞质中(图6-25)。

图6-24高尔基体各部分的名称 图6-25培养的上皮细胞中高尔基体的分布(高尔基体为红色,核为绿色)引自https://www.wendangku.net/doc/c617986404.html,/ 因其看上极像滑面内质网,因此有科学家认为它是由滑面内质网进化而来的。 扁平囊的直径为1μm,由单层膜构成,膜厚6~7nm,中间形成囊腔,周缘多呈泡状,4~8个扁平囊在一起,某些藻类可达一二十个,构成高尔基体的主体,称为高尔基堆(Golgi stack)。 高尔基体膜含有大约60%的蛋白和40%的脂类,具有一些和ER共同的蛋白成分。膜脂中磷脂酰胆碱的含量介于ER和质膜之间,中性脂类主要包括胆固醇,胆固醇酯和甘油三酯。高尔基体中的酶主要有糖基转移酶、磺基-糖基转移酶、氧化还原酶、磷酸酶、蛋白激酶、甘露糖苷酶、转移酶和磷脂酶等不同的类型。 高尔基体由两种膜结构即扁平膜囊和大小不等的液泡组成。其表面看上去极像光面内质网。扁平膜囊是高尔基体最富特征性的结构组分。在一般的动、植物细胞中,3~7个扁平膜囊重叠在一起,略呈弓形。弓形囊泡的凸面称为形成面,或未成熟面;凹面称为分泌面,或成熟面。小液泡散在于扁平膜囊周围,多集中在形成面附近。一般认为小液泡是由临近高尔基体的内质网以芽生方式形成的,起着从内质网到高尔基体运输物质的作用。糙面内质网腔中的蛋白质,经芽生的小泡输送到高尔基体,再从形成面到成熟面的过程中逐步加工。较大的液泡是由扁平膜囊末端或分泌面局部膨胀,然后断离所形成。由于这种液泡内含扁平膜囊的分泌物,所以也称分泌泡。分泌泡逐渐移向细胞表面,与细胞的质膜融合,而后破裂,内含物随之排出。不同细胞中高尔基体的数目和发达程度,既决定于细胞类型、分化程度,也取决于细胞的生理状态。 功能区隔 高尔基体顺面的网络结构(cis Golgi network,CGN),是高尔基体的入口区域,接受

溶酶体详解-过程、分类、意义

溶酶体 溶酶体是分解蛋白质、核酸、多糖等生物大分子的细胞器。溶酶体具单层膜,形状多种多样,是0.025~0.8微米的泡状结构,内含许多水解酶,溶酶体在细胞中的功能,是分解从外界进入到细胞内的物质,也可消化细胞自身的局部细胞质或细胞器,当细胞衰老时,其溶酶体破裂,释放出水解酶,消化整个细胞而使其死亡。 溶酶体(lysosomes)一般为真核细胞中的一种细胞器;为单层膜包被的囊状结构,大小(在电镜下显示多为球形,但存在橄球形)直径约0.025~0.8微米;内含多种水解酶,专为分解各种外源和内源的大分子物质。1955年由比利时学者Cristian de Duve(1917-2013)等人在鼠肝细胞中发现。 中文名溶酶体外文名lysosomes 概述 已发现溶酶体内有60余种酸性水解酶(至2006年),包括蛋白酶、核酸酶、磷酸酶、糖苷酶、脂肪酶、磷酸酯酶及硫酸脂酶等。这些酶控制多种内源性和外源性大分子物质的消化。因此,溶酶体具有溶解或消化的功能,为细胞内的消化器官。 在大鼠肝脏中,从比线粒体分区稍轻的地方得到含有水解酶的颗粒分区,并以可进行水解(lyso)的小体(some)这个意义而命名为溶解体(lysosome;lss)。溶酶体中的酶是酸性磷酸酶、核糖核酸酶、脱氧核糖核酸酶、组织蛋白酶、芳基硫酸醋酶、B-葡糖苷酸酶、乙酰基转移酶等,是在酸性区域具有最适pH的水解酶组。据电子显微镜观察,溶酶体是由6~8纳米厚的单层膜所围着的直径为0.4微米至数微米的颗粒或小泡。由于其形态极其多样化,所以把对酸性磷酸酶活性为阳性的物质鉴定为溶酶体。 特点 溶酶体的酶有3个特点: (1)溶酶体表面高度糖基化,有助于保护自身不被酶水解。膜蛋白多为糖蛋白,溶酶体膜内表面带负电荷,有助于溶酶体中的酶保持游离状态。这对行使正常功能和防止细胞自身被消化有着重要意义; (2)所有水解酶在pH值=5左右时活性最佳,但其周围胞质中pH值=7.2。溶酶体膜内含有一种特殊的转运蛋白,可以利用ATP水解的能量将胞质中的H+(氢离子)泵入溶酶体,以维持其pH值=5;

高尔基体

高尔基体、溶酶体及过氧化物酶体 最早发现于1855年,1889年,Golgi用银染法,在猫头鹰的神经细胞内观察到了清晰的结构,因此定名为高尔基体。20世纪50年代以后才正确认识它的存在和结构。 一、形态与组成 ?是由数个扁平囊泡堆在一起形成的高度有极性的细胞器。 ?常分布于内质网与细胞膜之间,呈弓形或半球形。 ?凸出的一面对着内质网称为形成面或顺面(cis face)。凹进的一面对着质膜称为成熟面或反面(trans face)。顺面和反面都有一些或大或小的运输小泡。 ?扁平囊直径约1m,单层膜构成,中间为囊腔,周缘多呈泡状,4~4~88个扁平囊在一起(某些藻类可达一二十个),构成高尔基体的主体,即高尔基体堆(Golgi stack)。 二、功能区隔

1、高尔基体顺面的网络结构(cis Golgi network,CGN):是高尔基体的入口区域。接受由内质网合成的物质并分类后转入中间膜囊。 2、高尔基体中间膜囊(medial Golgi):多数糖基修饰、糖脂的形成以及与高尔基体有关的糖合成均发生此处。 3、高尔基体反面的网络结构(trans Golgi network,TGN):由反面一侧的囊泡和网管组成,是高尔基体的出口区域,功能是参与蛋白质的分类与包装,最后输出。 4、高尔基体周围还存在大小不等的囊泡 ??高尔基体各部分膜囊具有不同的细胞化学反应: ①嗜锇反应:cis面膜囊被锇酸特异地染色; ②焦磷酸硫胺素酶(TPP酶):可特异显示高尔基体的trans面的1~2层膜囊; ③胞嘧啶单核苷酸酶(CMP酶):可显示靠近trans面上的一些膜囊状和管状结构,CMP酶也是溶酶体的标志酶。

(一轮)细胞的结构和功能练习题答案及解析

细胞的结构和功能练习题答案及解析 A组三年高考真题(2016~2014年) 1.(2016·全国课标卷Ⅰ,1)下列与细胞相关的叙述,正确的是() A.核糖体、溶酶体都是具有膜结构的细胞器 B.酵母菌的细胞核内含有DNA和RNA两类核酸 C.蓝藻细胞的能量来源于其线粒体有氧呼吸过程 D.在叶绿体中可进行CO2的固定但不能合成ATP 2.(2016·全国课标卷Ⅲ,1)下列有关细胞膜的叙述,正确的是() A.细胞膜两侧的离子浓度差是通过自由扩散实现的 B.细胞膜与线粒体膜、核膜中所含蛋白质的功能相同 / C.分泌蛋白分泌到细胞外的过程存在膜脂的流动现象 D.膜中的磷脂分子是由胆固醇、脂肪酸和磷酸组成的 3.(2016·四川卷,2)下列有关细胞共性的叙述,正确的是() A.都具有细胞膜但不一定具有磷脂双分子层 B.都具有细胞核但遗传物质不一定是DNA C.都能进行细胞呼吸但不一定发生在线粒体中 D.都能合成蛋白质但合成场所不一定是核糖体 4.(2016·四川卷,1)叶肉细胞内的下列生理过程,一定在生物膜上进行的是() 的产生生成 C.[H]的消耗的合成 5.(2015·江苏卷,6)下图所示为来自同一人体的4种细胞,下列叙述正确的是() ` [:.....] A.因为来自同一人体,所以各细胞中的DNA含量相同 B.因为各细胞中携带的基因不同,所以形态、功能不同 C.虽然各细胞大小不同,但细胞中含量最多的化合物相同 D.虽然各细胞的生理功能不同,但吸收物质的方式相同 6.(2015·重庆卷,1)比较胚胎干细胞与胰腺腺泡细胞,相同的是() A.线粒体的功能 B.发育的全能性 C.膜蛋白的种类和数量 D.内质网上核糖体的数量 7.(2015·安徽卷,1)血浆中的抗体是浆细胞产生的分泌蛋白。下表列出的抗体肽链合成与抗体加工的场所,正确的是()

细胞器的结构和功能

细胞器的结构和功能 一、分离各种细胞器的方法:差速离心法 例如:在低温条件下,将叶片置于研钵中,加入某种溶液研磨后,将细胞碎片和细胞器用离心法进行分离,第一次分离成沉淀P1(含细胞核和细胞壁碎片)和上层液S1;随后有将S1分离成沉淀P2(含叶绿体)和上层液S2;第三次离心将S2分离成沉淀P3(含线粒体)和上层液S3;最后一次将S3分离成沉淀P4(含核糖体)和上层液体S4。 (1)含DNA最多的部分是。 (2)与光合作用有关的酶存在于部分。 (3)与呼吸作用有关的酶存在于部分。 (4)蛋白质含量最多的部分是。 (5)合成蛋白质的细胞器存在于部分。 解析:本题使用了连环的离心沉降技术,使细胞的各部分逐步分离开。解答问题,应先依题意理清各部分名称及所含的细胞相应部分,再找出各部分的对应功能,并将各部分的关系整理如下: 答案:(1)P1(2)S1、P2(3)S1、S2、P3(4)S1 (5)S1、S2、S3、P4应用练习:研究细胞内各种细胞器的组成成分和功能,需要将这些细胞器分离出来,常用的方法是() A.纸层析法B.沉淀法C.差速离心法D.密度离心法 解析:研究细胞内各种细胞器的组成成分和功能,需要将这些细胞器分离出来,常用的方法是差速离心法。差速离心法是将细胞膜破坏后,形成由各种细胞器和细胞中其他物质组成的匀浆;将匀浆放入离心管,用高速离心机在不同的转速下进行离心,利用不同的离心速度所产生的不同离心力,就能将各种细胞器分离开;而密度离心法应用于DNA半保留复制验证实验中轻链带(离心管上部)、杂合链带(位置居中)和重链带(最靠近离心管底部)在氯化铯溶液中的位置定位。 答案:C 二、各种细胞器的结构和功能

相关文档