文档库 最新最全的文档下载
当前位置:文档库 › 高硫酸盐抗生素废水生物处理

高硫酸盐抗生素废水生物处理

高硫酸盐抗生素废水生物处理
高硫酸盐抗生素废水生物处理

高硫酸盐废水处理方案

营口市近岸海域功能区划

排海标准 海水的主要盐分 (1)盐类组成成分每千克海水中的克数百分比(2)氯化钠 27.2 77.7 (3)氯化镁 3.8 10.9 (4)硫酸镁 1.7 4.9 (5)硫酸钙 1.2 3.6 (6)硫酸钾 0.9 2.5 (7)碳酸钙 0.1 0.3

硫酸盐废水排放执行啥标准? (8)综排标准、污水处理厂排放标准都没有对硫酸根离子进行规定,其实存在高盐度废水的工业很多的,都是对COD等进行适当处理后排放;硫酸根离子对人身的损害小,不过对土地盐碱化的作用比较大,当然海水中的这些离子的浓度很高,不作要求也是有道理的。 (9)但高浓度的SO4-对市政管网及市政污水处理系统有很大的负面影响;所以 (10)CJ343-2010《污水排入城市下水道水质标准》中对硫酸盐的排放浓度有明确的规定,分为ABC三个级别,不能大于 400~600mg/l。 (11)地表水标准在饮用水方面对硫酸盐有规定,为不超过250mg/l。 硫酸盐废水如何处理 (12)硫酸盐废水的处理方法包括物理化学和生物处理两种方法。 物理化学处理的方法主要包括沉淀法、离子交换法、液膜分离等。 化学处理主要是将硫酸盐分离,从一种状态转化成另一种状态,并未彻底去除。化学处理的缺点是耗费大,且容易造成二次污染。 而生物处理方法具有能耗低、剩余污泥少、耐冲击负荷、运行管

理方便等优点,所以含硫酸盐废水一般采用生物处理的方法。(13)矿山废水是我国硫酸盐污染存在的一个主要领域,其主要特征是pH低,有机成分少,硫酸盐浓度相对较高(3000mg/L),含有大量的金属离子。工程上多采用石灰法处理,但这一过程会产生大量的固体废气物,易造成二次污染。利用微生物法处理矿山废水,费用低,实用性强,无二次污染,还可以回收重要的单质硫,是目前最前沿的技术。它利用硫酸盐还原菌(SRB)的代谢作用将SO42-还原为S2-,从而达到去除硫酸盐、提高pH值的目的。 高盐废水处理方法 1、高盐废水常用方法----生化:不行;耐盐菌生化:盐分 高,细菌都盐死了;稀释生化:水费高,排量大,效果差,一个小时一吨的废水需要数十吨的自来水稀释费用更高,行不通; 2 、蒸发高盐废水------传统的蒸发浓缩设备、运行费用高, 需要资源多,需配备冷却锅炉系统; 3 、高盐废水处理技术考察------膜技术除盐:设备价格昂 贵,易堵塞,易污染,且浓液无法处理,不适合(如果你对膜技术的原理和应用做了认真了解,并且明白什么是“废水”,就会真正知道不适合的意义); 4 、电解除盐:含氯化钠的废水电解,无论是离子膜法还是 隔膜法,都因为含有有机物的问题而无法满足电解要求;退一步说,即使可行你能解决极板的问题、安全的问题(你污水站总不

抗生素废水特点及处理研究

摘要:分析了抗生素制药废水的来源及特点,对目前抗生素制药废水处理中应用的各种物化处理、生物处理及多种方法组合的生化处理技术进行了综述,并对各种处理方法的应用特点进行了分析,为该类废水的治理工艺选择提供参考。 关键词:抗生素制药废水物化处理、生物处理、组合生化技术。 抗生素自被人类发现以来,就一直广泛被用于临床医学中,是人类控制感染性疾病,保障身体健康及防治动植物病害的重要化学药物。随着制药行业的发展,抗生素的种类也不断增加,至今已逾百种。我国的抗生素生产业发展迅猛,现已有300多家企业生产占世界原料药产量的20%-30%的70多个品种的抗生素,成为世界上主要的抗生素制剂生产国之一。但是,由于生产工艺及技术的原因,抗生素生产中仍然存在着原料利用率低、提炼纯度低、废水中残留抗菌素含量高等问题势必造成对环境的严重污染,从而制约制药企业的发展。因此,研究各种有效的处理方式显得十分重要。 1 抗生素制药废水的来源和特点 国内生产抗生素主要以粮食、糖蜜等为主要原料,生产工艺包括微生物发酵、过滤、萃取结晶、化学方法提取、精制等过程,产生的废水主要包括提取和精制过程中的发酵废水;溶剂回收过程中的浓废水;生产设备洗涤和地板冲洗用水;废冷却水;发酵罐排放的废发酵母液。废水中污染物的主要成分为:发酵残余营养物(如葡萄糖、蛋白质和无机盐之类)、发酵代谢物、酸、碱、有机溶剂和其它化工原料等。 其特点为: a、难降解有机物浓度高; b、废水水量、水质变化幅度大、规律性差; c、废水中含有抗生素药物和大量胶体物质,DH变化大,带有颜色和气味。 2 抗生素废水的处理方法 与一般工业废水相似,抗生素废水的处理方法也可归纳为以下几种:物化处理方法、生化处理方法以及多种方法的组合生化处理等。 2.1物化处理方法 物化法包括混凝沉淀、吸附法、光降解、焚烧、电解和萃取等等 2 .1.1混凝沉淀法 由于抗生素生产废水成分复杂,有机物含量高,同时还含有少量的残留抗生素,在采用生化处理时,残留抗生素对微生物的强烈抑制作用造成废水处理过程复杂、成本高、效果不稳定。吴敦虎等人采用自制的聚合氯化硫酸铝( P A C S ) 和聚合氯化硫酸铝铁( P A F C S ) 处理大连制药厂废水,一次混凝处理与二次混凝处理CO Dc 去除率在8 0%以上,p H、C O Dc 、S S均可达到国家排放标准。此外,采用含钙离子复合絮凝剂对抗生素制药废水进行混凝处理,C O Dc r 去除率可达71%-77%,s s去除率达87%-89%,可大幅度地削减废水中残留抗生素的抑菌效力。 2.1.2 吸附法 吸附法可作为高浓度有机废水经生物处理后的深度处理。张满生等利用两级炉渣吸附和三级活性炭吸附对青海制药集团原料药生产废水进行深度处理,当进水CODcr为1145 mg/L 时,三级吸附后CODcr可降至300 mg/L以下。该方法投资小,工艺简单操作方便,易管理。 2.1.3光降解法 李灵芝,李建渠等以TiOSO4为原料,采取SAS工艺制备了TiO2和掺铁的光催化剂,对某制药废水( CODcr=1309mg/L)进行了降解实验。研究了光源、煅烧温度、掺铁比例、p H值、附加条件对废水降解率的影响。结果表明:700℃制备的Ti02 )在紫外光和太阳光下的降解率分别77%和70%。掺铁比例为0.5%的TiO2对废水的降解率为81%。p H=2的废水降解

浅谈关于高盐废水处理

1、高盐一般是指高于1%的盐度,即盐度大于10g/L. 当水中含盐量在3%时候,微生物的增长会明显受到抑制。 一般控制Cl离子在1200mg/L以下,最好低于400~600mg/L。 2、对于活性污泥法和生物膜法,如果不考虑培养专性的嗜盐菌,盐对生物繁殖的抑止浓度是多少?耐冲击范围又大概在多少? 含盐污水的生物处理按照微生物的来源可以分两种处理技术,一种就是采用淡水微生物进行盐度驯化,另一种是接种筛选嗜盐微生物。盐对传统淡水微生物的抑制程度是不同的,换句话说就是不同功能的微生物的耐盐范围是不同的。现在研究的结果很有限,尤其对氮磷去除的研究少之又少。安全的范围对于有机物降解的异氧菌盐度应该低于15g/L.除磷盐度不能超过6g/L,脱氮盐度应该低于15g/l.但是强调一点这些盐度的范围以处理工艺、水质不同有很大不同。对好氧异氧菌的盐度冲击范围适盐度驯化系统的不同而不同。未驯化淡水处理系统大于在0~20g/L之间。具体见我在《中国给水排水》发的文章。 2、嗜盐菌(不知是否有)的嗜盐机理能否赐教? 一般有光能质子泵原理和吸钾排钠原理。 3、工艺 高含盐废水生物处理流程的选择高含盐废水生物处理流程与普通生物处理流程基本一样,主要包括调节池、曝气池、二沉池、污泥回流、剩余污泥脱水、投加营养盐等。(1)调节池。含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。 (2)曝气池。根据废水中含盐类型不同,曝气池选择也应有所不同。生物处理含CaCL2较高的废水,应采用传统曝气方式。钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。曝气强度也应大于普通生物处理,在10m3/(m2•h)左右,或用中心管来增加提升和搅拌能力。高含盐情况下氧的传递速度增加对高污泥浓度有利,只要菌胶团不解体,既使产生丝状菌,污泥也不会上浮流失。含磷营养盐应注意投加位置,以免产生的磷酸钙盐沉淀不仅影响使用效果,而且产生结垢易堵塞管线。在用SBR工艺处理高盐废水时,由于SBR是瀑气,沉淀一体,所以在设计的时候要充分考虑到沉淀时间,尤其是在处理含高浓度的钠盐的废水,含钠盐的废水沉淀效果差,故沉淀时间应该相应延长,再就是在为了减少滗水器对沉淀的污泥的干扰,滗水的深度也应该相应减小。在处理盐度波动较大的废水的时候,仍然需要设置调节池。 生物膜工艺是处理高盐度废水的理想工艺,如瀑气生物滤池工艺,接触氧化工艺曝气等,在处理钙盐含量高的废水时,要注意填料或者滤料的选择,在瀑气生物滤池中要设计较大的反冲洗强度和时间。接触氧化池的填料也宜采用空隙率较高的类型,填料的安装要考虑到易于拆卸和冲洗,防止废水处理过程中形成的碳酸钙堵塞填料。含NaCl较高的废水生物处理时,污泥灰分含量低于含CaCL2废水,而含盐废水密度大,在污泥膨胀或曝气池受到冲击污泥解体时,菌胶团比含CaCL2废水容易上浮流失,因此含NaCl较高的废水生物处理最好采用生物膜法。

抗生素污水处理

抗生素生产废水治理技术 抗生素生产废水是一类成分复杂、色度高、生物毒性大、含多种抑制物质的难降解高浓度有机废水。 生物制药行业的废水处理后必须满足以下要求:CO住300mg/L, BOD侈 150mg/L, NH3-N K 25mg/L, SSc 200mg/L 抗生素废水的处理方法:物化处理、厌氧处理和好氧处理 1物化处理 目前用于抗生素废水处理的物化方法主要有以下几种:混凝-沉淀、吸附、 气浮、焚烧法和反渗透等,各种方法的处理效果见表1。 物化方法的选择应根据各类抗生素废水特点及试验结果而定。 表1物化方法处埠讥半秦废术效果 生物处理工艺主要有好氧生物处理、厌氧生物处理及厌氧-好氧组合处理工 -f-p 乙。 2.1 好氧生物处理工艺 表2汇总了国内外部分抗生素生产废水好氧生物处理工艺及其主要运行参数。由表2可知,抗生素生产废水的好氧生物处理工艺主要是早期传统活性污泥法和70年代开发的革新替代工艺。但是,由于抗生素生产废水属于高浓度

有机废水,常规好氧工艺活性污泥法难以承受COD浓度1Og/L以上的废水, 需对原废水进行大量稀释,因此,清水、动力消耗很大,导致处理成本很高。 2.2 厌氧生物处理工艺 与好氧处理相比,厌氧法在处理高浓度有机废水方面通常具有以下优点: (1)有机物负荷高;(2)污泥产率低,产生的生物污泥易于脱水;(3) 营养物需要量少;(4)不需曝气,能耗低;(5)可以产生沼气、回收能源;(6)对水温的适宜范围较广。 抗生素废水厌氧处理中常用工艺有升流式厌氧污泥床(UASB)、厌氧流化 床、厌氧折流板反应器等,处理负荷及效果见表3。 厌氧生物工艺处理抗生素工业废水的试验研究较多而实际工程应用较少。 高浓度的抗生素有机废水经厌氧处理后,出水COD仍达1000?4000mg/L,不能直接外排,需要再经好氧处理,以保证出水达标排放。但由于厌氧段采用甲 烷化,对操作和运行条件要求严格,而且原水中大量易于降解的物质(如有机酸等)在厌氧生物处理系统中被甲烷化,剩余的主要是难降解或厌氧消化的剩余产物,因此,后需的好氧处理尽管负荷较低,但是处理效率也很低。 2.3 厌氧-好氧组合工艺 厌氧处理利用高效厌氧工艺容积负荷高、CODfc除效率高、耐冲击负荷的优点,减少稀释水量并且能较大幅度地削减COD以降低基建、设备投资和运行费用,并回收沼气。厌氧段还有脱色作用,这对于高色度抗生素废水的处理意义较大。 好氧处理目的是保证厌氧出水经处理后达标排放。从工程应用角度应优 先采用生物接触氧化和SBR工艺(序批式活性污泥法)。 表4汇总了国内外部分抗生素生产废水厌氧-好氧生物处理工艺及其主要运行参数。

高盐废水处理方法及案例

高盐废水是指含盐量超过总含盐量1%的含盐废水,包括高盐生活废水和高盐工业废水,其主要来源于直接利用海水的工业生产、生活污水和食品加工厂、制药厂、化工厂等,若未经处理直接排放,势必会对水体生物、生活饮用水和工农业生产用水产生很大危害。 为了使高盐废水达标排放,目前常用MVR 蒸发或三效蒸发器达到目的,具体表现为:含盐废水进入蒸发装置,经过蒸发冷凝的浓缩结晶过程,分离为淡化水和浓缩晶浆废液,无机盐和部分有机物可结晶分离出来作为固废处理,淡化水可返回生产系统替代软化水加以利用。但实际应用中由于高盐废水中的有机物含量高,经常出现蒸发器堵塞、蒸盐效率低、蒸盐颜色深等问题,给企业的稳定运行造成困扰。 高盐废水吸附工艺,对蒸盐前的废水进行预处理,将废水中绝大部分的有机物吸附去除,提高后续蒸发系统运行的稳定性,并降低蒸盐的色度,固盐由危废变为固废,减少企业生产的运行费用,给高盐废水治理提供了一个有效的解决办法。 将废水预先过滤去除其中的悬浮和颗粒物质,然后进入吸附塔吸附,吸附塔中填充的特种吸附材料能将废水中的有机物吸附在材料表面,使出水COD 明显减低。吸附饱和后,再利用特定的脱附剂对吸附材料进行脱附处理,使吸附材料得以再生,如此不断循环进行。 吸附法的优点 1.深度去除废水中的有机物,降低吸附出水的COD 及色度,可保证出水蒸盐为白色,提高后续蒸发系统的稳定性; 吸附塔 过滤器 高盐废水 后续蒸发 氧化后返回生化系统 脱附液

2.采用特种改性的吸附材料,吸附容量大,设备投资少,运行费用低; 3.工艺流程简单,可实现全程自动化操作,操作维护方便。 4.可实现多层布置,占地面积小,安装周期短。 案例介绍 本新建高盐废水吸附处理设施,总设计废水处理规模为100m3/d,废水为厂内混合高盐废水,废水颜色深,蒸发为棕色,固废处理费用高。海普对该废水进行了定制化的工艺设计,废水设计指标如下表。 表1 废水设计参数表 指标水量(m3/d)颜色(mg/L) 吸附进水100 棕红色 吸附出水~100 淡黄色 出水蒸盐白色 图2 原水(左)、出水(右)外观图

硫酸盐废水处理方法比较

硫酸盐废水处理方法比较 ℃,反应时间60 min,溶液 pH 值 11、0, SO42-与 Al3+的物质的量比为1、1?1、0,且各因素影响程度由大至小的顺序为:溶液 pH 值、铝盐加入量、反应时间;在最佳工艺条件下,硫酸根离子质量浓度由1720 mg/L降至100 mg/L 以下,达到生活饮用水卫生标准。沉淀物XRD检测结果表明:其主要物相为钙矾石(Ca6Al2(SO4)3(OH)1226H2O)。絮凝沉淀石灰-聚合氯化铝混凝法由于受石灰自身溶度积的影响对硫酸根的去除率不高; 石灰-氯化铝化学沉淀法可使硫酸根的去除率达到95%以上, 但是易引入杂质离子。吸附法此类方法受溶液pH 值、操作温度等因素影响较大,且成本较高,尚处于实验研究阶段。焙烧水滑石吸附、柱撑蒙脱石吸附法和针铁矿吸附法,成本低, 对水中SO42-具有良好的吸附性能,比较有前景,但这两种方法还处于实验室研究阶段,有待于进一步研究。冷冻法该法利用硫酸盐的溶解度随着温度的变化而变化的特点而实现分离的目的。该法优点是可得副产品硫酸盐,去除效果较好。其缺点是投资大,能耗相当大,目前工业上应用很少见。生物法好氧生物法高浓度硫酸盐的废水中有机物浓度也很高,好氧法处理该类废水需要大量的自来水稀释以及消耗大量的电能, 因此该方法由于很不经济而在生产中较少被采用。厌氧生物法硫酸盐还原菌(SRB)与产甲烷菌(MPB)竞争共同底物(乙酸和H2)产生初级抑制作用;硫酸盐还原产

生的H2S 对MPB 和其他厌氧菌产生次级抑制作用。同时, H2S对沼气的产量和利用也造成严重影响。处理高浓度硫酸盐废水的工艺存在启动时间较长、处理速度慢、效率低、有机物消耗量大等问题。

硫酸盐的去除原理及方法

硫酸盐的去除原理及方法 1、硫酸盐在污水处理中的危害: 厌氧过程中的硫酸盐还原菌竞争产甲烷菌所需要的二氧化碳,影响甲烷的产生,同时硫酸盐还原菌不仅具有转化有机酸和乙酸的功能,同时,将硫酸盐还原为硫化物,对产甲烷菌造成危害。 工业有机废水中由于硫酸盐的存在而产生的主要问题包括: 含硫酸盐的工业废水,如果不经处理就直接被排入水体中,会产生具有腐蚀性和恶臭味的硫化氢气体,不仅如此,硫化氢还具较强的毒性,会直接危害人体健康和影响生态平衡。 含高浓度硫酸盐的工业有机废水,在应用厌氧处理工艺时,高浓度的硫酸盐对产甲烷菌(MPB)产生强烈的抑制,将会致使消化过程难以进行。 硫酸盐的还原是在SRB(硫酸盐还原菌)的作用下完成。 SRB是属专性厌氧菌,属于在厌氧消化过程起主要作用的4种微生物种群中的产氢产乙酸菌。 在不存在硫酸盐的厌氧环境中,SRB则呈现产氢产乙酸菌的功能;当厌氧消化中存在硫酸盐时,则SRB不仅具有了产氢产乙酸菌转化有机酸和乙酸的功能,而且具有还原硫酸盐为H2S的特性。 存在硫酸盐的厌氧消化过程中,本可能被MPB(产甲烷菌)利用还原二氧化碳生成甲烷的一切分子氢均被SRB所竞争利用,从而使还原二氧化碳生成甲烷的反应受阻。硫酸盐在SRB的作用下还原成硫化物,是污泥驯化的过程,硫化物浓度超过100mg/L时,对甲烷菌细胞的功能产生直接抑制作用。 相关的实验研究和工程实践表明,当原水SO42-含量≥400mg/L时就有可能转化为较高浓度的硫化物,并且是不可避免的。 2、硫酸盐的去除和转化: 利用水解酸化池的厌氧环境,硫酸盐还原菌 工艺的流程如下图所示: 微电解反应器管道混合器曝气池沉淀池水解池 该工艺是将水解池和微电解组合,微电解反应器通过微电解反应将产生大量的Fe2+,水解池中的硫酸盐还原菌(SRB)将硫酸盐还原成硫化物,含有大量硫化

抗生素类废水处理方法的研究

抗生素类废水处理方法的研究 摘要:近年来,随着我国经济的持续高速发展,环境污染问题日益成为了国民聚焦的热点问题。在我国诸多环境污染问题当中,最为凸显的是水污染问题。抗生素类废水有着成分复杂、COD浓度高、难生物降解、污染性强等特点。抗生素进入环境会对生物造成深远的影响,如何去除抗生素的残留引起许多国家的关注。抗生素在环境中主要发生物理化学降解和生物降解,生物降解过程具有抗性的微生物菌株发挥主要的功效,因此近些年利用微生物技术处理抗生素残留污染成为研究热点。本文对抗生素废水的处理方法尤其是对具有抗生素降解功能的微生物资源和利用复合菌系处理抗生素残留的生物技术进行概括总结,并对微生物处理抗生素技术的不足和发展方向进行展望。 关键词:抗生素;来源;危害;处理方法;微生物 前言 抗生素是一类能杀死或抑制微生物生长的药物,通常是指由细菌、真菌和放线菌等微生物在新陈代谢活动中形成的,兼备抗病原体和活性组分的物质[1-3]。数十年来已被大量应用。抗生素主要包括β-内酰胺类、大环内酯类、四环素类、链霉素和氯霉素等五大类,能在不同程度上起到抑菌、抗菌和杀菌作用,以用途来分,还可分为人用和兽用两种[4]。当前常用的抗生素大多是从微生物培养液中提取出来的,也有部分是利用化学手段进行人工合成的。 抗生素类药物主要用于治疗人和动物的各种疾病,同时也长期添加于动物饲料中以预防疾病和促进动物生长,投加在农业产品中催熟农产品,此类抗生素药物大部分经由人类和动物排泄物,农业和污水排放以原药或者代谢产物的形式进入环境[5,6]。由于排泄物中大多数残留抗生素的半衰期比较长,部分被吸附在底泥等固相环境中,而小易被固相吸附的部分,则容易富集在水生动物体内,对生物体产生慢性毒性效应[7]。抗生素在国内外的水环境中均有检出,甚至在部分生物体内也有检出,其对生态环境以及对人类健康的潜在危害,已经成为人们日益关注的环境污染问题。

高含盐废水处理方法

高含盐废水处理方法 生物处理是目前废水处理最常用的方法之一,它具有应用范围广、适应性强等特点。化工废水如染料、农药、医药中间体等含盐较高的废水则给生物处理带来一定的难度。这类废水含盐较高,污染严重,必须处理才能排放。况且,此类废水成分复杂,不具备回收价值,采用其他处理方法成本较高,因此生物处理仍是首选的方法。无机盐类在微生物生长过程中起着促进酶反应,维持膜平衡和调节渗透压的重要作用。但盐浓度过高,会对微生物的生长产生抑制作用,主要抑制原因在于①盐浓度过高时渗透压高,使微生物细胞脱水引起细胞原生质分离; ②高含盐情况下因盐析作用而使脱氢酶活性降低;③高氯离子浓度对细菌有毒害作用;④由水的密度增加,活性污泥容易上浮流失。为此,高含盐废水的生物处理需要进行稀释,通常在低浓度下(盐浓度小于1%)运行,造成水资源的浪费,处理设施庞大、投资增加,运行费用提高。随着水资源的日趋紧张,国家出台的保护水资源各项法规和收费的实施,给高含盐废水处理的企业带来了负担。 许多研究表明,生物方法可以处理高含盐废水。但由低盐到高盐,微生物有一个适应期。从淡水环境到高盐环境时,由于盐的变化可能引起微生物代谢途径的改变,菌种选择的结果使适应高盐的菌种较少,只有当微生物经培养驯化后,才能产生适应高盐的菌种,以耐受一定的盐浓度。 我们曾对含CaCl2和NaCl的废水生物处理进行过专门研究,取得了较好的结果,以下介绍高含盐废水生物处理的研究和经验。 1 污泥的来源与驯化 盐1%以下能很好生长的微生物为非好盐微生物,而在1%~2%以上均能生存增殖的微生物为耐盐微生物。高含盐废水生物处理关键是要驯化出耐盐微生物。 我们分别选用普通污水处理厂的活性污泥和高含盐废水排放沟边土壤中耐盐微生物进行试验将普通污泥倒入含CaCl21%左右的曝气池中,经过半个月驯化,镜检微生物菌胶团结 构紧密,原生动物有钟虫、豆形虫、浮游虫等,多而活跃。经逐步驯化至耐盐为3%。将含盐废水排放的沟边土壤与废水混合搅拌后,取悬浮液倒入曝气池,镜检菌胶团结构良好,色泽透明有大量的豆形虫,非常活跃。用实际工业废水在不同盐浓度下经过3个月试验,两种方法培养的微生物试验结果分别见表1和表2。

磷酸铁企业高硫酸盐废水处理方案

1、企业废水概况 磷酸铁,又名磷酸高铁、正磷酸铁,分子式为FePO 4 ,是一种白色、灰白色单斜晶体粉末。是铁盐溶液和磷酸钠作用的盐,其中的铁为正三价。其主要用途在于制造磷酸铁锂电池材料、催化剂及陶瓷等。 该企业为磷酸铁生产企业(年产10000吨磷酸铁?),位于沿海城市营口市,还没开始生产,生产废水规模预计为3000吨/日,废水中硫酸根浓度预计为13000~28000mg/L,附近有生活污水处理设施规模为2000吨/日。请根据上述材料设计该企业生产废水的处理处置方案,使其满足相关要求后排放或回用。 2、企业废水特性分析 磷酸铁废水是电池正极材料磷酸铁生产过程中产生的高浓度硫酸根、氨氮、 总磷的酸性无机废水,磷酸铁废水中的污染物按离子表示为NH 4+、SO 4 2-、PO 4 3-。 《城镇污水处理厂污染物排放标准(GB18918—2002)》,《污水综合排放标准(GB8978—1996)》对氨氮、总磷的排放有严格的规定,但没有对硫酸根离子进行规定,因为硫酸盐对人身的损害小,海水中的这些离子的浓度也很高。但是高硫酸盐排入沟渠对土地盐碱化的作用比较大;排入管网则对市政管网及市政污水处理系统有很大的负面影响。所以《污水排入城市下水道水质标准》(CJ343-2010)中对硫酸盐的排放浓度有明确的规定,分为ABC三个级别,不能大于400~600mg/l。《地表水环境质量标准(GB3838—2002)》在饮用水方面对硫酸盐也有规定,为不超过250mg/l。 3、企业废水处理方案 3.1石灰法(简单处理) 目前的处理方法多为通过投加石灰去除总磷,在不考虑总盐超标的情况下直

接排放,但产生大量的污泥难于处理,同时对周围的水体环境造成较大影响。 3.2磷酸铵镁法(不考虑回用) 也有利用MAP 法(磷酸铵镁),通过投加镁剂同时除去氨氮与总磷,多余的氨氮利用汽提回收硫铵,然后排放(此时盐超标),或进一步浓缩、蒸发,这样可以解决磷酸铁废水的污染问题,但其工艺流程长,调pH 要投加大量的碱,反应后还要加回调,运行费用高,限制了它的推广应用。 3.3膜法+多效蒸发组合工艺(考虑回用) 利用管式滤膜装置、一级反渗透装置、二级反渗透装置、浓水反渗透装置、蒸发结晶装置对磷酸铁废水进行处理回用。 处理前磷酸铁一洗与二洗水的NH 4+:400~2000mg/L , PO 43-:400~1600mg/L ,SO 42-:3000~10000mg/L ,TDS :3800~13600mg/L ,利用管式滤膜装置、一级反渗透装置、二级反渗透装置、浓水反渗透装置进行浓缩分离,处理后达到生产纯水要求的NH 4+<1mg/L , PO 43-<0.5mg/L , SO 42-<2.5mg/L ,TDS<4mg/L ,各离子的去除率均达到99.9%,直接回到生产纯水回用系统,节约了大量的水资源。 同时得到一洗、二洗水浓缩液的NH 4+:8000~24600mg/L ,PO 43-:8000~20000mg/L ,SO 42:60000~127600mg/L ,TDS :136000~172200mg/L ;而磷酸铁合成与老化母液的NH 4+:6000~22000mg/L ,PO 43-:8000~30000mg/L ,SO 42:16000~48000mg/L ,TDS :30000~100000mg/L ,一洗、二洗水的浓缩液与合成、老化母液混合后再进行蒸发结晶处理,生成高效的硫按、磷铵肥料,蒸发产生的蒸馏水也可回用于生产(如下图)。在解决磷酸铁废水污染问题的同时回用了水资源,又回收了水中的有效成分,取得较好的社会与经济效益。 预计总投资1500万元,吨水投资5000元,吨水运行成本10元左右。

高浓度抗生素化学制药废水的处理

高浓度抗生素化学制药废水的处理* 卓世孔1程汉林白明超 (广州环发经贸发展公司,广州510180) 摘要采用微电解-厌氧水解-生物铁法-混凝串联工艺处理头孢类抗生素化学制药高浓度有机废水,结果表明,当微电解、厌氧水解和生物铁法水力停留时间分别为4、24和6 h,进水COD Cr 4000~4500 mg/L,BOD5 800~1200 mg/L,出水可达地方排放标准。 关键词抗生素微电解厌氧水解生物铁混凝 Treatment of high concentration organic wastewater from antibiotic pharmacy industry Zhuo Shikong, Cheng Hanlin, Bai Mingchao. Guangzhou Huanfa Economy Trade Development Company, Guangdong, 510180 Abstract: High concentration organic wastewater from cephalosporin antibiotic pharmacy industry was treated by the “micro electrolysis-anaerobic hydrolysis-biological iron-coagulating” technology. The result indicates that the effluent COD Cr and BOD5are below the first grade standards of the local wastewater drainage in the second period, when the COD Cr and BOD5 load is kept at 4000~4500 mg/L and 800~1200 mg/L, and the HRT of micro-electrolysis, anaerobic hydrolysis and biological iron is 4 h, 24 h and 6 h, respectively. Keywords: Antibiotic Micro-electrolysis Anaerobic hydrolysis Biological iron Coagulating 抗生素化学制药废水是一类浓度高、色度高、含难生物降解物和微生物生长抑制剂的高浓度有机废水,是制药废水中最难处理的废水之一,是我国制药行业废水治理的重点。目前国内外抗生素工业废水处理技术研究时有报导,但实际应用的治理技术不多且不成熟[1],而专门针对头孢类抗生素化学制药废水的处理研究未见报导。本文采用微电解-厌氧水解-生物铁法-混凝工艺, 对某制药厂头孢类抗生素化学制药高浓度有机废水进行了试验研究。 1 材料与方法 1.1 废水来源与水质特性 试验用废水取自某化学制药厂集水池,该厂生产头孢类抗生素原料药,如头孢硫脒、头孢曲松钠、头孢哌酮钠、头孢噻肟钠、头孢他啶等,每日废水排放量数百吨。废水组成复杂,除含有抗生素残留物、抗生素生产中间体、未反应的原料外,还含有少量合成过程中使用的有机溶剂,如乙醇、丙酮、二氯甲烷、吡啶、噻吩等。废水水质情况如表1所示。 表1 废水水质情况 1第一作者:卓世孔,男,1956年出生,工程师,主要从事环境污染治理和研究。 * 广州市重点污染源防治项目(穗环计[2002]126号)

高浓度硫酸盐有机废水的生化处理方式小结---苗雨

高浓度硫酸盐有机废水的生化处理方式小结 1.硫酸盐废水来源、危害及处理对策 含硫酸盐的废水主要有采矿废水,制药废水,制革废水,造纸废水,食品加工废水,金属加工废水,化工废水等。随着工业的飞速发展,硫酸盐废水的排放量越来越大。大量高浓硫酸盐有机废水排入环境水体中会导致水体酸化,影响水生生物的生长;污染土壤,导致土壤生态系统失衡;还原产生的有毒有害废气H2S会污染大气环境,因此,专家学者对硫酸盐废水的研究由来已久[1]。综合各种研究成果来看,生化法具有成本低,能耗少,无污染等优点,还可以通过驯化和强化功能细菌,提高处理效率,因此,生化法是厌处理高浓硫酸盐有机废水的首选工艺。但是,硫酸盐废水还包括无机性硫酸盐废水和难生物降解的有机物性硫酸盐废水,这其中还含有多种重金属离子,氮磷等元素,成分非常复杂,因此对生化处理工艺提出了更高的要求[2]。 2.硫酸盐还原菌与产甲烷菌的竞争机制与硫化物毒性抑制研究 废水中的硫元素主要以有机硫、SO42-、和S2-形式存在,其中SO42-是主要形式。废水中的SO42-的生物处理一般包括还原反应和氧化反应两个过程,分别有硫酸盐还原菌(SRB)和硫化物氧化菌(SOB)完成。在厌氧条件下,SO42-在SRB的作用下被还原为硫化物,然后在SOB作用下将硫化物氧化为单质硫,再通过剩余污泥进行单质硫回收。在厌氧过程中,系统中同时存在的产甲烷菌(MPB)和硫酸盐还原菌(SRB)的基质竞争以及硫化物对MPB 和SRB的毒害作用,都会使厌氧降解过程受到抑制。 2.1竞争抑制理论 厌氧发酵过程中产生的H2和乙酸是SRB和MPB的共同底物,但是SRB对氧化还原电位(ORP)要求小于-100mV,而MPB则要求小于-330mv,因此硫酸盐还原反应总是优先发生。Nielson 等[3]通过研究发现,SRB具有较大的比乙酸消耗速率和较低的半速度常数,因

养殖废水处理方案

养殖场废水处理方案养殖场废水如何处理 养殖废水主要包括动物尿液、部分粪便和养殖栏冲洗水,水中富含氮、磷、有机物、高悬浮物,是一种高浓度有机废水。养殖场污染物的污染成分极为复杂,见表2-2。主要包括:氮、磷等水体富营养化物质;氨气、硫化氢、甲烷、甲醇、甲胺、二甲基硫醚等恶臭气体;铁、锌、锰、钴、碘等矿物元素;铜、砷、汞、硒等重金属物质;抗生素、抗氧化剂、激素等兽药残留物;大肠杆菌、炭疽、禽流感、五号病、布氏杆菌病、结核病等人畜共患传染病病菌。下面由台江环保为你推荐养殖场废水处理方案,了解下养殖场废水该如何处理。 养殖场污水处理的模式演变 第一代处理工艺:厌氧-还田模式 粪便污水还田作肥料是一种传统的、最经济有效的处置方法,可以使粪尿污水不排向外界环境,达到零排放。分散户养方式的粪污处理均是采用这种方法。这种模式适用于远离城市,经济比较落后,土地宽广的规模化猪场。养殖场周围必须要有足够的农田消纳粪便污水。要求养殖规模不大,当地劳动力价格低,大量使用人工清粪,冲洗水量少。 在美国,粪污还田前一般不经过专门的厌氧消化装置进行沼气发酵,而是贮存一定时间后直接灌田。由于担心传播畜禽疾病和人畜共患病,畜禽粪便废水经过生物处理之后再适度地应用于农田已成为新趋势。德国、丹麦、奥地利等欧洲国家则是将粪便污水经过中温或高温厌氧消化后再进行还田利用,这样可以达到寄生虫卵和病原菌的无害化。 国内一般采用厌氧消化后再还田利用,这样可以避免有机物浓度过高引起烂根和烧苗,同时,经过厌氧发酵,可以回收能源—甲烷,并且能杀灭部分寄生虫卵和病原微生物。 第二代处理工艺:厌氧-还田模式 养殖废水经过厌氧消化处理后,再采用氧化塘、土地处理系统或人工湿地等自然处理系统对厌氧消化液进行后处理。适用于离城市较远,经济欠发达,气温较高,土地宽广,地价较低、有滩涂、荒地、林地或低洼地可作废水自然处理系统的地区。规模化猪场规模一般不能太大,对于猪场而言,一般年出栏在5万头以下为宜,以人工清粪为主,水冲为辅,冲洗水量中等。 第三代处理工艺:厌氧-好氧处理模式(工业化处理模式) 厌氧-好氧处理模式的养殖场水处理系统由预处理、厌氧处理、好氧处理、后处理、污泥处理及沼气净化、贮存与利用等部分组成。需要较为复杂的机械设备和要求较高的构筑物,其设计、运转均需要受过较高教育的技术人员来执行。 厌氧-好氧处理模式适用于地处大城市近郊,经济发达,土地紧张,没有足够的农田消纳规模化猪场粪污的地区。采用这种模式的养殖场规模较大,一般出栏在5万头规模以上,当地劳动力价格昂贵,主要使用水冲清粪,冲洗水量大。 第四代处理工艺:厌氧-好氧-膜生物反应器工艺

制药厂抗生素废水处理工艺设计

制药厂抗生素废水处理工艺设计 摘要 本次毕业设计以制药厂抗生素废水为主要水源,设计抗生素废水的主要处理工艺。该废水生物化学需氧量高,而且有高浓度的BOD和COD,有机物,以及悬浮固体(SS)。在资料分析基础上,比较了现在的多种抗生素废水处理,最终确定以水解酸化+两级生物处理(AB法)处理抗生素废水。该设计工艺中包括了相关处理构筑物设计计算,通过设计,使该厂废水处理水达到国家排放标准。 关键词:抗生素废水、水解酸化、AB法、COD、BOD

Pharmaceutical antibiotic wastewater treatment process design Abstract The graduation design with pharmaceutical factory antibiotic wastewater as the main source of antibiotic wastewater, design the main treatment process. The wastewater biological chemical oxygen demand (COD) high, and have high levels of BOD and COD, organic matter, and suspended solids (SS). Based on the data analysis, compares the variety of antibiotic wastewater treatment now, and finally determined that two levels by hydrolysis acidification + biological treatment (AB method) deal with antibiotic wastewater. This design process includes correlation processing structures design calculation, through the design, make the factory wastewater treatment water reach national emission standard. Key words:pharmary sewage, sewage treatment,difflunce-acidificatio, Adsorption-Biodegratio n、BOD、COD

高硫酸盐废水处理

高硫酸盐废水处理 一.工业废水中硫酸盐的来源 高含硫酸根废水,按照其排放源可以分为两类:一是含硫酸盐的采矿废水,二是一些发酵、制药,轻工行业的排水。 我国的矿山资源中多数是煤矿、硫铁矿和多金属硫化矿,在采矿过程中,矿石中含有的硫及硫化物被氧化,形成硫酸盐。矿山废水中SO42-浓度一般大于1000mg/L,但由于废水中有机物含量低,不宜用生化法来处理。 另一类含有的硫酸根工业废水,常见的有:味精废水、石油精炼酸性废水、食用油生产废水、制药废水、印染废水、制糖废水、糖蜜废水、造纸和制浆废水。其SO42-主要来自于生产过程中加入的硫酸、亚硫酸及其盐类的辅助原料。此类废水在含有高浓度SO42-的同时,一般还含有较高的有机质。一般需要用生化法进行处理,并常常用到厌氧生化处理工艺。 二.含硫酸盐废水厌氧生化处理的问题 当含硫酸盐有机废水进行厌氧生物处理时,随着有机物降解,往往伴随着硫酸盐还原作用发生。这个过程中,SO42-作为最终电子受体,参加有机物的分解代谢。小部分被还原的硫用于合成微生物细胞组分(称为同化硫酸盐还原作用),大部分则以H2S形式释放到细胞体外(称为异化硫酸盐还原

作用)。同化硫酸盐还原作用可由多种微生物引起,而异化硫酸盐还原作用则是专一性的由硫酸盐还原菌(SRB)引起的。一般在厌氧生化处理系统中,由SO42-还原所产生的H2S 可能引起以下问题: 【1】废水中的有机物一部分要消耗于SO42-的还原,因而不能转化为CH4,减少了厌氧反应器的甲烷产量,从而降低了其与好氧系统相比的优势。 【2】游离的H2S对厌氧系统中的产甲烷菌、产酸菌甚至硫酸盐还原菌均有抑制作用,如果游离H2S浓度过高,势必影响到厌氧反应的负荷和处理效率。 【3】存在于厌氧出水中的H2S,体现COD,使得厌氧反应器COD去除率降低。 【4】由反应器和出水释放出的H2S气体,引起恶臭,污染环境,并且可能造成中毒事件。 【5】转移到沼气部分的H2S,会引起沼气利用设备的腐蚀,为避免这一问题需要增加额外的投资或者使运行管理费用 显著增加。 三.厌氧处理中硫酸盐和H2S的控制技术 〖一〗物理化学法 【1】稀释废水中的硫酸根(不解释) 【2】调高ph值:H2S的电离常数大约为6.8-7.0,接近厌氧反应器的运行pH值,增加pH值会显著改变H2S到HS-的

硫酸盐还原菌及其在废水厌氧治理中的应用

硫酸盐还原菌及其在废水厌氧治理中的应用 发布时间:2012-5-29 10:24:14 中国污水处理工程网 随着社会经济的高速发展,我国的工业化程度得到极大提高,但伴随着经济发展而出现的环境问题也日益严重。目前城市生活污水处理已在工艺上取得成熟技术并得到应用,但工业废水特别是含高浓度硫酸盐和重金属离子的废水处理仍是令人困惑的技术难题。但关于硫酸盐还原菌(SRB)的研究有望解决这一类废水的处理问题。硫酸盐还原菌(SRB)是一类厌氧异养细菌,其生命力很强,广泛存在于土壤、河水、海水等由微生物分解作用造成的厌氧水陆环境中。SRB是一类形态、营养多样化的细菌,以有机物作为生化代谢的能量来源和电子供体,通过异化作用以硫酸盐为电子受体将其还原。利用这一特性,将其广泛应用于含硫酸盐的废水和含重金属离子废水等方面的处理。SRB处理废水作为一项新技术极具潜力。本文论述了SRB处理废水机理及其生化作用的影响因子,对其在不同种类废水处理中的研究现状进行综述。 1硫酸盐还原菌(SRB)处理废水的机 理及厌氧环境中的影响因子 1.1硫酸盐还原菌(SRB)的分类 SRB是一类厌氧菌,革兰氏染色成阴性。目前已知的SRB有40多种,分类也较为复杂。通常根据其对不同有机物的利用性能,将SRB分为8个属[1](见表1)。 表1硫酸盐还原菌(SRB)的分类 1.2硫酸盐还原菌(SRB)处理废水的机理 对于硫酸盐还原菌(SRB)的代谢机理已有很多报道,但对其合成代谢过程的研究尚不明确,对其分解代谢过程已做过较多研究,现就SRB处理废水的机理简单概括如下: 1.2.1SRB对SO42-的还原机理 关于SRB还原SO42-的机理,具体分为三个阶段; (1)分解阶段。在厌氧状态下,有机物通过“基质水平磷酸化”产生ATP和高能电子;

抗生素废水处理

抗生素废水处理 发布时间:2012-9-27 14:21:59 中国污水处理工程网 抗生素生产废水属于难降解有机废水,特别是残留的抗生素对微生物的强烈抑制作用,可造成废水处理过程复杂、成本高和效果不稳定。因此在抗生素废水的处理过程中,采用物理处理方法或作为后续生化处理的预处理方法以降低水中的悬浮物和减少废水中的生物抑制性物质。 一、抗生素废水处理物理方法 目前应用的抗生素废水处理物理方法主要包括混凝、沉淀、气浮、吸附、反渗透和过滤等。 1、抗生素废水处理混凝法是在加入凝聚剂后通过搅拌使失去电荷的颗粒相互接触而絮凝形成絮状体,便于其沉淀或过滤而达到分离的目的。采用凝聚处理后,不仅能有效地降低污染物的浓度,而且废水的生物降解性能也得到改善。在抗生素制药工业废水处理中常用的凝聚剂有:聚合硫酸铁、氯化铁、亚铁盐、聚合氯化硫酸铝、聚合氯化铝、聚合氯化硫酸铝铁、聚丙烯酰胺(PAM)等。 2、沉淀是利用重力沉淀分离将密度比水大的悬浮颗粒从水中分离或除去。 3、气浮法是利用高度分散的微小气泡作为载体吸附废水中的污染物,使其视密度小于水而上浮,实现固液或液液分离的过程。通常包括充气气浮、溶气气浮、化学气浮和电解气浮等多种形式。 4、吸附法是指利用多孔性固体吸附废水中某种或几种污染物,以回收或去除污染物,从而使废水得到净化的方法。常用的吸附剂有活性炭、活性煤、腐殖酸类、吸附树脂等。该方法投资小、工艺简单、操作方便,易管理,较适宜对原有污水厂进行工艺改进。 5、反渗透法是利用半透膜将浓、稀溶液隔开,以压力差作为推动力,施加超过溶液渗透压的压力,使其改变自然渗透方向,将浓溶液中的水压渗到稀溶液一侧,可实现废水浓缩和净化目的。 6、吹脱法当氨氮浓度大大超过微生物允许的浓度时,在采用生物处理过程中,微生物受到NH3-N的抑制作用,难以取得良好的处理效果。赶氨脱氮往往是废水处理效果好坏的关键。在制药工业废水处理中,常用吹脱法来降低氨氮含量,如乙胺碘呋酮废水的赶氨脱氮。 二、抗生素废水处理化学方法 抗生素废水处理1、光催化氧化法 该技术可有效地降解制药废水中的有机物浓度,且具有性能稳定、对废水无选择性、反应条件温和、无二次污染等优点,具有很好的应用前景。以TiO2作催化剂,利用流化床光催化反应器处理制药废水,考察了在不同工艺条件下的光催化效果,结果表明:进水COD分别为596、861mg/L时,采用不同的试验条件,光照150min后光催化氧化阶段出水COD分别为113、124mg/L,去除率分别为81.0%、85.6%,且BOD5/COD值也可由0.2增至0.5,提

相关文档