文档库 最新最全的文档下载
当前位置:文档库 › 计量经济学案例

计量经济学案例

计量经济学案例
计量经济学案例

第四章 案例分析

一、研究的目的要求

近年来,中国旅游业一直保持高速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作用日益显现。中国的旅游业分为国内旅游和入境旅游两大市场,入境旅游外汇收入年均增长22.6%,与此同时国内旅游也迅速增长。改革开放20多年来,特别是进入90年代后,中国的国内旅游收入年均增长14.4%,远高于同期GDP 9.76%的增长率。为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。 二、模型设定及其估计

经分析,影响国内旅游市场收入的主要因素,除了国内旅游人数和旅游支出以外,还可能与相关基础设施有关。为此,考虑的影响因素主要有国内旅游人数2X ,城镇居民人均旅游支出3X ,农村居民人均旅游支出4X ,并以公路里程5

X

和铁路里程6X 作为相关基础设

施的代表。为此设定了如下对数形式的计量经济模型:

23456123456t t

t

t

t

t

t Y X

X

X

X

X

u ββββββ=++++++

其中 :t Y ——第t 年全国旅游收入

2X ——国内旅游人数 (万人)

3

X

——城镇居民人均旅游支出 (元) 4X ——农村居民人均旅游支出 (元)

5X ——公路里程(万公里) 6X ——铁路里程(万公里)

为估计模型参数,收集旅游事业发展最快的1994—2003年的统计数据,如表4.2所示:

利用Eviews 软件,输入Y 、X2、X3、X4、X5、X6等数据,采用这些数据对模型进行OLS 回归,结果如表4.3:

表4.3

由此可见,该模型9954.02

=R

,9897.02

=R

可决系数很高,F 检验值173.3525,明

显显著。但是当05.0=α时776

.2)610()(025.02=-=-t k n t α,不仅2X 、6X 系数的t 检

验不显著,而且6X 系数的符号与预期的相反,这表明很可能存在严重的多重共线性。 计算各解释变量的相关系数,选择X2、X3、X4、X5、X6数据,点”view/correlations ”得相关系数矩阵(如表4.4):

表4.4

由相关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。

三、消除多重共线性

采用逐步回归的办法,去检验和解决多重共线性问题。分别作Y 对X2、X3、X4、X5、X6的一元回归,结果如表4.5所示:

表4.5

按2

R 的大小排序为:X3、X6、X2、X5、X4。

以X3为基础,顺次加入其他变量逐步回归。首先加入X6回归结果为:

6

31784.285850632.7639.4109?X

X Y t

++-=

t=(2.9086) (0.46214) 957152.02

=R

当取05.0=α时,365

.2)310()(025.02

=-=-t k n t

α

,X6参数的t 检验不显著,予以剔除,

加入X2回归得

2

3

029761.0194241.6393.3326?X

X Y t

++-=

t=(4.2839) (2.1512) 973418.02

=R

X2参数的t 检验不显著,予以剔除,加入X5回归得

5

390789.10736535.6972.3059?X

X Y t

++-=

t=(6.6446) (2.6584) 978028.02

=R

X3、X5参数的t 检验显著,保留X5,再加入X4回归得

4

5

3221965.362909.13215884.4161.2441?X

X

X Y t

+++-=

t=(3.944983) (4.692961) (3.06767)

991445.02

=R

987186.02

=R

F=231.7935 DW=1.952587

当取05.0=α时,447

.2)410()(025.02=-=-t k n t α,X3、X4、X5系数的t 检验都显著,

这是最后消除多重共线性的结果。

这说明,在其他因素不变的情况下,当城镇居民人均旅游支出

3

X

和农村居民人均旅游支出

4X 分别增长1元时,国内旅游收入t Y 将分别增长4.21亿元和3.22亿元。在其他因素不变

的情况下,作为旅游设施的代表,公路里程5

X

每增加1万公里时, 国内旅游收入t Y 将增长

13.63亿元。

第五章 案例分析

一、问题的提出和模型设定

根据本章引子提出的问题,为了给制定医疗机构的规划提供依据,分析比较医疗机构与人口数量的关系,建立卫生医疗机构数与人口数的回归模型。假定医疗机构数与人口数之间满足线性约束,则理论模型设定为

i

i i u X Y ++=21ββ (5.31)

其中i Y 表示卫生医疗机构数,i X 表示人口数。由2001年《四川统计年鉴》得到如下数据。

表5.1 四川省2000年各地区医疗机构数与人口数

地区

人口数(万人) X

医疗机构数(个)

Y

地区

人口数(万人) X

医疗机构数(个)

Y

成都 1013.3 6304 眉山 339.9 827 自贡 315 911 宜宾 508.5 1530 攀枝花 103 934 广安 438.6 1589 泸州 463.7 1297 达州 620.1 2403 德阳 379.3 1085 雅安 149.8 866 绵阳 518.4 1616 巴中 346.7 1223 广元 302.6 1021 资阳 488.4 1361 遂宁 371 1375 阿坝 82.9 536 内江 419.9 1212 甘孜 88.9 594 乐山

345.9

1132 凉山 402.4

1471 南充 709.2

4064

二、参数估计

进入EViews 软件包,确定时间范围;编辑输入数据;选择估计方程菜单,估计样本回归函数如下

表5.2

估计结果为

56.69,

2665.508..,7855.0)

3403.8()

9311.1(3735.50548.563?2

===-+-=F e s R

X Y i

i

(5.32)

括号内为t 统计量值。 三、检验模型的异方差

本例用的是四川省2000年各地市州的医疗机构数和人口数,由于地区之间存在的不同人口数,因此,对各种医疗机构的设置数量会存在不同的需求,这种差异使得模型很容易产生异方差,从而影响模型的估计和运用。为此,必须对该模型是否存在异方差进行检验。

(一)图形法 1、EViews 软件操作。

由路径:Quick/Qstimate Equation ,进入Equation Specification 窗口,键入“y c x ”,确认并“ok ”,得样本回归估计结果,见表5.2。

(1)生成残差平方序列。在得到表5.2估计结果后,立即用生成命令建立序列

2

i

e ,记

为e2。生成过程如下,先按路径:Procs/Generate Series ,进入Generate Series by Equation 对话框,即

图5.4

然后,在Generate Series by Equation 对话框中(如图5.4),键入“e2=(resid )^2”,则生成序列

2

i

e 。

(2)绘制2

t

e 对

t

X 的散点图。选择变量名X 与e2(注意选择变量的顺序,先选的变量

将在图形中表示横轴,后选的变量表示纵轴),进入数据列表,再按路径view/graph/scatter ,可得散点图,见图5.5。

图5.5

2、判断。由图5.5可以看出,残差平方2

i

e 对解释变量X 的散点图主要分布在图形中的

下三角部分,大致看出残差平方

2

i

e 随i X 的变动呈增大的趋势,因此,模型很可能存在异方

差。但是否确实存在异方差还应通过更进一步的检验。

(二)Goldfeld-Quanadt 检验 1、EViews 软件操作。

(1)对变量取值排序(按递增或递减)。在Procs 菜单里选Sort Series 命令,出现排序对话框,如果以递增型排序,选Ascenging ,如果以递减型排序,则应选Descending ,键入X ,点ok 。本例选递增型排序,这时变量Y 与X 将以X 按递增型排序。

(2)构造子样本区间,建立回归模型。在本例中,样本容量n=21,删除中间1/4的观测值,即大约5个观测值,余下部分平分得两个样本区间:1—8和14—21,它们的样本个数均是8个,即821==n n 。

在Sample 菜单里,将区间定义为1—8,然后用OLS 方法求得如下结果

表5.3

在Sample 菜单里,将区间定义为14—21,再用OLS 方法求得如下结果

表5.4

(3)求F 统计量值。基于表5.3和表5.4中残差平方和的数据,即Sum squared resid

的值。由表5.3计算得到的残差平方和为∑=9

.14495821i

e ,由表5.4计算得到的残差平

方和为∑

=8

.73435522i

e

,根据Goldfeld-Quanadt 检验,F 统计量为

066

.59

.1449588.7343552122==

=

∑∑i

i e

e F (5.33)

(4)判断。在05.0=α下,式(5.33)中分子、分母的自由度均为6,查F 分布表得临界值为

28

.4)6,6(05.0=F ,因为

28

.4)6,6(066.505.0=>=F F ,所以拒绝原假设,表明

模型确实存在异方差。

(三)White 检验

由表5.2估计结果,按路径view/residual tests/white heteroskedasticity (no cross terms or cross terms ),进入White 检验。根据White 检验中辅助函数的构造,最后一项为变量的交叉乘积项,因为本例为一元函数,故无交叉乘积项,因此应选no cross terms ,则辅助函数为

t

t t t v x x +++=2

2102

ααασ (5.34)

经估计出现White 检验结果,见表5.5。

从表5.5可以看出,0694.182

=nR ,由White 检验知,在05.0=α下,查2

χ分布表,

得临界值

9915

.5)2(2

05.0=χ(在(5.34)式中只有两项含有解释变量,故自由度为2),比

较计算的2χ统计量与临界值,因为0694.182

=nR >9915.5)2(2

05.0=χ,所以拒绝原假设,

不拒绝备择假设,表明模型存在异方差。

5.5

四、异方差性的修正 (一)加权最小二乘法(WLS )

在运用WLS 法估计过程中,我们分别选用了权数t

i t

i t

t X w X w X w 1,1,132

21=

=

=

。权

数的生成过程如下,由图5.4,在对话框中的Enter Quation 处,按如下格式分别键入:

X w /11=;2^/12X w =;)(/13X sqr w =,经估计检验发现用权数t w 2的效果最好。下

面仅给出用权数

t

w 2的结果。

5.7

表5.7的估计结果如下

8838.12,0493.276..,7060.1..,9387.0)

5894.3()

3794.4(9530.26090.368?2

====+=F e s W D R X Y i

i

(5.36)

括号中数据为t 统计量值。

可以看出运用加权小二乘法消除了异方差性后,参数的t 检验均显著,可决系数大幅提高,

F 检验也显著,并说明人口数量每增加1万人,平均说来将增加2.953个卫生医疗机构,而不是引子中得出的增加5.3735个医疗机构。虽然这个模型可能还存在某些其他需要进一步解决的问题,但这一估计结果或许比引子中的结论更为接近真实情况。

第六章 案例分析

一、研究目的

2003年中国农村人口占59.47%,而消费总量却只占41.4%,农村居民的收入和消费是一个值得研究的问题。消费模型是研究居民消费行为的常用工具。通过中国农村居民消费模型的分析可判断农村居民的边际消费倾向,这是宏观经济分析的重要参数。同时,农村居民消费模型也能用于农村居民消费水平的预测。

二、模型设定

正如第二章所讲述的,影响居民消费的因素很多,但由于受各种条件的限制,通常只引入居民收入一个变量做解释变量,即消费模型设定为

t t t u X Y ++=21ββ

(6.43)

式中,Y t 为农村居民人均消费支出,X t 为农村人均居民纯收入,u t 为随机误差项。表6.3是从《中国统计年鉴》收集的中国农村居民1985-2003年的收入与消费数据。

表6.3 1985-2003年农村居民人均收入和消费 单位: 元

为了消除价格变动因素对农村居民收入和消费支出的影响,不宜直接采用现价人均纯收入和现价人均消费支出的数据,而需要用经消费价格指数进行调整后的1985年可比价格计

的人均纯收入和人均消费支出的数据作回归分析。

根据表6.3中调整后的1985年可比价格计的人均纯收入和人均消费支出的数据,使用普通最小二乘法估计消费模型得

t t X Y 0.59987528.106?+=

(6.44)

Se = (12.2238) (0.0214)

t = (8.7332)

(28.3067)

R 2 = 0.9788,F = 786.0548,d f = 17,DW = 0.7706

该回归方程可决系数较高,回归系数均显著。对样本量为19、一个解释变量的模型、5%显著水平,查DW 统计表可知,d L =1.18,d U = 1.40,模型中DW

图6.6

残差图

图6.6残差图中,残差的变动有系统模式,连续为正和连续为负,表明残差项存在一阶正自相关,模型中t 统计量和F 统计量的结论不可信,需采取补救措施。

三、自相关问题的处理

为解决自相关问题,选用科克伦—奥克特迭代法。由模型(6.44)可得残差序列e t ,在EViews 中,每次回归的残差存放在resid 序列中,为了对残差进行回归分析,需生成命名为e 的残差序列。在主菜单选择Quick/Generate Series 或点击工作文件窗口工具栏中的Procs/ Generate Series ,在弹出的对话框中输入e = resid ,点击OK 得到残差序列e t 。使用e t 进行滞后一期的自回归,在EViews 命今栏中输入ls e e (-1)可得回归方程

e t = 0.4960 e t-1

(6.45)

由式(6.45)可知ρ

?=0.4960,对原模型进行广义差分,得到广义差分方程 t t t t t u X

X Y Y +-+-=---)4960.0()4960.01(4960.01

211ββ

(6.46)

对式(6.46)的广义差分方程进行回归,在EViews 命令栏中输入ls Y -0.4960*Y (-1) c

X -0.4960*X (-1),回车后可得方程输出结果如表6.4。

表6.4 广义差分方程输出结果 Dependent Variable: Y-0.496014*Y(-1) Method: Least Squares Date: 03/26/05 Time: 12:32 Sample(adjusted): 1986 2003

Included observations: 18 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob. C

60.44431 8.964957 6.742287 0.0000 X-0.496014*X(-1) 0.583287

0.029410

19.83325

0.0000

R-squared

0.960914 Mean dependent var 231.9218 Adjusted R-squared 0.958472 S.D. dependent var 49.34525 S.E. of regression 10.05584 Akaike info criterion 7.558623 Sum squared resid 1617.919 Schwarz criterion 7.657554 Log likelihood -66.02761 F-statistic 393.3577 Durbin-Watson stat

1.397928 Prob(F-statistic)

0.000000

**5833.04443.60?t t X Y +=

(6.47)

)9650.8(=Se (0.0294)

t = (6.7423) (19.8333)

R 2 = 0.9609 F = 393.3577 d f = 16 DW = 1.3979

式中,1*4960.0?--=t t t

Y Y Y ,1

*4960.0--=t t

t

X

X

X 。

由于使用了广义差分数据,样本容量减少了1个,为18个。查5%显著水平的DW 统

计表可知d L = 1.16,d U = 1.39,模型中DW = 1.3979> d U ,说明广义差分模型中已无自相关,不必再进行迭代。同时可见,可决系数R 2

、t 、F 统计量也均达到理想水平。

对比模型(6.44)和(6.47),很明显普通最小二乘法低估了回归系数2?

β的标准误差。[原模型中Se (2?

β)= 0.0214,广义差分模型中为Se (2?

β)= 0.0294。

经广义差分后样本容量会减少1个,为了保证样本数不减少,可以使用普莱斯—温斯

腾变换补充第一个观测值,方法是2

1*11ρ

-=X X 和2

1*11ρ

-=Y Y 。在本例中即为

2

10.4960

1-X 和2

10.4960

1-Y 。由于要补充因差分而损失的第一个观测值,所以在

EViews 中就不能采用前述方法直接在命令栏输入Y 和X 的广义差分函数表达式,而是要生成X 和Y 的差分序列X *和Y *。在主菜单选择Quick/Generate Series 或点击工作文件窗口工具栏中的Procs/Generate Series ,在弹出的对话框中输入Y *= Y -0.4960*Y (-1),点击OK 得到广义差分序列Y *,同样的方法得到广义差分序列X *。此时的X *和Y *都缺少第一个观测值,需计算后补充进去,计算得*1X =345.236,*

1Y =275.598,双击工作文件窗口的X * 打开序列显示窗口,点击Edit +/-按钮,将*

1X =345.236补充到1985年对应的栏目中,得到X *的19个观测值的序列。同样的方法可得到Y *的19个观测值序列。在命令栏中输入Ls Y * c X*得到普莱斯—温斯腾变换的广义差分模型为

*

*

5833.04443.60t t X Y += (6.48)

)1298.9(=Se (0.0297)

t = (6.5178) (19.8079)

R 2 = 0.9585 F = 392.3519 d f = 19 DW = 1.3459

对比模型(6.47)和(6.48)可发现,两者的参数估计值和各检验统计量的差别很微小,说明在本例中使用普莱斯—温斯腾变换与直接使用科克伦—奥克特两步法的估计结果无显著差异,这是因为本例中的样本还不算太小。如果实际应用中样本较小,则两者的差异会较大。通常对于小样本,应采用普莱斯—温斯腾变换补充第一个观测值。

由差分方程(6.46)有

9292

.1194960

.014443.60?1

=-=β (6.49)

由此,我们得到最终的中国农村居民消费模型为 Y t = 119.9292+0.5833 X t

(6.50)

由(6.50)的中国农村居民消费模型可知,中国农村居民的边际消费倾向为0.5833,即中国

农民每增加收入1元,将增加消费支出0.5833元。

第七章 案例分析

【案例7.1】 为了研究1955—1974年期间美国制造业库存量Y 和销售额X 的关系,我们在例7.3中采用了经验加权法估计分布滞后模型。尽管经验加权法具有一些优点,但是设置权数的主观随意性较大,要求分析者对实际问题的特征有比较透彻的了解。下面用阿尔蒙法估计如下有限分布滞后模型:

t

t t t t t u X

X

X

X Y +++++=---3

32

21

10ββββα

将系数i β(i =0,1,2,3)用二次多项式近似,即

00αβ=

2101αααβ++=

210242αααβ++=

210393αααβ++=

则原模型可变为

t t t t t u Z Z Z Y ++++=221100αααα

其中

3

2

1

232113

2

1

09432---------++=++=+++=t t t t t t t t t t t t

t X

X

X

Z X X X Z X

X

X

X Z

在Eviews 工作文件中输入X 和Y 的数据,在工作文件窗口中点击“Genr ”工具栏,出现对话框,输入生成变量Z 0t 的公式,点击“OK ”;类似,可生成Z 1t 、Z 2t 变量的数据。进入Equation Specification 对话栏,键入回归方程形式

Y C Z0 Z1 Z2

点击“OK ”,显示回归结果(见表7.2)。

7.2

表中Z0、 Z1、Z2对应的系数分别为210ααα、、的估计值210?

?

?

ααα、、。将它们代入分布滞后系数的阿尔蒙多项式中,可计算出3210?

???ββββ、、、的估计值为:

-0.522)432155.0(9902049.03661248.0?9?3??0.736725)432155.0(4902049.02661248.0?4?2?? 1.131142)432155.0(902049.0661248.0????661248.0??2101

21012101

00

=-?+?+=++==-?+?+=++==-++=++===αααβαααβαααβαβ

从而,分布滞后模型的最终估计式为:

3

2

1

55495.076178.015686.1630281.0419601.6----+++-=t t t t t X

X

X

X Y

在实际应用中,Eviews 提供了多项式分布滞后指令“PDL ”用于估计分布滞后模型。下面结合本例给出操作过程:

在Eviews 中输入X 和Y 的数据,进入Equation Specification 对话栏,键入方程形式

Y C PDL(X, 3, 2)

其中,“PDL 指令”表示进行多项式分布滞后(Polynomial Distributed Lags )模型的估计,括号中的3表示X 的分布滞后长度,2表示多项式的阶数。在Estimation Settings 栏中选择Least Squares(最小二乘法),点击OK ,屏幕将显示回归分析结果(见表7.3)。 表7.3

需要指出的是,用“PDL ”估计分布滞后模型时,Eviews 所采用的滞后系数多项式变换不是形如(7.4)式的阿尔蒙多项式,而是阿尔蒙多项式的派生形式。因此,输出结果中PDL01、PDL02、PDL03对应的估计系数不是阿尔蒙多项式系数210ααα、、的估计。但同前面分步计算的结果相比,最终的分布滞后估计系数式3210?

?

?

?

ββββ、、、是相同的。

【案例7.2】 货币主义学派认为,产生通货膨胀的必要条件是货币的超量供应。物价变动与货币供应量的变化有着较为密切的联系,但是二者之间的关系不是瞬时的,货币供应量的变化对物价的影响存在一定时滞。有研究表明,西方国家的通货膨胀时滞大约为2—3个季度。

在中国,大家普遍认同货币供给的变化对物价具有滞后影响,但滞后期究竟有多长,还

存在不同的认识。下面采集1996-2005年全国广义货币供应量和物价指数的月度数据(见表7.4)对这一问题进行研究。

表7.4 1996-2005年全国广义货币供应量及物价指数月度数据

为了考察货币供应量的变化对物价的影响,我们用广义货币M2的月增长量M2Z 作为解释变量,以居民消费价格月度同比指数TBZS 为被解释变量进行研究。首先估计如下回归模型

t

t t

u Z M TBZS

++=20βα

得如下回归结果(表7.5)。

表7.5

平的影响在统计意义上不明显。为了分析货币供应量变化影响物价的滞后性,我们做滞后6个月的分布滞后模型的估计,在Eviews 工作文档的方程设定窗口中,输入

TBZS C M2Z M2Z(-1) M2Z(-2) M2Z(-3) M2Z(-4) M2Z(-5) M2Z(-6)

结果见表7.6。

表7.6

水平的影响要经过一段时间才能逐步显现。但各滞后期的系数的t统计量值不显著,因此还不能据此判断滞后期究竟有多长。为此,我们做滞后12个月的分布滞后模型的估计,结果见表7.7。

表7.7

数t统计量值为3.016798,在5%显著性水平下拒绝系数为零的原假设。这一结果表明,当期货币供应量变化对物价水平的影响在经过12个月(即一年)后明显地显现出来。为了考察货币供应量变化对物价水平影响的持续期,我们做滞后18个月的分布滞后模型的估计,结果见表7.8。

表7.8

计量经济学 案例分析

第二章 案例分析 研究目的:分析各地区城镇居民计算机拥有量与城镇居民收入水平的关系,对更多规律的研究具有指导意义. 一. 模型设定 2011年年底城镇居民家庭平均每百户计算机拥有量Y 与城镇居民平均每人全年家庭总收入X 的关系 图2.1 各地区城镇居民每百户计算机拥有量与人均总收入的散点图 由图可知,各地区城镇居民每百户计算机拥有量随着人均总收入水平的提高而增加,近似于线性关系,为分析其数量性变动规律,可建立如下简单线性回归模型: Y t =β1+β2X t +u t 50 60 708090100 110120130140 X Y

二.估计参数 假定所建模型及其随机扰动项u i满足各项古典假设,用普通最小二乘法(OLSE)估计模型参数.其结果如下: 表2.1 回归结果 Dependent Variable: Y Method: Least Squares Date: 11/13/17 Time: 12:50 Sample: 1 31 Included observations: 31 Variable Coefficient Std. Error t-Statistic Prob. C 11.95802 5.622841 2.126686 0.0421 X 0.002873 0.000240 11.98264 0.0000 R-squared 0.831966 Mean dependent var 77.08161 Adjusted R-squared 0.826171 S.D. dependent var 19.25503 S.E. of regression 8.027957 Akaike info criterion 7.066078 Sum squared resid 1868.995 Schwarz criterion 7.158593 Log likelihood -107.5242 Hannan-Quinn criter. 7.096236 F-statistic 143.5836 Durbin-Watson stat 1.656123 Prob(F-statistic) 0.000000 由表2.1可得, β1=11.9580,β2=0.0029 故简单线性回归模型可写为: ^ Y X t t=11.9580+0.0029 其中:SE(β1)=5.6228, SE(β2)=0.0002 R-squared=0.8320,F=143.5836,n=31

计量经济学案例分析汇总

计量经济学案例分析1 一、研究的目的要求 居民消费在社会经济的持续发展中有着重要的作用。居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。例如,2002年全国城市居民家庭平均每人每年消费支出为元, 最低的黑龙江省仅为人均元,最高的上海市达人均10464元,上海是黑龙江的倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。所以模型的被解释变量Y选定为“城市居民每人每年的平均消费支出”。 因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是2002年截面数据模型。 影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 从2002年《中国统计年鉴》中得到表的数据: 表 2002年中国各地区城市居民人均年消费支出和可支配收入

计量经济学-案例分析-第六章

第六章 案例分析 一、研究目的 2003年中国农村人口占59.47%,而消费总量却只占41.4%,农村居民的收入和消费是一个值得研究的问题。消费模型是研究居民消费行为的常用工具。通过中国农村居民消费模型的分析可判断农村居民的边际消费倾向,这是宏观经济分析的重要参数。同时,农村居民消费模型也能用于农村居民消费水平的预测。 二、模型设定 正如第二章所讲述的,影响居民消费的因素很多,但由于受各种条件的限制,通常只引入居民收入一个变量做解释变量,即消费模型设定为 t t t u X Y ++=21ββ (6.43) 式中,Y t 为农村居民人均消费支出,X t 为农村人均居民纯收入,u t 为随机误差项。表6.3是从《中国统计年鉴》收集的中国农村居民1985-2003年的收入与消费数据。 表6.3 1985-2003年农村居民人均收入和消费 单位: 元

2000 2001 2002 2003 2253.40 2366.40 2475.60 2622.24 1670.00 1741.00 1834.00 1943.30 314.0 316.5 315.2 320.2 717.64 747.68 785.41 818.86 531.85 550.08 581.85 606.81 为了消除价格变动因素对农村居民收入和消费支出的影响,不宜直接采用现价人均纯收入和现价人均消费支出的数据,而需要用经消费价格指数进行调整后的1985年可比价格计的人均纯收入和人均消费支出的数据作回归分析。 根据表6.3中调整后的1985年可比价格计的人均纯收入和人均消费支出的数据,使用普通最小二乘法估计消费模型得 t t X Y 0.59987528.106?+= (6.44) Se = (12.2238) (0.0214) t = (8.7332) (28.3067) R 2 = 0.9788,F = 786.0548,d f = 17,DW = 0.7706 该回归方程可决系数较高,回归系数均显著。对样本量为19、一个解释变量的模型、5%显著水平,查DW 统计表可知,d L =1.18,d U = 1.40,模型中DW

第六章联立方程计量经济学模型案例

第六章 联立方程计量经济学模型案例 1、下面建立一个包含3个方程的中国宏观经济模型,已经判断消费方程式恰好识别的,投资方程是过度识别的。对模型进行估计。样本观测值见表6.1 01211012t t t t t t t t t t t C Y C u I Y u Y I C G αααββ-=+++?? =++??=++? 表6.1 中国宏观经济数据 单位:亿元 (1) 用狭义的工具变量法估计消费方程 选取方程中未包含的先决变量G 作为内生解释变量Y 的工具变量,过程如下:

结果如下: 所以,得到结构参数的工具变量法估计量为: 012???582.27610.2748560.432124α αα===,, (2) 用间接最小二乘法估计消费方程 消费方程中包含的内生变量的简化式方程为: 1011112120211222t t t t t t t t C C G Y C G πππεπππε--=+++?? =+++? 参数关系体系为:

11121210012012122000 παπαπααππαπ--=?? --=??-=? 用普通最小二乘法估计,结果如下: 所以参数估计量为: 101112???1135.937,0.619782, 1.239898π ππ=== 202122???2014.368,0.682750, 4.511084π ππ=== 所以,得到间接最小二乘估计值为: 12122??0.274856?π α π ==

211121????0.432124α παπ=-= 010120????582.2758α παπ=-= (3)用两阶段最小二乘法估计消费方程 第一阶段使用普通最小二乘法估计内生解释变量的简化方程,得到 1?2014.3680.68275 4.511084t t t Y C G -=++ 用Y 的预测值替换消费方程中的Y ,直接用OLS 估计消费方程,过程如下:

计量经济学-案例分析-第八章

第八章案例分析 改革开放以来,随着经济的发展中国城乡居民的收入快速增长,同时城乡居民的储蓄存 款也迅速增长。经济学界的一种观点认为,20世纪90年代以后由于经济体制、住房、医疗、养老等社会保障体制的变化,使居民的储蓄行为发生了明显改变。为了考察改革开放以来中 国居民的储蓄存款与收入的关系是否已发生变化,以城乡居民人民币储蓄存款年底余额代表 居民储蓄(Y),以国民总收入GNI代表城乡居民收入,分析居民收入对储蓄存款影响的数量关系。 表8.1为1978-2003年中国的国民总收入和城乡居民人民币储蓄存款年底余额及增加额的数据。 单位:亿元 2004 鉴数值,与用年底余额计算的数值有差异。 为了研究1978—2003年期间城乡居民储蓄存款随收入的变化规律是否有变化,考证城

乡居民储蓄存款、国民总收入随时间的变化情况,如下图所示: 图8.5 从图8.5中,尚无法得到居民的储蓄行为发生明显改变的详尽信息。若取居民储蓄的增量 (YY ),并作时序图(见图 8.6) 从居民储蓄增量图可以看出,城乡居民的储蓄行为表现出了明显的阶段特征: 2000年有两个明显的转折点。再从城乡居民储蓄存款增量与国民总收入之间关系的散布图 看(见图8.7),也呈现出了相同的阶段性特征。 为了分析居民储蓄行为在 1996年前后和2000年前后三个阶段的数量关系,引入虚拟变 量D 和D2°D 和D 2的选择,是以1996>2000年两个转折点作为依据,1996年的GNI 为66850.50 亿元,2000年的GNI 为国为民8254.00亿元,并设定了如下以加法和乘法两种方式同时引入 虚拟变量的的模型: YY = 1+ 2GNI t 3 GNI t 66850.50 D 1t + 4 GNh 88254.00 D 2t i D 1 t 1996年以后 D 1 t 2000年以后 其中: D 1t _ t 1996年及以前 2t 0 t 2000年及以前 对上式进行回归后,有: Dependent Variable: YY Method: Least Squares Date: 06/16/05 Time: 23:27 120000 8.7 1996年和 100000- 40000 2WM GNi o eOB2&ISEea9a9l2949698[Ma2 20CUC ir-“- 1CC0C 图 8.6 *OOCO mnoot , RtKXD Tconr GF*

计量经济学Eviews操作案例集.

案例分析一关于计量经济学方法论的讨论 问题:利用计量经济学建模的步骤,根据相关的消费理论,刻画我国改革开放以来的边际消费倾向。 第一步:相关经济理论。首先了解经济理论在这一问题上的阐述,宏观经济学中,关于消费函数的理论有以下几种:①凯恩斯的绝对收入理论,认为家庭消费在收入中所占的比例取决于收入的绝对水平。②相对收入理论,是由美国经济学家杜森贝提出的,认为人们的消费具有惯性,前期消费水平高,会影响下一期的消费水平,这告诉我们,除了当期收入外,前期消费也很可能是建立消费函数时应该考虑的因素。关于消费函数的理论还有持久收入理论、生命周期理论,有兴趣的同学可以参考相应的参考书。毋庸置疑,收入和消费之间是正相关的。 第二步:数据获得。在这个例子中,被解释变量选择消费,用cs表示;解释变量为实际可支配收入,用inc表示(用GDP减去税收来近似,单位:亿元);变量均为剔除了价格因素的实际年度数据,样本区间为1978~2002年。 第三步:理论数学模型的设定。为了讨论的方便,我们可以建立下面简单的线性模型: 第四步:理论计量经济模型的设定。根据第三步数学模型的形式,可得 式中:cs=CS/P,inc=(1-t)*GDP/P,其中GDP是当年价格的国内生产总值,CS代表当年价格的居民消费值,P代表1978年为1的价格指数,t=TAX/GDP代表宏观税率,TAX是税收总额。u t表示除收入以外其它影响消费的因素。 第五步:计量经济模型的参数估计 根据最小二乘法,可得如下的估计结果: 常数项为正说明,若inc为0,消费为414.88,也就是自发消费。总收入变量的系数 为边际消费倾向,可以解释为城镇居民总收入增加1亿元导致居民消费平均增加0.51亿元。 另外,根据相对收入理论,我们可以得到下面的估计结果:

计量经济学-案例分析-第二章

第二章案例分析 一、研究的目的要求 居民消费在社会经济的持续发展中有着重要的作用。居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。 因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是2002年截面数据模型。 影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 从2002年《中国统计年鉴》中得到表2.5的数据: 表2.52002年中国各地区城市居民人均年消费支出和可支配收入

推荐-计量经济学案例分析 精品

计量经济学案例分析 一、问题提出 国内生产总值(GDP)指一个国家或地区所有常住单位在一定时期内(通常为1 年)生产活动的最终成果,即所有常住机构单位或产业部门一定时期内生产的可供最终使用的产品和劳务的价值,包括全部生产活动的成果,是一个颇为全面的经济指标。对国内生产总值的分析研究具有极其重要的作用和意义,可以充分地体现出一个国家的综合实力和竞争力。因此,运用计量经济学的研究方法具体分析国内生产总值和其他经济指标的相关关系。对预测国民经济发展态势,制定国家宏观经济政策,保持国民经济平稳地发展具有重要的意义。 二、模型变量的选择 模型中的被解释变量为国内生产总值Y。影响国内生产总值的因素比较多,根据其影响因素的大小和资料的可比以及预测模型的要求等方面原因, 文章选择以下指标作为模型的解释变量:固定资产投资总量(X1 ) 、财政支出总量(X2 )、城乡居民储蓄存款年末余额(X3 )、进出口总额(X4 )、上一期国内生产总值(X5)、职工工资总额(X6)。其中,固定资产投资的增长是国内生产总值增长的重要保障,影响效果显著;财政支出是扩大内需的保证,有利于国内生产总值的增长;城乡居民储蓄能够促进国内生产总值的增长,是扩大投资的重要因素,但是过多的储蓄也会减缓经济的发展;进出口总额反映了一个国家或地区的经济实力;上期国内生产总值是下期国内生产总值增长的基础;职工工资总额是国内生产总值规模的表现。 三、数据的选择 文中模型样本观测数据资料来源于20XX 年《中国统计年鉴》,且为当年价格。固定资产投资总量1995-20XX 年的数据取自20XX 年统计年鉴,1991-1994 年的为搜集自其他年份统计年鉴。详细数据见表1。 表1

计量经济学案例分析一元回归模型实例分析报告

∑ x = 1264471.423 ∑ y = 516634.011 ∑ X = 52432495.137 ∑ ? ? ? ? 案例分析 1— 一元回归模型实例分析 依据 1996-2005 年《中国统计年鉴》提供的资料,经过整理,获得以下农村居民人均 消费支出和人均纯收入的数据如表 2-5: 表 2-5 农村居民 1995-2004 人均消费支出和人均纯收入数据资料 单位:元 年度 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 人均纯 收入 1577.7 1926.1 2090.1 2161.1 2210.3 2253.4 2366.4 2475.6 2622.2 2936.4 人均消 费支出 1310.4 1572.1 1617.2 1590.3 1577.4 1670.1 1741.1 1834.3 1943.3 2184.7 一、建立模型 以农村居民人均纯收入为解释变量 X ,农村居民人均消费支出为被解释变量 Y ,分析 Y 随 X 的变化而变化的因果关系。考察样本数据的分布并结合有关经济理论,建立一元线 性回归模型如下: Y i =β0+β1X i +μi 根据表 2-5 编制计算各参数的基础数据计算表。 求得: X = 2262.035 Y = 1704.082 2 i 2 i ∑ x i y i = 788859.986 2 i 根据以上基础数据求得: β1 = ∑ x i y 2 i i = 788859.986 126447.423 = 0.623865 β 0 = Y - β1 X = 1704.082 - 0.623865 ? 2262.035 = 292.8775 样本回归函数为: Y i = 292.8775 + 0.623865X i 上式表明,中国农村居民家庭人均可支配收入若是增加 100 元,居民们将会拿出其中 的 62.39 元用于消费。

计量经济学案例eviews

案例分析 1.问题的提出和模型的设定 根据我国1978—1997年的财政收入Y 和国民生产总值X 的数据资料,分析财政收入和国民生产总值的关系建立财政收入和国民生产总值的回归模型。假定财政收入和国民收入总值之间满足线性约束,则理论模型设定为 i i i u X Y ++=21ββ 其中i Y 表示财政收入,i X 表示国民生产总值。 表1 我国1978—1997年财政收入和国民生产总值 2.参数估计 进入EViews 软件包,确定时间范围;编辑输入数据;选择估计方程菜单,估计样本回归函数如下 表 2 obs X Y 1978 3624.100 1132.260 1979 4038.200 1146.380 1980 4517.800 1159.930 1981 4860.300 1175.790 1982 5301.800 1212.330 1983 5957.400 1366.950 1984 7206.700 1624.860 1985 8989.100 2004.820 1986 10201.40 2122.010 1987 11954.50 2199.350 1988 14922.30 2357.240 1989 16917.80 2664.900 1990 18598.40 2937.100 1991 21662.50 3149.480 1992 26651.90 3483.370 1993 34560.50 4348.950 1994 46670.00 5218.100 1995 57494.90 6242.200 1996 66850.50 7407.990 1997 73452.50 8651.140

计量经济学案例作业

2013级统计学专业《计量经济学》案例作业 学号: 130702060 姓名:叶豪特 1.下表是消费Y 与收入X 的数据,试根据所给数据资料完成以下问题: (1)估计回归模型u X Y ++=21ββ中的未知参数1β和2β,并写出样本回归模型的书写格式; (2)试用Goldfeld-Quandt 法和White 法检验模型的异方差性; (3)选用合适的方法修正异方差。 (1)eview 结果 Method: Least Squares Date: 06/08/15 Time: 10:20 Sample: 1 60 Included observations: 60 Variable Coefficient Std. Error t-Statistic Prob. C 9.347522 3.638437 2.569104 0.0128 X 0.637069 0.019903 32.00881 0.0000 R-squared 0.946423 Mean dependent var 119.6667 Adjusted R-squared 0.945500 S.D. dependent var 38.68984 S.E. of regression 9.032255 Akaike info criterion 7.272246 Sum squared resid 4731.735 Schwarz criterion 7.342058 Log likelihood -216.1674 Hannan-Quinn criter. 7.299553 F-statistic 1024.564 Durbin-Watson stat 1.790431 Prob(F-statistic) 0.000000 1β=9.35,2=0.64β, 样本回归模型书写格式: 01e=9.35+0.64X Y X ββ=++ (2)首先,用Goldfeld-Quandt 法进行检验。 a.将样本按递增顺序排序,去掉1/4,再分为两个部分的样本,即 1222 n n ==。 b.分别对两个部分的样本求最小二乘估计,得到两个部分的残差平方和,即

计量经济学案例分析第七章

第七章 案例分析 【案例7.1】 为了研究1955—1974年期间美国制造业库存量Y 和销售额X 的关系,我们在例7.3中采用了经验加权法估计分布滞后模型。尽管经验加权法具有一些优点,但是设置权数的主观随意性较大,要求分析者对实际问题的特征有比较透彻的了解。下面用阿尔蒙法估计如下有限分布滞后模型: t t t t t t u X X X X Y +++++=---3322110ββββα 将系数i β(i =0,1,2,3)用二次多项式近似,即 00αβ= 2101αααβ++= 210242αααβ++= 210393αααβ++= 则原模型可变为 t t t t t u Z Z Z Y ++++=221100αααα 其中 3 212321132109432---------++=++=+++=t t t t t t t t t t t t t X X X Z X X X Z X X X X Z 在Eviews 工作文件中输入X 和Y 的数据,在工作文件窗口中点击“Genr ”工具栏,出现对话框,输入生成变量Z 0t 的公式,点击“OK ”;类似,可生成Z 1t 、Z 2t 变量的数据。进入Equation Specification 对话栏,键入回归方程形式 Y C Z0 Z1 Z2 点击“OK ”,显示回归结果(见表7.2)。 表7.2

表中Z0、 Z1、Z2对应的系数分别为210ααα、、的估计值210? ??ααα、、。将它们代入 分布滞后系数的阿尔蒙多项式中,可计算出 3210????ββββ、、、的估计值为: -0.522)432155.0(9902049.03661248.0?9?3??0.736725)432155.0(4902049.02661248.0?4?2?? 1.131142)432155.0(902049.0661248.0????661248.0??2101 2101 2101 00 =-?+?+=++==-?+?+=++==-++=++===αααβαααβαααβαβ 从而,分布滞后模型的最终估计式为: 32155495.076178.015686.1630281.0419601.6----+++-=t t t t t X X X X Y 在实际应用中,Eviews 提供了多项式分布滞后指令“PDL ”用于估计分布滞后模型。下面结合本例给出操作过程: 在Eviews 中输入X 和Y 的数据,进入Equation Specification 对话栏,键入方程形式 Y C PDL(X, 3, 2) 其中,“PDL 指令”表示进行多项式分布滞后(Polynomial Distributed Lags )模型的估计,括号中的3表示X 的分布滞后长度,2表示多项式的阶数。在Estimation Settings 栏中选择Least Squares(最小二乘法),点击OK ,屏幕将显示回归分析结果(见表7.3)。 表 7.3 需要指出的是,用“PDL ”估计分布滞后模型时,Eviews 所采用的滞后系数多项式变换不是形如(7.4)式的阿尔蒙多项式,而是阿尔蒙多项式的派生形式。因此,输出结果中PDL01、PDL02、PDL03对应的估计系数不是阿尔蒙多项式

计量经济学案例分析

研究城镇居民可支配收入与人均消费性支出的关系 班级:08投资姓名:陈婷婷学号:802025105 一、研究的目的 本案例分析根据1980年~2009 年城镇居民人均可支配收入和人均消费性支出的基本数据,应用一元线性回归分析的方法研究了城镇居民人均可支配收入和人均消费性支出之间数量关系的基本规律,并在预测2010年人均消费性支出的发展趋势。从理论上说,居民人均消费性支出应随着人均可支配收入的增长而提高。随着消费更新换代的节奏加快,消费日益多样化,从追求物质消费向追求精神消费和服务消费转变。因此,政府在制定当前的宏观经济政策时,考虑通过增加居民收入来鼓励消费,以保持经济的稳定增长。 二、模型设定 表1 1980—2009年城镇人均可支配收入和人均消费性支出

为分析1980—2009年城镇人均可支配收入(X)和人均消费性支出(Y)的关系,作下图所示的散点图。 图1 城镇人均可支配收入和人均消费性支出的散点图 从散点图可以看出城镇人均可支配收入(X)和人均消费性支出(Y)大体呈现为线性关系,为分析中国城镇人均消费性支出随城镇人均可支配收入变动的数量规律性,可以建立如下简单线性回归模型: Y=β+βX+u i12i 三、估计参数 Eviews的回归结果如下表所示: 表2 回归结果

① 参数估计和检验的结果写为: ^ 184.59590.780645i i Y X =+ (41.10880)(0.004281) t =(4.490423) (182.3403) 2R =0.999159 2R (修正值)=0.999129 F =33247.99 n=30 ② 回归系数的区间估计[α=5% 2 t α(n-2)=2.048 ] ^^ 22222 2 2 ????[()()]1P t SE t SE ααβββββα-≤≤+=- =P (0.780645—2.048*0.004281 2β≤≤0.780645+2.048*0.004281) =P (0.7719 2β≤≤0.7894) =95% 剩余项(Residual )、实际值(Actual )、拟合值(Fitted )的图形如下: 图2 剩余项、实际项、拟合值的图形 四、模型检验 1、 经济意义检验 所估计的参数β1= 184.5959,β2=0.780645,说明城镇人均可支配收入每增加一元,可导致人均消费性支出提高0.780645元。

计量经济学多元回归分析案例

计量经济学案例分析 多元回归分析案例

财政收入规模的影响因素 被解释变量:财政收入(亿元) 解释变量:税收(亿元),经济活动人口(亿元),国内生产总值(亿元) 样本:2000年—2011年的财政收入,税收(亿元),经济活动人口(亿元),国内生产总值(亿元) 数据来源:中华人民共和国国家统计局(单位:亿元) 财政收入Y 各项税收 X1 经济活动人口 X2 国民生产总值X3 1990 2,937.10 2,821.86 65,323.00 18,668.00 1991 3,149.48 2,990.17 66,091.00 21,618.00 1992 3,483.37 3,296.91 66,782.00 26,924.00 1993 4,348.95 4,255.30 67,468.00 35,334.00 1994 5,218.10 5,126.88 68,135.00 48,198.00 1995 6,242.20 6,038.04 68,855.00 60,794.00 1996 7,407.99 6,909.82 69,765.00 71,177.00 1997 8,651.14 8,234.04 70,800.00 78,973.00 1998 9,875.95 9,262.80 72,087.00 84,402.00 1999 11,444.08 10,682.58 72,791.00 89,677.00 2000 13,395.23 12,581.51 73,992.00 99,215.00 2001 16,386.04 15,301.38 73,884.00 109,655.00 2002 18,903.64 17,636.45 74,492.00 120,333.00 2003 21,715.25 20,017.31 74,911.00 135,823.00 2004 26,396.47 24,165.68 75,290.00 159,878.00 2005 31,649.29 28,778.54 76,120.00 183,085.00 2006 38,760.20 34,804.35 76,315.00 211,923.00 2007 51,321.78 45,621.97 76,531.00 257,306.00 2008 61,330.35 54,223.79 77,046.00 307,064.00 2009 68,518.30 59,521.59 77,510.00 335,353.00 2010 83,101.51 73,210.79 78,388.00 362,181.00 2011 103,874.43 89,738.39 78,579.00 471,564.00

计量经济学实例分析

计量经济学实例分析 The Standardization Office was revised on the afternoon of December 13, 2020

计量经济学实例分析 -------居民消费水平与GDP之间关系 摘要 改革开放以来,我国居民收入与消费水平不断提高,居民消费需求成为我国经济增长的关键动力,特别是21世纪初以来,居民消费需求对过敏寂静的发展起到了越来越大的作用。及时把握居民消费需求的变化,并制定相关政策推动内需,对于提高我国经济增长速度和质量都有了重要的意义。 凯恩斯认为,短期影响个人消费的主观因素是确定的,消费者的消费主要取决于收入的多少,而其他因素对消费的影响相对较小。因此,本文只对我国居民消费水平和GDP的变化情况之间建立了粗略的模型。 本文利用了1990-2009年之间20年内居民消费水平和GDP数据,旨在说明其中的相互关系,并建立模型以供参考。 关键词 消费收入 GDP 一,理论陈述 1,凯恩斯的绝对收入假说 凯恩斯在《货币通论》中提出了绝对收入假说,即人们的消费支出是起当期的可支配收入决定的。当人们的可支配收入增加时,其中用于消费的数额也会增加,但消费增量在收入增量中的比重是下降的,因此随着收入的增加,人们的消费在收入中的比重是下降的,而储蓄在收入中所占的比重则是上升的。 凯尔斯构建的绝对收入消费函数中,当人们的可支配收入增加时,其中用于消费的数额也会增加,但是消费增量在收入增量中的比重是下降的,因此随着收入的增加,人们的消费在收入中的比重是下降的,而储蓄在收入中的比重则是上升的。 二,实证分析

消费水平是指,一个国家在一定时期内人们在消费过程中对物质文化生活需要的满足程度。 本文以分析居民消费水平为目的,考虑到了GDP 对消费水平的影响,根据学到的计量经济学知识,采用了1990-2009年间的完整数据,构建了以居民收入水平为被解释变量,GDP 为解释变量的一元回归线性模型。 1,参数估计 设模型表达式为:i i i Y U +βX α=+ 其中:Yi :居民消费水平(元) Xi :GDP (亿元) Ui :随机干扰项 表一:居民消费水平与GDP 数据表

计量经济学案例分析报告精选文档

计量经济学案例分析报 告精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

《计量经济学》 实验报告 实验课题:各章节案列分析 姓名:茆汉成 班级:会计学12-2班 学号: 指导老师:蒋翠侠 报告日期:

目录 第二章简单线性回归模型案例

1、问题引入 居民消费在社会经济的持续发展中有着重要的作用。适度的居民消费规模和合理的消费模型是人民生活水平的具体体现,有利于经济持续健康的增长。随着社会信息化程度和居民的收入水平的提高,计算机的运用越来越普及,作为居民耐用消费品重要代表的计算机已经为众多的城镇居民家庭所拥有。研究中国各地区城镇居民计算机拥有量与居民收入水平的数量关系。影响居民计算机拥有量的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入水平。从理论上说居民收入水平越高,居民计算机拥有量越多。所以我们设定“城镇居民家庭平均每百户计算机拥有量(台)”为被解释变量,“城镇居民平均每人全年家庭总收入(元)”为解释变量。 2、模型设定 (1)对数据X和Y的统计结果的描述 图表2-1:X和Y的描述统计结果 (2)X和Y的散点图及分析 图表2-2:各地区城镇居民每百户计算机拥有量与人均总收入的散点图分析: 从散点图2-2中,可以看出各地区城镇居民计算机拥有量随着人均总收入水平的提高而增加,近似于线性关系,为分析中国各地区城镇居民每百户计算机拥有量随人均总收入变动的数量规律性,可以考虑建立如下简单线性回归模型: 3、估计参数 图表2-3:回归结果 可用规范的形式将参数估计和检验的结果写为 4、模型检验 (1)经济意义检验 所估计的参数∧ 1 β=, ∧ 2 β= 873,说明城镇居民家庭人均总收入每增加1元,平均说来 城镇居民每百户计算机拥有量将增加 873台,这与预期的经济意义相符。 (2)拟合优度和统计检验 由拟合优度R2=可知,所建立的模型对样本数据的拟合度较高。 对回归参数的显着性检验——t检验:

计量经济学案例分析

计量经济学案例分析 姓名:学号: 学院:管理学院 专业: 10级工程管理

计量经济学案例分析 案例:研究从1989-2009年,影响我国国债发行总量的主要因素。当年的国债发行总量(Y),国内生产总值(X1)、城乡居民储蓄存款(X2)、国家财政收入(X3)、国家财政赤字(X4)、国债余额(X5)。在这里,国债发行总量作为被解释变量,其余为解释变量。数据如下:

作散点图观察各变量的增长趋势,如图所示: 从上面的散点图可以看出Y,X1,X2,X3,X4,X5都是逐年增长的,但增长速率并不相同,是曲线增长,为便于研究,将模型设置如下: lnY t=β0+β1lnX1t+β2lnX2t+β3lnX3t+β4lnX4t+β5lnX5t+μt 其中,μ为随机误差项。 进行普通最小二乘回归,结果如下所示:

lnY=?5.950463+3.204509lnX1?2.170162lnX2?2.007389lnX3+0.1876280lnX4 +1.976280lnX5 模型估计结果说明,在假定其他条件不变的情况下,当年国内生产总值每增长1%,国债发行总量会增加3.204509%;在假定其他条件不变的情况下,当年城乡居民储蓄额每增长1%,国债发行总量会减少2.170162%;在假定其他条件不变的情况下,当年财政收入每增长1%,国债发行总量会减少2.007389%;在假定其他条件不变的情况下,当年财政赤字每增长1%,国债发行总量会增加0.1876280%;在假定其他条件不变的情况下,当年国债余额每增加1%,国债发行总量会增加1.976280%。上述分析与实际不符,模型需要进一步调整。 多重共线性检验 由普通最小二乘回归结果知R2=0.986336,修正后的可决系数为0.981782,这说明模型对样本的拟合较好。F值为216.5585,很显著,即“国内生产总值”、“城乡居民储蓄额”、“财政收入”、“财政赤字”和“国债余额”5个变量联合起来对“国债发行总量”有显著影响。但是当α=0.05时,t0.025(21-6)=2.131,X3的系数t检验不显著,而且X1、X3的符号与预期相反,这表明很可能存在严重的多重共线性。 查看解释变量的相关系数矩阵,如下:

精选-《计量经济学》第五章精选题及答案

第五章 异方差 二、简答题 1.异方差的存在对下面各项有何影响? (1)OLS 估计量及其方差; (2)置信区间; (3)显著性t 检验和F 检验的使用。 2.产生异方差的经济背景是什么?检验异方差的方法思路是什么? 3.从直观上解释,当存在异方差时,加权最小二乘法(WLS )优于OLS 法。 4.下列异方差检查方法的逻辑关系是什么? (1)图示法 (2)Park 检验 (3)White 检验 5.在一元线性回归函数中,假设误差方差有如下结构: () i i i x E 22σε= 如何变换模型以达到同方差的目的?我们将如何估计变换后的模型?请列出估计步骤。 三、计算题 1.考虑如下两个回归方程(根据1946—1975年美国数据)(括号中给出的是标准差): t t t D GNP C 4398.0624.019.26-+= e s :(2.73)(0.0060) (0.0736) R 2=0.999 t t t GNP D GNP GNP C ??? ???-+=??????4315.06246.0192.25 e s : (2.22) (0.0068)(0.0597) R 2=0.875 式中,C 为总私人消费支出;GNP 为国民生产总值;D 为国防支出;t 为时间。 研究的目的是确定国防支出对经济中其他支出的影响。 (1)将第一个方程变换为第二个方程的原因是什么? (2)如果变换的目的是为了消除或者减弱异方差,那么我们对误差项要做哪些假设? (3)如果存在异方差,是否已成功地消除异方差?请说明原因。

(4)变换后的回归方程是否一定要通过原点?为什么? (5)能否将两个回归方程中的R2加以比较?为什么? 2.1964年,对9966名经济学家的调查数据如下: 资料来源:“The Structure of Economists’Employment and Salaries”, Committee on the National Science Foundation Report on the Economics Profession, American Economics Review, vol.55, No.4, December 1965. (1)建立适当的模型解释平均工资与年龄间的关系。为了分析的方便,假设中值工资是年龄区间中点的工资。 (2)假设误差与年龄成比例,变换数据求得WLS回归方程。 (3)现假设误差与年龄的平方成比例,求WLS回归方程。 (4)哪一个假设更可行? 3.参考下表给出的R&D数据。下面的回归方程给出了对数形式的R&D费用支出和销售额的回归结果。 1988年美国研究与发展(R&D)支出费用单位:百万美元

计量经济学课堂案例

2.6计量经济学一元回归案例分析 (课堂例题) 一保险公司希望确定居民住宅区火灾造成的损失数量与该住户到最近的消防站的距离之间的关系,以便准确地定出保险金额。下表列出火灾事故的损失及火灾发生地与最近的消防站的距离。 序号火灾损失Y 距消防站距离X 1 28.1 4.3 2 19.8 1.8 3 31.3 7.6 4 23. 5 3.8 5 27.5 5.1 6 36.2 9.5 7 24.1 3.7 8 22.3 2.5 9 17.5 1.6 10 31.3 6.3 11 22.4 3.1 12 35.3 9.5 13 45.2 14.4 14 35.4 9.3 15 35.1 7.5 合计435 90 均值29 6 请: 1)建立线性回归模型并进行相关的计算; 2)用最小二乘法估计参数β1与β2; 3)给出样本回归方程; 4)进行方差分析 5)进行回归方程的显著性检验[F0.05(1,13)=4.67;F0.01(1,13)=9.07]]; 6)计算相关系数并进行相关系数检验[r0.05(13)=0.514;r0.01(13)=0.64] 7)计算样本的决定系数; 8)计算总体方差的估计值; 9)计算参数β1与β2的标准差的估计值; 10)给出参数β1与β2的95%的置信区间[t0.025(13)=2.16]; 11)当X 0=4.5公里时给出总体) ( Y E与个别值 Y的点预测值;

12)计算))(?(00Y E Y Var -与)?(00Y Y Var -估计值; 13)给出总体)(0Y E 与个别值0Y 的95%的区间预测。 解:X 、Y 散点图如下: 火灾损失Y 5101520253035404550 5 10 15 20 火灾损失Y 以下计算保留3位小数 1)一元线性回归模型为:Y t =β1+β2X t +εt (t=12,……,n ) 列表计算如下 序号 火灾损 失Y 距消防站 距离X Y 的平方 X 的平方 XY Lyy —y 2 Lxx —x 2 Lxy--xy 1 28.1 4.3 789.61 18.49 120.83 0.81 2.89 1.53 2 19.8 1.8 392.04 3.24 35.64 84.64 17.64 38.64 3 31.3 7.6 979.69 57.76 237.88 5.29 2.56 3.68 4 23. 5 3.8 552.25 14.44 89.3 30.25 4.84 12.1 5 27.5 5.1 756.25 26.01 140.25 2.25 0.81 1.35 6 36.2 9.5 1310.44 90.25 343.9 51.84 12.25 25.2 7 24.1 3.7 580.81 13.69 89.17 24.01 5.29 11.27 8 22.3 2.5 497.2 9 6.25 55.75 44.89 12.25 23.45 9 17.5 1.6 306.25 2.56 28 132.25 19.36 50.6 10 31.3 6.3 979.69 39.69 197.19 5.29 0.09 0.69 11 22.4 3.1 501.76 9.61 69.44 43.56 8.41 19.14 12 35.3 9.5 1246.09 90.25 335.35 39.69 12.25 22.05 13 45.2 14.4 2043.04 207.36 650.88 262.44 70.56 136.08 14 35.4 9.3 1253.16 86.49 329.22 40.96 10.89 21.12 15 35.1 7.5 1232.01 56.25 263.25 37.21 2.25 9.15 合计 435 90 13420.38 722.34 2986.05 805.38 182.34 376.05 均值 29 6 894.692 48.156 199.07 53.692 12.156 25.07

相关文档
相关文档 最新文档