文档库 最新最全的文档下载
当前位置:文档库 › 变压器的运行特性(外特性)基于matlab仿真

变压器的运行特性(外特性)基于matlab仿真

变压器的运行特性(外特性)基于matlab仿真
变压器的运行特性(外特性)基于matlab仿真

变压器的运行特性分析

一、单相变压器的效率曲线

由公式kN

N kN P I P I S P I P 2*202*22*20cos 1+++-= φ η,假定N S =20000kV A,N U 1/N U 2=127kV/11kV,50Hz,开路试验和短路试验(75℃)得到的功率分别为47kW 和129kW,则经计算可得二次侧的额定电压为1818.2A ,分别取2cos φ=0.65,0.8,1时对应的效率曲线分别如下:

2cos φ=0.65时,max η=0.9882; 当

2cos φ=0.8时,m ax η=0.9904; 当2cos φ=1时,max η=0.9923。

可见,当功率因数增大时,最大效率随之增大。电流从0增大时起初变化迅速,达到膝点(约为100A )后变化变慢,而达到最大值后又缓慢下降。

其源程序如下:

clear;

clc;

K=input('请输入二次侧负载因数:');

SN=20000;

P0=47;

PKN=129;

I2N=1818.2;

for i=1:1000

x(i)=i/1000*I2N;

y(i)=1-(P0+(x(i)/I2N)^2*PKN)/(SN*(x(i)/I2N)*K+P0+(x(i)/I2N)^2*PKN);

end

plot(x,y,'r');

xlabel('I2');

ylabel('η');

二、运行特性分析

在如上前提又有Ω9.3=k R ,Ω44.58=k X ,由公式N k k Z R I U 122*

2*2/)sin X cos (1φφ +-=,

分别取容性和感性负载功率因数为0.8时和纯阻性时的外特性曲线如下:

可以看出,外特性是一条直线,感性负载斜率小于0,纯阻性负载近似水平,容性负载斜率大于0。源程序如下:

clear;

clc;

RK=3.9;

XK=58.44;

Z1N=806.35;

K=0.8;

K1=sqrt(1-K^2);

K2=0;

K3=-sqrt(1-K^2);

for i=1:1000

x(i)=i/1000;

y1(i)=1-x(i)*(RK*K+XK*K1)/Z1N;

y2(i)=1-x(i)*(RK*1+XK*K2)/Z1N;

y3(i)=1-x(i)*(RK*K+XK*K3)/Z1N;

end

text(0.7,0.9,'感性负载')

text(0.8,1,'纯阻性负载')

text(0.9,1.1,'容性负载')

axis([0 1 0 1.2]);

hold on;

plot(x,y1,'r');

hold on;

plot(x,y2,'b');

hold on;

plot(x,y3,'g');

hold on;

xlabel('I2/I2N');

ylabel('U2/U2N');

变压器损耗

(1)变压器损耗(按/ 计算)。 (2)线路损耗(按计量点1用网、上网抄见电量的0.1%;YJV-3*185电缆220米、R=0.022欧计算)。上述损耗的电量按各分类电量占抄见总电量的比例摊。 3.未分别计量的乙方用电量认定 /计量装置计量的电量包含多种电价类别的电量,对/ 电价类别的用电量,每月按以下第1种方式确定:(1)/ 电量定比为:/ %。 (2)/ 电量定量为:/ 千瓦时。 以上方式及核定值甲、乙双方每年至少可以提出重新核定一次,对方不得拒绝。 4.计量点计量装置如下: 计量点名称计量点类型计量设备名称精度倍率产权用网电量计量点大工业总表0.5S 6000 甲方计量点1 上网电量计量点光伏关口表0.5S 6000 甲方计量点2 用网电量计量点一般工商业及其他套表 1.0 20 甲方计量点3 用网电量计量点一般工商业及其他套表 1.0 20 甲方计量点4 用网电量计量点一般工商业及其他套表 1.0 20 甲方计量点5 用网电量计量点一般工商业及其他套表 1.0 20 甲方计量点6 用网电量计量点一般工商业及其他套表 1.0 240 甲方计量点7 用网电量计量点居民生活套表 1.0 120 甲方计量点8 用网电量计量点一般工商业及其他套表 1.0 120 甲方计量点9 用网电量计量点一般工商业及其他套表 1.0 120 甲方计量点10 用网电量计量点一般工商业及其他套表 1.0 120 甲方计量点11 用网电量计量点一般工商业及其他套表 1.0 240 甲方计量点12 发电量计量点光伏发电表1 1.0 160 甲方计量点13 发电量计量点光伏发电表2 1.0 160 甲方 第十条电量的抄录和计算 1.抄表周期为每月或甲方公布的秒表周期,抄表例日为甲方公布的抄表日。如有变动,甲方应提前一个抄表周期告知乙方和丙方。 2.抄表方式:人工及电能信息采集装置自动抄录方式。 3.结算依据: (1)三方约定光伏项目发电量以1方式消纳。 1)以余电上网方式消纳电量,甲方与乙方以计量点1、2、3、4、5、6、7、8、9、10、11计量装置抄录的用网示数为依据计算乙方用网电量,其中计量点2、3、4、5、6、7、8、9、10、11计量装置抄录有用网示数视为甲方所不间断供电量。甲方与丙方以计量点1计量装置(产权分界点)抄录的上网示数为依据计算丙方上网量。 2)全部上网方式消纳电量,甲方与丙方以/ 计量装置(并网点)的抄录的上网示数依据计算丙方上网电量。 (2)按照上网电量、用网电量和国家规定的上网电价、销售电价分别计算购、售电费。 (3)抄录数据作为电费的结算依据。以电能信息采集装置自动抄录的数据作为电费结算依据的,当装置发生故障时,以甲方人工抄录数据作为结算依据。 4.乙方的无功用电量为正反向无功电量绝对值的总量。 第十一条计量装置维护管理及计量失准处理 1.电能计量装置应在光伏项目发电设备并网前按要求安装完毕,并按规定进行调试。电能计量装置投运前,由合同三方依据《电能计量装置技术管理规程》(DL/T448-2000)的要求进行竣工验收。 2.当在同一计量点计量上网电量和用网电量时,应分别安装计量上网电量和用网电量的电能表,或安装具

变压器损耗原理及计算方法

变压器损耗原理及计算方法 变压器的损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1、变压器损耗计算公式(1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是:

变压器特性

第 6 章?? 变压器的基本理论 1.分析变压器内部的电磁过程。 2.分析电压、电流、磁势、磁通、感应电势、功率、损耗等物理量之间的关系。 3.建立变压器的等效电路模型和相量图。 4.利用等效电路计算分析变压器的各种性能。 6-1?? 变压器的空载运行 一.空载运行物理分析 一次侧接额定电压U1N,二次侧开路的运行状态称为空载运行(i2=0)。 空载时一次侧绕组中的电流i0为空载(或叫激磁)电流,磁势F0=I0N1叫励磁磁势。 F0产生的磁通分为两部分,大部分以铁心为磁路(主

磁路),同时与一次绕组N1和二次绕组N2匝链,并在两个绕 组中产生电势e1和e2,是传递能量的主要媒介,属于工作磁通,称为主磁通Ф。 另一部分磁通仅与原方绕组匝链,通过油或空气形成闭路,属于非工作磁通,称为原方的漏磁通Ф1σ。 铁心由高导磁硅钢片制成,导磁系数μ为空气的导磁系数的2000倍以上,所以大部分磁通都在铁心中流动,主 磁通约占总磁通的99%以上,而漏磁通占总磁通的1%以下。 问题6-1:主磁通和漏磁通的性质和作用是什么 规定正方向:电压U1与电流I0同方向,磁通Ф正方向与电流I0正方向符合右手螺旋定则。电势E与I0电流的正 方向相同。 由于磁通在交变,根据电磁感应定律: e1= -N1 dΦ/dt e2= -N2 dΦ/dt e1σ= -N1 dФ1σ/dt 二.电势公式及电势平衡方程式推导 空载时,主磁通Ф在一次侧产生感应电势E1,在二次侧产生感应电势E2,一次侧的漏磁通Ф1σ在一次侧漏抗电 势E1σ。 假设磁通为正弦波Ф=Фm sin ωt??? 则

e1= -N1 dΦ/dt=-N1 dФm sin ωt/dt = -N1Фmωcosωt=N1Фmωsin (ωt-90°) =E1m sin (ωt-90°) 电势在相位上永远滞后于它所匝链的磁通90o。?? 其最大值:E1m= ω N1Фm? = 2π f N1Фm 其有效值:E1=E1m/sqrt(2) = 2π f N1Фm/ = f N1Φm 这就是电机学最重要的“”公式。说明了感应电势E1与磁通Φm、频率f、绕组匝数N1成正比。 同样可以推出e2和e1σ的公式: e2=E2m sin(ωt-90°) E2m=N2Φmω E2= f N2 Φm e1σ=-N1dΦ1σ/dt =N1Φ1σmωsin(ωt-90°)? E1σm=ω N1Φ1σm E1σ= f N1Φ1σm 由于漏磁路的磁导率μo为常数,Φ1σm=L1σI I0,故E1σ= N12L1σI0=X1σI0,即E1σ可用漏抗压降的形式表示。 以上推导涉及到的电磁量均为正弦变化,可以用相量来表示。用相量时可同时表示有效值和相位。 E1σ=-jX1σI0

常用变压器的种类及特点

常用变压器的种类及特点 (1)按相数分: (1)单相变压器:用于单相负荷和三相变压器组。 (2)三相变压器:用于三相系统的升、降电压。 (2)按冷却方式分: (1)干式变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等小容量变压器。 (2)油浸式变压器:依靠油作冷却介质、如油浸自冷、油浸风冷、油浸水冷、强迫油循环等。 (3)按用途分: (1)电力变压器:用于输配电系统的升、降电压。 (2)仪用变压器:如电压互感器、电流互感器、用于测量仪表和继电保护装置。 (3)试验变压器:能产生高压,对电气设备进行高压试验。 (4)特种变压器:如电炉变压器、整流变压器、调整变压器等。 (4)按绕组形式分: (1)双绕组变压器:用于连接电力系统中的两个电压等级。 (2)三绕组变压器:一般用于电力系统区域变电站中,连接三个电压等级。 (3)自耦变电器:用于连接不同电压的电力系统。也可做为普通的升压或降后变压器用。 (5)按铁芯形式分:

(1)芯式变压器:用于高压的电力变压器。 (2)非晶合金变压器:非晶合金铁芯变压器是用新型导磁材料,空载电流下降约80%,是目前节能效果较理想的配电变压器,特别适用于农村电网和发展中地区等负载率较低的地方。 (3)壳式变压器:用于大电流的特殊变压器,如电炉变压器、电焊变压器;或用于电子仪器及电视、收音机等的电源变压器。 电力变压器的日常维护及故障的预防方法 发布时间:09-12-24关注次数:363 简介:本文介绍电力变压器的日常维护及故障的预防方法:当前的世界范围内,不间断的电力供应已成为工业生产、国防军事、科技发展及人民生活中至关重要的因素。人们对能源不间断供应的依赖性常常是直到厂房里的生产设备突然停止工作时才意识到各种断路器、布线及变压器的重要性。 变压器故障通常是伴随着电弧和放电以及剧烈燃烧而发生,随后电力设备即发生短路或其他故障,轻则可能仅仅是机器停转,照明完全熄灭,严重时会发生重大火灾乃至造成人身伤亡事故。因此如何确保变压器的安全运行受到了世界各国的广泛关注。 一、变压器故障的统计资料 (一)、各类型变压器的故障 根据相关部门对变压器类型显示的变压器故障统计数据人们可以看出,电力变压器故障始终占据主导位置。 (二)、不同用户的变压器故障 变压器使用在不同的部门,故障率是不同的。为了分析变压器发生故障

变压器损耗计算公式

变压器损耗 分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是:

变压器外特性与效率特性

一、变压器的外特性及电压变化率 变压器空载运行时,若一次绕组电压U 1不变,则二次绕组电压U 2 也是不变的。 变压器加上负载之后,随着负载电流I 2的增加,I 2 在二次绕组内部的阻抗压降也 会增加,使二次绕组输出的电压U 2 随之发生变化。另一方面,由于一次绕组电 流I 1随U 2 增加,因此I 2 增加时,使一次绕组漏阻抗上的压降也增加,一次绕组 电动势E 1和二次绕组电动势E 2 也会有所下降,这也会影响二次绕组的输出电压 U 2。变压器的外特性是用来描述输出电压U 2 随负载电流I 2 的变化而变化的情况。 当一次绕组电压U 1和负载的功率因数cosφ 2 一定时,二次绕组电压U 2 与负载电 流I 2 的关系,称为变压器的外特性。它可以通过实验求得。功率因数不同时的 几条外特性绘于图2—17中,可以看出,当cosφ 2=1时,U 2 随I 2 的增加而下降 得并不多;当cosφ 2降低时,即在感性负载时,U 2 随I 2 增加而下降的程度加大, 这是因为滞后的无功电流对变压器磁路中的主磁通的去磁作用更为显著,而使 E 1和E 2 有所下降的缘故;但当cosφ 2 为负值时,即在容性负载时,超前的无功 电流有助磁作用,主磁通会有所增加,E 1和E 2 亦相应加大,使得U 2 会随I 2 的增 加而提高。以上叙述表明,负载的功率因数对变压器外特性的影响是很大的。 图2-17 变压器外特性 在图2—17中,纵坐标用U 2/U 2N 之值表示,而横坐标用I 2 /I 2N 表示,使得在坐 标轴上的数值都在0~1之间,或稍大于1,这样做是为了便于不同容量和不同电压的变压器相互比较。 一般情况下,变压器的负载大多数是感性负载,因而当负载增加时,输出电压U 2 总是下降的,其下降的程度常用电压变化率来描述。当变压器从空载到额定负 载(I 2=I 2N )运行时,二次绕组输出电压的变化值ΔU与空载电压(额定电压) U 2N 之比的百分值就称为变压器的电压变化率,用ΔU%来表示。

变压器油和SF6的性质特点

变压器油:是石油的一种分馏产物,它的主要成分是烷烃,环烷族饱和烃,芳香族不饱和烃等化合物。俗称方棚油,浅黄色透明液体,相对密度0.895。凝固点<-45 ℃。 变压器油的主要作用: (1)绝缘作用:变压器油具有比空气高得多的绝缘强度。绝缘材料浸在油中,不仅可提高绝缘强度,而且还可免受潮气的侵蚀。 (2)散热作用:变压器油的比热大,常用作冷却剂。变压器运行时产生的热量使靠近铁芯和绕组的油受热膨胀上升,通过油的上下对流,热量通过散热器散出,保证变压器正常运行。 (3)消弧作用:在油断路器和变压器的有载调压开关上,触头切换时会产生电弧。由于变压器油导热性能好,且在电弧的高温作用下能分触了大量气体,产生较大压力,从而提高了介质的灭弧性能,使电弧很快熄灭。 对变压器油的性能通常有以下要求: (1)变压器油密度尽量小,以便于油中水分和杂质沉淀。 (2)粘度要适中,太大会影响对流散热,太小又会降低闪点。 (3)闪点应尽量高,一般不应低于136℃。 (4)凝固点应尽量低。 (5)酸、碱、硫、灰分等杂质含量越低越好,以尽量避免它们对绝缘材料、导线、油箱等的腐蚀。 (6)氧化程度不能太高。氧化程度通常用酸价表示,它指吸收1克油中的游离酸所需的氢氧化钾量(毫克)。 (7)安定度不应太低,安定度通常用酸价试验的沉淀物表示,它代表油抗老化的能力 外观透明,无悬浮物、沉淀物及机械杂质 闪点(闭杯) ≥135℃ 运动黏度(50℃) ≤9.6*10-6m2/s 酸值≤0.03mgKOH/g 倾点<-22℃[1] 主要成分为环烷烃(约占80%),其它的为芳香烃和烷烃CnH2n+2。 2.环烷烃 环烷烃是指分子结构中含有一个或者多个环的饱和烃类化合物。 分子通式为CnH2n。 环戊烷、环己烷及它们的烷基取代衍生物是石油产品中常见的环烷烃。 环戊烷

(整理)电感、变压器的高频特性与损耗、

绕组高频效应及其对损耗的影响 1.集肤效应 1.1集肤效应的原理 图1.1表示了集肤效应的产生过程。图中给出的是载流导体纵向的剖面图,当导体流过电流(如图中箭头方向)时,由右手螺旋法则可知,产生的感应磁动势为逆时针方向,产生进入和离开剖面的磁力线。如果导体中的电流增加,则由于电磁感应效应,导体中产生如图所示方向的涡流。由图可知:涡流的方向加大了导体表面的电流,抵消了中心线电流,这样作用的结果是电流向导体表面聚集,故称为集肤效应。在此引进一个集肤深度〈skin depth〉的概念,此深度的电流密度大小恰好为表面电流密度大小的1/e倍: 一般用集肤深度Δ来表示集肤效应,其表达式为: (1.1) 其中:γ为导体的电导率,μ为导体的磁导率,f为工作频率。 图1.1.集肤效应产生过程示意图 图1.2.高频导体电路密度分布图

高频时的导体电流密度分布情形,大致如图1.2所示,由表面向中心处的电流密度逐渐减小。 由上图及式1.1可知,当频率愈高时,临界深度将会愈小,结果造成等效阻值上升。因此在高频时,电阻大小随着频率而变的情形,就必须加以考虑进去。 1.2影响及应用 在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。在工业应用方面,利用趋肤效应可以对金属进行表面淬火。 考虑到交流电的集肤效应,为了有效地利用导体材料和便于散热,发电厂的大电流母线常做成槽形或菱形母线;另外,在高压输配电线路中,利用钢芯铝绞线代替铝绞线,这样既节省了铝导线,又增加了导线的机械强度,这些都是利用了集肤效应这个原理。 集肤效应是在讯号线里最基本的失真作用过程之一,也有可能是最容意被忽略误解的。与一般讯号线的夸大宣传所言,集肤效应并不会改变所有的高频讯号,并且不会造成任何相关动能的损失。正好相反,集肤效应会因传导体的不同成分,在传递高频讯号时有不连贯的现象。同样地,在陈旧的线束传导体上,集肤效应助长讯号电流在多条线束上的交互跳动,对于声音造成刺耳的记号。 2邻近效应 图2.1表示了邻近效应的产生过程。A、B两导体流过相同方向的电流IA和IB,当电流按图中箭头方向突增时,导体A产生的突变磁通ΦA-B在导体B中产生涡流,使其下表面的电流增大,上表面的电流减少。同样导体B产生的突变磁通ΦB-A在导体A中产生涡流,使其上表面的电流增大,下表面的电流减少。这个现象就是导体之间的邻近效应。 当流过导体的电流相同,导体之间的距离一定时,如果导体之间的相对面积不同,邻近效应使得导体有效截面面积不同。研究表明:导体的相对面积越大则导体有效截面越大,损耗相对较小。

变压器特性介绍

1、电力变压器的工作原理及工作特点 1.1 初始磁化曲线 当电流从0逐渐增加,线圈中的磁场强度H也随之增加,这样就可以测出若干组B,H值。以H为横坐标,B为纵坐标,画出B随H的变化曲线,这条曲线称为初始磁化曲线。当H增大到某一值后,B几乎不再变化,这时铁磁材料的磁化状态为磁饱和状态。此时的磁感应强度Bs叫做饱和磁感应强度。这种磁化曲线一般如下图中曲线所示: 1.2 磁滞回线 当铁磁质达到磁饱和状态后,如果减小磁化场H,介质的磁化强度M(或磁感应强度B)并不沿着起始磁化曲线减小,M(或B)的变化滞后于H的变化。这种现象叫磁滞。在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期的变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。如下图:

1.3 基本磁化曲线 铁磁体的磁滞回线的形状是与磁感应强度(或磁场强度)的最大值有关,在画磁滞回线时,如果对磁感应强度(或磁场强度)最大值取不同的数值,就得到一系列的磁滞回线,连接这些回线顶点的曲线叫基本磁化曲线。 如下图: B B m A B r R H e e H ' H -H m O H m R ' r B ' A '

1.4 变压器 1.4.1 定义:变压器(英语:Transformer)是应用法拉第电磁感应定律而升高或降低电压的装置。变压器通常包含两组或以上的线圈和铁心。主要用途是升降交流电的电压、改变阻抗及分隔电路。如下图: 1.4.2 基本原理:一个简单的单相变压器由两块导电体组成。当其中一块导电体有一些不定量的电流(如交流电或脉冲式的直流电) 通过,便会产生变动的磁场。根据电磁的互感原理,这变动的磁场会使第二块导电体产生电势差。假如第二块导电体是一条闭合电路的一部份,那么该闭合电路便会产生电流。电力于是得以传送。在通用的变压器中,有关的导电体是由(多数为铜质的) 电线组成线圈,因为线圈所产生的磁场要比一条笔直的电线大得多。变压器的原理是由

变压器效率特性

变压器运行特性分析与效率曲线 二、理论分析 2.效率和效率特性 变压器运行时将产生损耗。变压器的损耗分为铜耗和铁耗,每一类又包括基本损耗和杂散损耗。其中铁耗可视为不变损耗。基本铜耗是指电流流过绕组时所产生的直流电阻损耗。杂散铜耗主要是指漏磁场引起电流集肤效应,使绕组的有效电阻增大所增加的铜耗,以及漏磁场在结构部件中所引起的涡流损耗等。 变压器的总损耗为 ''22 k Fe Cu Fe R mI p p p P +=+=∑ 式中,电阻。为归算到二次侧的短路为相数;'' R k m 变压器的输入有功功率为1P ,输出功率为2P ,总损耗功率为P ∑,所以效率为 P P P P P ∑+==2212η 由于电力变压器的效率很高,用直接负载法测量1P 和2P 在算出效率,很难得到准确的结果,因此工程上常采用间接法来计算效率,由空载试验测出铁耗,由短路试验测出铜耗在计算效率。此时效率为 kN O N kN O P I P I S P I P P P 2222221cos 11***+++-=∑-=?η 给定以上的参数即可绘制效率曲线。

图3.变压器的效率曲线 有数学分析 2 = dI dη 可知在变压器的铜耗等于铁耗时,变压器的效率达到最 大。 图4.效率曲线的最大值 说明:图中铁耗与铜耗值与对应的坐标值并不一一对应。 附程序源代码 3.变压器的效率曲线 function xiaolv1 p0=2.4; pk=11.6; sn=1000; j=0.8; a=zeros(1,1000); b=zeros(1,1000); for i=2:1:1000 a(i)=a(i-1)+0.001; b(i)=1-(p0+(a(i)^2)*pk)/(a(i)*sn*0.8+p0+(a(i)^2)*pk); end hold on plot(a,b) xlabel('I2的标幺值 ') ylabel('效率 ') 4.效率曲线的最大值 function xiaolv2 p0=2.4; pk=11.6; sn=1000;

变压器基本原理及应用介绍

变压器基本原理及应用介绍 1.1基本要求 1.了解变压器的基本构造、工作原理、铭牌数据和外特性。 2.掌握变压器的三个变换功能及其用途。 3.理解阻抗匹配的意义。 1.2基本内容 1. 变压器主要由铁心、原绕组(一次绕组)和副绕组(二次绕组)组成。铁心构成磁路,原绕组 和副绕组(副边开路时仅原绕组)产生的磁通由磁路闭合而实现能量或信号的传递。 2.变压器的功能可由三个变换来表述: 电压变换──主要用途是电源升降压。原绕组电压与副绕组电压的比值近似为原绕组匝数与副绕 组匝数的比值称为变比,即:1 12 2 U N U N k = = 电流变换──主要用途是电流互感器。原绕组电流与副绕组电流的比值近似为变比的倒数,即: 122 1 1 I N I N k = = 阻抗变换──主要用途是电路耦合及阻抗匹配。副绕组的负载阻抗Z 折合到原绕组(电源)端 可表示为该阻抗与变比平方的乘积,即:2k Z Z '= 3.变压器铭牌数据通常包括: ①一次侧额定电压1N U 和二次侧额定电压N U 2 ②一次侧额定电流N I 1和二次侧额定电流N I 2 ③额定容量N S 变压器的额定容量之所以用视在功率N S 表示是因为变压器输出的有功功率与负载的功率因数有关。例如在额定电压和额定电流下,负载的功率因数为1时,kVA 100的变压器可输出kW 100的功率,而当负载的功率因数5.0时则只能输出kW 50的功率。 4.变压器阻抗变换的一个重要用途是实现阻抗匹配,即采用不同的匝数比将负载阻抗变换为所需要的、比较合适的数值,这通常可以使负载从信号源或电源获得最大的信号幅度或功率值。 1.3重点和难点 1. 变压器是按照电磁感应原理来实现电能转换的,当变压器的输入端接直流电源时,副边将无 法产生感应电势,因此变压器不能用于直流场合。 2. 变压器的额定容量和输出功率通常是分相等的,它们的表达式分别是: 22112222 ()cos N N N N N N N S U I U I V A P U I ?=≈= 2N 2P S cos ?= 即:式中2cos ?为负载的功率因数,上式表达的变压器的输出与负载的功率因数有关。

变压器损耗定义

变压器的损耗包含两部分,空载损耗与负载损耗。 1.变压器的空载损耗 变压器的空载损耗又称铁耗,它属于励磁损耗与负载无关。 1.1空载损耗的组成 通常变压器的空载损耗包括铁芯材料的磁滞损耗、涡流损耗以及附加损耗几部分。 1.1.1磁滞损耗 磁滞损耗是铁磁材料在反复磁化过程中由于磁滞现象所产生的损耗。磁滞损耗的大小与磁滞回线的面积成正比。微观地来看,磁滞损耗与硅钢片内部的结晶方位、结晶纯度、内部晶粒的畸变等因素都有关系。由于磁滞回线的面积又与最大磁密B m 的平方成正比,因此磁滞损耗约和最大磁密B m 的平方成正比。此外,磁滞损耗是由交变磁化所产生,所以它的大小还和交变频率f 有关。具体来说磁滞损耗P c 的大小可用下式计算 21c m P C B f V =?? (1-1) 式中,C 1——由硅钢片材料特性所决定的系数(与铁芯磁导率、密度等有关); B m ——交变磁通的最大磁密; f ——频率; V ——铁磁材料总体积。 注:在日本东京制铁株式出版社的《新日本制铁电磁钢板》中提到有的硅钢片厂家认为,磁滞损耗的大小与B m 的1.6次方成正比。 1.1.2涡流损耗 由于铁芯本身为金属导体,所以由于电磁感应现象所感生的电动势将在铁芯内产生环流,即为涡流。由于铁芯中有涡流流过,而铁芯本身又存在电阻,故引起了涡流损耗。具体来说,经典的涡流损耗P w 的大小可用下式计算 2222m w B f t P C ρ??= (1-2) 式中,C 2——决定于硅钢片材料性质的系数; t ——硅钢片的厚度; ρ——硅钢片的电阻率。 1.1.3异常涡流损耗 在上文的标注所提到的文献中,提出了“异常涡流损耗”的概念,也有的把它作为附加铁损的一部分来看待,一般认为它的大小与硅钢片内部磁区的大小(结晶粒的大小)以及硅钢片表面涂层的弹性张力等有关,并可以用下式来进行估算 223s f B v t P C ρ??= (1-3) 式中,C 3——取决于硅钢片材料的常数;

变压器油检测技术标准

变压器油检测技术标准 Prepared on 24 November 2020

变压器油检测技术标准 变压器油检测项目 (1)凝固点;(2)含水量;(3)界面张力;(4)酸值;(5)水溶性酸碱度; (6)击穿电压;(7)闪点;(8)体积电阻率;(9)介损(10)色谱分析(11)绝缘油中糠醛含量分析 变压器油的检测项目及试验意义 1、外观:检查运行油的外观,可以发现油中不溶性油泥、纤维和脏物存在。在常规试验中,应有此项目的记载。 2、颜色:新变压器油一般是无色或淡黄色,运行中颜色会逐渐加深,但正常情况下这种变化趋势比较缓慢。若油品颜色急剧加深,则应调查是否设备有过负荷现象或过热情况出现。如其他有关特性试验项目均符合要求,可以继续运行,但应加强监视。 3、水分:水分是影响变压器设备绝缘老化的重要原因之一。变压器油和绝缘材料中含水量增加,直接导致绝缘性能下降并会促使油老化,影响设备运行的可靠性和使用寿命。对水分进行严格的监督,是保证设备安全运行必不可少的一个试验项目。 4、酸值:油中所含酸性产物会使油的导电性增高,降低油的绝缘性能,在运行温度较高时(如80℃以上)还会促使固体纤维质绝缘材料老化和造成腐蚀,缩短设备使用寿命。由于油中酸值可反映出油质的老化情况,所以加强酸值的监督,对于采取正确的维护措施是很重要的。 5、氧化安定性:变压器油的氧化安定性试验是评价其使用寿命的一种重要手

段。由于国产油氧化安定性较好,且又添加了抗氧化剂,所以通常只对新油进行此项目试验,但对于进口油,特别是不含抗氧化剂的油,除对新油进行试验外,在运行若干年后也应进行此项试验,以便采取适当的维护措施,延长使用寿命。 6、击穿电压:变压器油的击穿电压是检验变压器油耐受极限电应力情况,是一项非常重要的监督手段,通常情况下,它主要取决于被污染的程度,但当油中水分较高或含有杂质颗粒时,对击穿电压影响较大。 7、介质损耗因数:介质损耗因数对判断变压器油的老化与污染程度是很敏感的。新油中所含极性杂质少,所以介质损耗因数也甚微小,一般仅有%~%数量级;但由于氧化或过热而引起油质老化时,或混入其他杂质时,所生成的极性杂质和带电胶体物质逐渐增多,介质损耗因数也就会随之增加,在油的老化产物甚微,用化学方法尚不能察觉时,介质损耗因数就已能明显的分辨出来。因此介质损耗因数的测定是变压器油检验监督的常用手段,具有特殊的意义。 8、界面张力:油水之间界面张力的测定是检查油中含有因老化而产生的可溶性极性杂质的一种间接有效的方法。油在初期老化阶段,界面张力的变化是相当迅速的,到老化中期,其变化速度也就降低。而油泥生成则明显增加,因此,此方法也可对生成油泥的趋势做出可靠的判断。 9、油泥:此法是检查运行油中尚处于溶解或胶体状态下在加入正庚烷时,可以从油中沉析出来的油泥沉积物。由于油泥在新油和老化油中的溶解度不同,当老化油中渗入新油时,油泥便会沉析出来,油泥的沉积将会影响设备的散热性能,同时还对固体绝缘材料和金属造成严重的腐蚀,导致绝缘性能下降,危害性较大,因此,以大于5%的比例混油时,必须进行油泥析出试验。

变压器的损耗和效率

变压器的损耗和效率 一、变压器简介 变压器是利用电磁感应原理传输电能或电信号的器件,它具有电压变换、电流变化和阻抗变换及电气隔离的作用。 1、理想变压器工作原理 理想变压器基于下述两个假设: 1、变压器效率等于1,无任何能量损耗。即忽略了实际铁芯变压器线圈的电阻以及铁芯在交变磁场作用下所产生的能量损耗。 2、铁芯的磁导率μ趋近于无穷大,没有漏磁通。线圈的互感磁通等于自感磁通,耦合系数K为1,线圈自感系数L1、L2趋于无穷大,但是,L1/L2为常数,数值上等于原副边匝数比的平方。 理想变压器的工作原理如下: 图1理想变压器工作原理(变压器) 变压器的主要部件是一个铁心和套在铁心上的两个绕组。两绕组只有磁耦合没电连接。在一次绕组中施加交变电压,交变电压产生交变电流,交变电流产生交链一、二次绕组的交变磁通Φ,在一次和二次绕组中分别感应出电动势E1、 E2。 理想变压器的绕组电阻为零,有:

E1=-U1,E2=-U2 假设一次和二次线圈的匝数分别为N1和N2,一次和二次绕组铰链的磁链分别为Ψ1和Ψ2,根据电磁感应定律,下述方程组成立: U1=-E1=-dΨ1/dt=d(N1Φ)/dt=N1dΦ/dt(a) U2=-E2=-dΨ2/dt=d(N2Φ)/dt=N2dΦ/dt(b) (a)式除以(b)式,可得: U1/U2=N1/N2(1) 理想变压器效率等于1,一次与二次绕组之间在能量传输过程中没有损耗,可知: U1I1=U2I2 联立式(1)可得: I1/I2=N2/N1(2) (1)式除以(2)式,可得: (U1/I1)/(U2/I2)=(N1/N2)2 U1/I1及U2/I2分别为一次和二次绕组的阻抗,分别记为Z1和Z2,则: Z1/Z2=(N1/N2)2(3) (1)、(2)、(3)三式分别表示了理想变压器的电压变换、电流变换和阻抗变换关系。 2、实际变压器工作原理 实际变压器绕组电阻不为零; 实际变压器交变磁通在铁芯中会产生涡流损耗和磁滞损耗; 实际变压器铁芯磁导率为有限值,一次绕组产生的磁通会有部分与空气形成磁路,不与二次绕组铰链,称为漏磁通Φσ1,同样,二次绕组也会产生漏磁通Φσ2。 因此: E1≠U1、E2≠U2。 同时铰链一次绕组和二次绕组的磁通称为主磁通Φ。由于空气的磁滞很大,一般主磁通远远大于漏磁通。 实际变压器效率小于1,其工作原理如下:

变压器产品介绍

變壓器產品介紹 一.何為變壓器? 所謂變壓器就是以互感現象為基礎﹐隔離電阻﹑耦合電容為目的的一種電磁裝置。二.變壓器的分類﹕ 其類型主要有電源變壓器﹑間頻變壓器﹑中頻變壓器﹑高頻變壓器﹑低頻變壓器﹑音頻變壓器等。 中頻變壓器又稱中周﹐與電容器相互組成諧振﹐以改變線圈的電感量。 間頻變壓器主要作用是阻抗匹配﹐耦合﹑倒相等﹐可以推動放大級的輸出阻抗與放大功率。 三.變壓器的組成﹕ 由鐵芯﹑漆包線和絕緣材料三部分組成。 A.漆包線﹕本公司常用的漆包線的原材料﹐常用的規格Φ0.10 mm 0UEW Φ0.08 mm 0UEW Φ0.14 mm 0 UEW 其中﹕ 線的直徑表示油漆膜 B.鐵芯(即磁的裝置) 型號有﹕T型N型M型E型 常用到的鐵芯規格是36T0153-20P 36T0148-21P 35T0100-00P L82-4F/2H-1F1P L52-4F2H-1F/1P等。 涂膜材料與耐壓﹕ P------油漆膜耐壓1000Vrms Q------油漆膜耐壓1500Vrms G------環氣樹脂耐壓1000Vrms 材質﹕鐵芯常使用的材質是高導磁系數材料﹐優點是降低磁阻并可減少激磁電流。四.變壓器的作用﹕ 主要作用是隔離﹑耦合兩大作用。 五.變壓器的外形﹕ 以本公司生產產品為例﹐主要常見的外形系列有PT系列﹑ST系列﹑LAN-MATE系列﹐以及有待即將以后開發的PCM薄片等新品種。

V2=N2 d t 而互感值M12 N2 Φ12 M12= i1 可整理為﹕ d Φ12 d i1 V2=N2 (N2Φ12=M12i1)=M12 d t d t

其中M12為N1線圈時N2線圈的互感系數﹐也可稱為互感﹐若我們將線圈N2接上負載形成通路時﹐則感應動勢會產生感應電流i2﹐此為變壓器的基本原理。 當交流電壓正接上一次側線圈上﹐則有電流i1產生交變磁通﹐Φ在鐵芯周圍流動﹐因此在二次側線圈分別有感應電壓V1及V2。 d Φ d Φ V1=N1 (A-1) V2=N2 (B-1) d t d t 由(A-1)與(B-1)式之相除可得﹕ V1 N1 = = a V2 N2 (注﹕習慣上我們把接有電源的線圈稱為一次線圈或初級線圈﹐而將負載接的線圈稱為二次線圈或次級線圈。) 我們定義a為匝數比﹐即我們所講的圈比﹕ N1 a= N2 因此﹐理想變壓器的一次側與二次側電壓比等于線圈的匝數比。 理想情況下﹐輸入功率等于輸出功率﹐故﹕ V1*I1=V2*I2 V1 I2 N1 = = V2 I1 N2 也因而使得電流比為﹕

10kV油浸式变压器技术规范

10kV油浸式变压器技术规范

目录 1规范性引用文件 (1) 2结构及其他要求 (2) 3标准技术参数 (5) 4使用环境条件表 (7) 5试验 (8)

10kV油浸式变压器技术规范 1规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本适用于本文件。 GB 311.1绝缘配合第1部分:定义、原则和规则 GB 1094.1电力变压器第1部分:总则 GB 1094.2电力变压器第2部分:液浸式变压器的温升 GB 1094.3电力变压器第3部分:绝缘水平、绝缘试验和外绝缘空气间隙 GB/T 1094.4电力变压器第4部分:电力变压器和电抗器的雷电冲击和操作冲击试验导则 GB 1094.5电力变压器第5部分:承受短路的能力 GB/T 1094.7电力变压器第7部分:油浸式电力变压器负载导则 GB/T 1094.10电力变压器第10部分:声级测定 GB 2536电工流体变压器和开关用的未使用过的矿物绝缘油 GB/T 2900.15电工术语变压器、互感器、调压器和电抗器 GB/T 4109交流电压高于1000V的绝缘套管 GB 4208外壳防护等级(IP代码) GB/T 5273变压器、高压电器和套管的接线端子 GB/T 6451油浸式电力变压器技术参数和要求 GB/T 7252变压器油中溶解气体分析和判断导则 GB/T 7354局部放电测量 GB/T 7595运行中变压器油质量 GB/T 8287.1标称电压高于1000V系统用户内和户外支柱绝缘子第1部分:瓷或玻璃绝缘子的试验GB/T 8287.2标称电压高于1000V系统用户内和户外支柱绝缘子第2部分:尺寸与特性 GB/T 11022高压开关设备和控制设备标准的共用技术要求 GB 11604高压电器设备无线电干扰测试方法 GB/T 13499电力变压器应用导则 GB/T 16927.1高电压试验技术第1部分:一般定义及试验要求 GB/T 16927.2高电压试验技术第2部分:测量系统 GB/T 17468电力变压器选用导则 GB 20052三相配电变压器能效限定值及能效等级 GB/T 25438 三相油浸式立体卷铁心配电变压器技术参数和要求 GB/T 25446 油浸式非晶合金铁芯配电变压器技术参数和要求 GB/T 26218.1污秽条件下使用的高压绝缘子的选择和尺寸确定第1部分:定义、信息和一般原则GB/T 26218.2污秽条件下使用的高压绝缘子的选择和尺寸确定第2部分:交流系统用瓷和玻璃绝缘子 GB 50150电气装置安装工程电气设备交接试验标准 DL/T 572电力变压器运行规程 DL/T 593高压开关设备和控制设备标准的共用技术要求 DL/T 596电力设备预防性试验规程 DL/T 984油浸式变压器绝缘老化判断导则

变压器效率特性

变压器运行特性分析与效率曲线二、理论分析 2.效率和效率特性 变压器运行时将产生损耗。变压器的损耗分为铜耗和铁耗,每一类又包括基本损耗和杂散损耗。其中铁耗可视为不变损耗。基本铜耗是指电流流过绕组时所产生的直流电阻损耗。杂散铜耗主要是指漏磁场引起电流集肤效应,使绕组的有效电阻增大所增加的铜耗,以及漏磁场在结构部件中所引起的涡流损耗等。 变压器的总损耗为 '' 2 2k Fe Cu Fe R mI p p p P+ = + = ∑ 式中,电阻。 为归算到二次侧的短路 为相数;''R k m 变压器的输入有功功率为1P,输出功率为2P,总损耗功率为P ∑,所以效率 为 P P P P P ∑ + = = 2 2 1 2 η 由于电力变压器的效率很高,用直接负载法测量1P和2P在算出效率,很难 得到准确的结果,因此工程上常采用间接法来计算效率,由空载试验测出铁耗,由短路试验测出铜耗在计算效率。此时效率为 kN O N kN O P I P I S P I P P P 2 2 2 2 2 2 1 cos 1 1 * * * + + + - = ∑ - = ? η 给定以上的参数即可绘制效率曲线。

图3.变压器的效率曲线 有数学分析 2 = dI dη 可知在变压器的铜耗等于铁耗时,变压器的效率达到最 大。 图4.效率曲线的最大值 说明:图中铁耗与铜耗值与对应的坐标值并不一一对应。 附程序源代码 3.变压器的效率曲线 function xiaolv1 p0=2.4; pk=11.6; sn=1000; j=0.8; a=zeros(1,1000); b=zeros(1,1000); for i=2:1:1000 a(i)=a(i-1)+0.001; b(i)=1-(p0+(a(i)^2)*pk)/(a(i)*sn*0.8+p0+(a(i)^2)*pk); end hold on plot(a,b) xlabel('I2的标幺值 ') ylabel('效率 ') 4.效率曲线的最大值 function xiaolv2 p0=2.4; pk=11.6; sn=1000;

变压器运行特性分析

课程设计名称:电机与拖动课程设计 题目:变压器运行特性分析计算 专业: 班级: 姓名:

学号: 课程设计成绩评定表

变压器在我们的生活中无处不在,为了适应不同的使用目的和工作条件,现实生活中有很多种类型的变压器,常用的变压器有:电力变压器、特殊用途的电源变压器、测量用变压器、控制变压器,且这些类型的变压器在结构和性能上的差别也很大。虽然这些变压器有所不同,但是它们的基本原理是相同的。本设计通过对变压器的变换关系即电压变换、电流变换、阻抗变换,分析研究出变压器运行时的基本方程式,并通过相应的折算得出变压器的等值电路,从而完成对变压器空载,变压器负载运行,变压器空载合闸,变压器副边突然短路时的分析与计算。为了简化计算、减少计算量,本设计在相应的计算上使用MATLAB软件进行辅助。通过本设计的研究计算能对变压器的分析和计算方法有初步的了解,对变压器出现空载、负载运行、空载合闸、副边突然短路时的电压、电流变化有准确的认识。 关键词:变压器;基本方程式;折算;等值电路;MATLAB计算

1 变压器结构及其组成部分 (1) 1.1变压器的基本结构 (1) 1.1.1铁芯 (1) 1.1.2绕组 (1) 1.1.3油箱和冷却装置 (2) 1.1.4绝缘套管 (2) 1.1.5其他构件 (2) 1.2变压器的额定值 (2) 2变压器的变换关系 (4) 2.1电压变换 (4) 2.2电流变换 (4) 2.3阻抗变换 (5) 3变压器等值电路及其折算关系 (6) 4变压器空载时的分析与计算 (8) 5变压器负载运行时的分析与计算 (9) 6变压器副边突然短路时分析计算 (10) 7结论 (11) 8心得体会 (12) 参考文献 (13)

变压器损耗计算的

《装备制造技术》2012年第11期 电力变压器是电力网中重要元件之一,其损耗是电力网电能损耗的主要部分。因此,准确计算出变压器在实际运行中的电能损耗有着重要的意义。但目前较普遍运用的损耗系数法不能准确计算其真实损耗,因为其损耗量除了与其本身的特性(由材料、制作工艺等多种因素决定)有关外,还与其负荷特性有关。而损耗系数法简单地按抄见电量的一定比例加一固定损耗量计算,即:电能损耗量=固定铁芯损耗+抄见有功电量×铜损系数(%),未能考虑负荷特性的影响。而采取均方根电流法或平均电流法计算,不仅考虑了变压器的固有特性,还充分考虑了其负荷特性,能很准确地反映其电能损耗。 1常见的变压器损耗电量及电费的计算方法 1.1公式计算法 公式计算法就是根据当月抄录的有功、无功电量和变压器容量及铭牌参数,按照上述相关公式,计算出该月变压器的有功损耗电量和无功损耗电量,据此计算变损费用。这种办法的优点是计算结果准确,符合公平、透明的原则,针对特定的变压器计算损耗电量比较合适,但是,由于目前的用电营销管理水平参差不齐,变压器基础档案是否齐全、技术性能参数是否准确难以保证,而且计算工作量较大,对用户的解释工作也比较繁琐,不适合用电营销MIS系统大范围对大批量用户计算损耗电量。 1.2固定系数法 固定系数法就是变压器实际用电量乘以某一固定比例求得变压器损耗电量,据此计算变损费用。其优点是计算方法简单,便于向用户解释,能够反映损耗电量随用电量增加而增加的规律,但是缺点也是明显的,变压器损耗电量与实际用电量不是完全的线性关系,尤其是用电量较低时不能准确反映变压器的固定损耗电量。 1.3固定费用法 固定费用法就是按照预先设定的条件,计算出不同容量变压器对应的损耗费用,按容量每月收取固定费用。这种方法的优点也是计算方法简单、便于向用户解释,而且能够反映变压器固定损耗的特性,不过缺点就是不能反映损耗电量随用电量增长的关系,损耗电量难以按实际不同用电类别合理分摊,也无法统计准确,更重要的是由于电价调整比较频繁,固定费用法也不能及时、准确反映损耗电量与损耗费用的相关性。1.4查表法 查表法就是依照国家标准规定的变压器参数和预先合理设定的条件,计算出不同容量变压器在不同用电情况下对应的有功和无功损耗电量,进行合理归并后得到变损电量速算表,然后根据变压器额定容量和实际用电量查表求得当月变压器损耗电量,据此计算变损费用。这种方法能较准确地反映出变压器固定损耗的固定性和可变损耗随用电量变化的可变性,计算过程相对比较简单、规范、透明,也比较容易被用户理解、接受,虽然准确度较公式计算法稍差,但能够满足一般要求,也符合用电营销MIS系统的要求。但拟定变损速算表的前期准备工作量较大。 综上所述,用电营销MIS系统一般推荐采用查表法计算变压器损耗电量。在运行容量、运行时间有变化及计算特定型号的变压器损耗电量时,可采用公式计算法。 2变损的计算 高供高量用户,变压器的铜损、铁损,在有功电表、无功电表里已经包括,不再另加变损。由于变压器容量小或表计设备来源的限制,对于高供低量用户,特别是在上世纪80年代前规定315kVA(原320kVA)要高 变压器损耗计算的探析 刘静 (武汉市汉口供电公司,湖北武汉430012) 摘要:分析了几种常见的变压器损耗电量及电费的计算方法,通过实证分析得出变损计算应根据变压器的参数及负荷特性,结合查表法来进行变损计算。 关键字:变压器;损耗;计算 中图分类号:TM41文献标识码:B文章编号:1672-545X(2012)11-0165-03收稿日期:2012-08-09 作者简介:刘静(1969—),湖北武汉人,工程师,本科学历,研究方向电力系统及其自动化。 165

相关文档