文档库 最新最全的文档下载
当前位置:文档库 › 第08章 电磁感应

第08章 电磁感应

第08章 电磁感应
第08章 电磁感应

一、概念选择题:

1.感生电场是( C )

(A)由电荷激发,是无源场;

(B)由电荷激发,是有源场;

(C)由变化的磁场激发,是无源场;

(D)由变化的磁场激发,是有源场

2.关于感应电动势的正确说法是:( D )

(A)导体回路中的感应电动势的大小与穿过回路的磁感应通量成正比;

(B)当导体回路所构成的平面与磁场垂直时,平移导体回路不会产生感应电动势;

(C)只要导体回路所在处的磁场发生变化,回路中一定产生感应电动势;

(D)将导体回路改为绝缘体环,通过环的磁通量发生变化时,环中有可能产生感应电动势。

3.交流发电机是根据下列哪个原理制成的:( A )

(A)电磁感应(B)通电线圈在磁场中受力转动

(C)奥斯特实验(D)磁极之间的相互作用

4.英国物理学家法拉第发现:( C )

(A)电流通过导体,导体会发热

(B)通电导线周围存在磁场

(C)电磁感应现象

(D)通电导体在磁场里会受到力的作用

5.关于产生感应电流的条件,下面说法正确的是( C )

(A)任何导体在磁场中运动都产生感应电流

(B)只要导体在磁场中做切割磁力线运动时,导体中都能产生感应电流(C)闭合电路的一部分导体,在磁场里做切割磁力线运动时,导体中就会产生感应电流

(D)闭合电路的一部分导体,在磁场里沿磁力线方向运动时,导体中就会产生感应电流

6.对于法拉第电磁感应定律d dt

φε=-,下列说法哪个是错误的:( A )

(A )负号表示ε与φ的方向相反 (B )用上式可以确定感应电动势的大小 (C )负号是楞次定律的体现

(D )用上式可以确定感应电动势的方向

7.将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的

变化率相等,则不计自感时( D )

(A )铜环中有感应电动势,木环中无感应电动势 (B )铜环中感应电动势大,木环中感应电动势小 (C )铜环中感应电动势小,木环中感应电动势大 (D )两环中感应电动势相等

8.涡旋电场和静电场存在差别。以下表达正确的是:( C )

(A )涡旋电场是由静止电荷产生的,电场线从正电荷出发,终止于负电荷 (B )静电场是无头无尾的闭合曲线

(C )在静电场中,电场强度E 沿任意闭合路径的线积分为零。 (D )涡旋电场是有源场

9.如图:一闭合导体环,一半在匀强磁场中,另一半在磁场外,为了环中感生

出顺时针方向的电流,则应( B )

(A )使环沿y 轴正向平动

(B )使环沿x 轴正向平动

(C )环不动,增强磁场的磁感应强度 (D )使环沿x 轴反向平动

10.在感应电场中电磁感应定律可写成?Φ-=?L K dt

d l d E ,式中K E

为感应电场

的电场强度。此式表明:( D )

(A )闭合曲线L 上K E

处处相等

(B )感应电场是保守力场

(C )感应电场的电场线不是闭合曲线

(D )在感应电场中不能像对静电场那样引入电势的概念

11. 感应电动势的方向服从楞次定律是由于: ( C )

(A) 动量守恒的要求; (B) 电荷守恒的要求; (C) 能量守恒的要求; (D) 与这些守恒律无关。

12. 在匀强磁场中有一圆形线圈,在下列哪种情况中,线圈中一定会产生感应

电流:( D ) (A) 线圈平动;

(B) 线圈转动,转轴过线圈的中心且与线圈平面的法线方向垂直,转轴与磁

场平行;

(C) 线圈面积不变;

(D) 线圈转动,转轴过线圈的中心且与线圈平面的法线方向垂直,转轴与磁

场垂直。

二、判断题:

1.导体不存在时,在变化的磁场周围不存在感生电场。( × )

2. 感应电流的效果总是反抗引起感应电流的原因。( √ )

3.导体在磁场中运动产生感应电流时,该电流受到的磁力总表现为导体运动的阻力。( √ )

4. 两个彼此无关的闭合回路,其中之一的磁通量发生了Wb

5.7的改变,另一发生了Wb 2.7的改变,前者的感应电动势一定大于后者。( × ) 5. 产生动生电动势的非静电力是洛仑兹力。( √ )

6.制作高频变压器铁芯时,总是把铁芯做成片状,片与片之间涂导电材料。( × ) 7. 涡流的机械效应可用作电磁阻尼,广泛用于各种仪表测量系统中。( √ )

8. 线圈处于均匀磁场中,均匀磁场与线圈平面垂直。该线圈保持周长不变,当

它由圆形变为椭圆形过程中,线圈中不产生感应电动势。(×)

9.导体中有感生电动势产生时,则要求导体构成回路。( ×)

10.有两个相互平行的直线导体,其中一个通有电流

I,当两导线相互靠近时,

另一导线上感应电流的方向与

I方向相反。( √)

三、计算选择题:

1.如图所示,光滑固定导轨水平放置,两根导体棒P和Q平行放在导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时:( A )

(A)P和Q将互相靠近;(B)P和Q均向左运动;

(C)P和Q将互相远离;(D)P和Q均向右运动。

2.如图所示,光滑固定导轨水平放置,两根导体棒P、Q平行放在导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时:( B )

(A )磁铁的加速度大于g ; (B )磁铁的加速度小于g ;

(C )磁铁的加速度开始时小于g ,后来大于g ; (D )磁铁的加速度开始时大于g ,后来小于g 。

3.一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两

侧与一个伏特计相接。整个系统放在磁感应强度为B 的均匀磁场中,B

的方向沿z 轴正方向。如果伏特计与导体平板均以速度υ向y 轴正方向运动,则伏特计指示的读数值为:( C )

(A )0 (B )1

2Bl υ

(C )Bl υ (D )2Bl υ

4.长度为l 的直导线ab 在均匀磁场B

中以速度υ移动,直导线ab 中的电动势

为: ( D )

(A )Bl υ (B )sin Bl υα (C )cos Bl υα (D

)0

5.如图,挂在弹簧下端的条形磁铁在闭合线圈上端振动时,若空气阻力不计, 则( A )

(A )条形磁铁的振幅将逐渐减小 (B )条形磁铁的振幅不变

(C )线圈中将产生大小改变而方向不变的直流电 (D )线圈中无电流产生

6.如图,挂在弹簧下端的条形磁铁在闭合线圈上端振动时,若空气阻力不计, 则:( A )

(A )线圈中将产生大小和方向都发生改变的交流电 (B )条形磁铁的振幅不变

(C )线圈中将产生大小改变而方向不变的直流电 (D )线圈中无电流产生

7.一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是( B ) (A )线圈绕自身直径轴转动,轴与磁场方向平行 (B )线圈绕自身直径轴转动,轴与磁场方向垂直 (C )线圈平面垂直于磁场并沿垂直磁场方向平移 (D )线圈平面平行于磁场并沿垂直磁场方向平移

8.如图所示,一矩形线圈长宽各为a b 、,置于均匀磁场B 中,且B

随时间的

变化规律为,线圈平面与磁场方向垂直,则线圈内感应电动势大小

为:( C )

(A )()

kt B ab -0 (B )

abB (C )kab (D )0

9.两个闭合的金属环,穿在一极光滑的绝缘杆上(如图),当条形磁铁的N 极自右向左插向圆环时,两圆环的运动是:( B )

(A) 边向左移边分开; (B) 边向左移边合拢; (C) 边向右移边合拢; (D) 同时同向移动。

10.自感为0.25H 的线圈中,当电流在(1/16) s 内由2A 均匀减小到零时,线圈

中自感电动势的大小为:( C )

(A) 7.8 ×10-3 V (B) 3.1 ×10-2 V (C) 8.0 V (D) 12. 0 V

四、填空题:

1.如图所示,把一根条形磁铁从同样高度插到线圈中同样的位置处,第一次动作快,线圈中产生的感应电动势为1ε;第二次慢,线圈中产生的感应电动势为2ε,则两电动势的大小关系是1ε 大于 2ε。

2. 金属杆ABC 处于磁感强度T 1.0=B 的匀强磁场中,磁场方向垂直纸面向里(如图所示)。已知BC AB =m 2.0=,当金属杆以图中标明的速度方向运动时, 测得C A ,两点间的电势差是

3.0V ,则可知B A ,两点间的电势差ab V 等于 2 V 。

3. 如图,导体棒ab 与金属框接触,并置于均匀磁场中,磁场方向垂直纸面向里

?,导体棒向右运动,判断ab 两点的电势关系a ε 大于 b ε。

4. 如图,导体棒ab 长m 3=l ,置于T

5.0=B 的均匀磁场中,磁场方向垂直纸面

向里?,导体棒以1s m 4-?的速度向右运动。导体棒长度方向、磁场方向和运动方向两两垂直,棒内感生电动势大小为 6 V 。

五、计算题:

1.长直导线与矩形单匝线圈共面放置,导线与线圈的长边平行。矩形线圈的边长分别为b a ,,它到直导线的距离为c (如下图)。当直导线中通有电流0I I cos t =ω时,求:

(1)穿过矩形线圈的磁通量; (2)矩形线圈中的感应电动势。

解:长直导线中通有电流t I I ωcos 0=,则空间的磁场分布为

r

I

B π20μ=

穿过矩形线圈的磁通为

01

d d ln

22c a

c

I

bI c a B S b r r c

+μμ+Φ===π

???

π 根据法拉第电磁感应定律

t d d Φ-

=ε 矩形线圈中感应电动势为

00ln sin 2πI b c a t c

μω+ε=-ω

2.一矩形线圈长l ,宽为b ,由N 匝导线绕成,放置在无限长直导线旁边,并

和直导线在同一平面内,该直导线是一个闭合回路的一部分,其余部分离线圈很远,其影响可略去不计。求图(a )、图(b )两种情况下,线圈与长直导线间的互感。

解:(a)空间的磁场分布为r

I

B π20μ=

b b

Il N S B N N 2ln 2d 0πμ??==Φ=ψ

)(2ln 20H l N I M π

μ=ψ

=

(b)由于直导线两侧的磁场分布是对称的,且方向相反,因此两侧的磁通量大小相等,差一个负号

M Φ=∴=

3.一长为L 的导体棒CD ,在与一均匀磁场垂直的平面内,绕位于3

L 处的轴O

以匀角速度ω沿逆时针方向旋转,磁场方向如图所示,磁感强度大小为B ,求 (1)导体棒内总的感应电动势; (2)指出C 和D 哪一端电势较高。

(a)

)

(b

解:如图建立坐标系,原点取在O 点,x 轴方向沿OD 方向,在棒上取线元

x d

沿CD 方向,则导体棒内的感应电动势为

CO OD εεε+=

x d B υx d B υεD O

O C

??+??=??

)()(

dx πBx ωdx x B ωdx πx B ωdx x B ωεL L L L cos )(cos 3

/20

3

/3

/20

3/?

?

?

?+-=+=--

2

222()()23236

B L B L B L ωωωε=-=-

即棒内感应电动势大小为6

2

L B ω,方向从D 指向C 。

C 点电势较高。

4.如图所示,在两无限长载流导线组成的平面内,有一固定不动的矩形导体回

路。两电流方向相反,若电流()A 12+=t I ,求: (1)穿过线圈的磁通量 (2)线圈中感应电动势的大小。

解:

(1)以右面的电流为坐标原点,水平向右为x 轴正向,则框内任一点磁感应强度为

1

20

021π2π2d d x I

x

I

B B B -+-

=

-=μμ

取逆时针方向为回路绕行方向,如图,在线框上取面元S d ,且x h S d d =,穿过框的磁通量为

x d d x x Ih S B l d d d 11π2d 120

11

???? ?

?-+-=?=Φ??+μ =

π20h

μI ???

?

??+-+2211ln ln d l d d l d (2)其中12+=t I ,则矩形框上的感应电动势为

t

d d Φ

-

=ε ()()1200121221ln ln ln ππd d l h h d l d l d d d d l μμε+?

?++=-

-= ?+??

5. 两同轴长直密绕螺线管1和2,长度均为l ,半径分别为1r 和2r (12r r <),匝数分别为1N 和2N ,求:

(1)螺线管1的磁场在螺线管2中产生的磁链数

(2)两个螺线管间的互感系数M 。

解:解:(1)设螺线管1中通有电流I 1,则其产生的磁感强度为

0111N I B l

μ=

则穿过螺线管2的磁通匝链数为

2221211(π)N ΦN B r ψ==

2

01211πN N r I l

μψ=

(2)互感系数

211

M I ψ

=

2

012121πN N r M l

μ=

6.一截面为长方形的螺绕环,其尺寸如图所示,共有N 匝,求此螺绕环的自感。

解: r

NI

B πμ20=

1

2200ln

222

1

R R Ih N r d h r

NI

N S d B N R R

S m πμπμ===Φ?? 由于LI m =Φ, 所以

1

2

20ln

2R R h N L πμ=

7.如图所示, 均匀磁场与半径为r 的圆线圈垂直 (图中l

d 表示绕行回路的

正方向)。如果磁感强度随时间的变化的规律为/0t B B e

τ

-=,其中0B 和τ为

常量, 试将线圈中的感应电动势表示为时间的函数,并标明方向。

解:

取与回路绕行方向满足右手螺旋定则关系的方向,即向上为磁感应强度的正方向

则穿过闭合曲线所围面积的磁通量为:

2/0t r B e τφπ-=

根据法拉第电磁感应定律

d dt

φε=-

2/0t r B e τ

πτ-= 因为ε>0,所以感应电动势方向与规定的正方向相同 画图给出电动势方向

8.如图,在通有电流A I 5=的长直导线旁有一长为m L 1=的金属棒,以速度

s m V /100=平行于导线运动,棒的近导线一端距离导线为m a 1=,求金属棒电动势,并判断AB 点电势高低?(NA μπ--=?720410)

解:建立如图所示的坐标系,

在AB 上x 处取一小微元段d x ,根据动生电动势计算公式知该微元段产生的电动势大小为:

d B dx ευ=

x 处的磁感应强度大小为

02I

B x

μπ=

,方向垂直纸面向里 总电动势大小:

2

2

5001

1

ln 2 6.910 (V)22I I B dx dx x μμυ

ευυππ

-====???

A 点电势比

B 点高。

9. 一载流长直导线中电流为I ,一矩形线框置于同一平面中,线框宽为a ,长为b ,并以速度v 垂直于导体运动,如图所示。当线框边AB 与导线的距离为d 时,试用法拉第电磁感应定律求出此时线框内的感应电动势,并指出其方向。

dx

O

解:以长直导线为坐标原点取x 轴向右。任意t 时刻AB 边距长直导线为x 。 在

框内取宽为x d 的面元x b S d d =,面元法线垂直纸面向里,穿过面元的磁通量为

b d x

x

I

S d B d π20μ=?=Φ 则,穿过整个矩形框的磁通量为

x

a x I

b x x Ib a x x +==Φ?+ln π2d π200

μμ 线框内电动势为

()

00d d ln 2πd d 2πIb Ib d x a x a

dt x x t x x a μμυεΦ+??=-

=-= ?

+?? 当d x =时,电动势值为

()

02πIb a

d d a μυ

ε=

+

此时,0>ε,即矩形框电动势ε的方向为ADCBA (顺时针方向)。 (也可以用楞次定律判定框内电动势的方向为ADCBA 方向。)

10.有一无限长螺线管,每米有线圈800匝,在其中心放置一个圆形小线圈,其匝数为30,其半径为01.0米,且使其轴线与无限长螺线管轴线平行。求: (1) 两线圈的互感M

(2)若在100

1

秒内,使螺线管中电流均匀地从0增加到0.5安,问圆形小线圈中

感应电动势为多大?

解:(1) 设无限长螺线管有电流I ,则其内部产生的磁感应强度为 nI B 0μ=

通过圆形小线圈的磁通链数为

20πr nI N NBS μ==Φ

互感为

20πr n N I

N B S

I M μ==Φ=

()27

26

304108000.019.4610H

π--=???

?=?

(2) 感应电动势的大小: dt

dI

r n N t I M

20d d πμε=-=

272

3

530410800

0.014.7310()1100

V π

--=?????=?

专题电磁感应与电路

专题电磁感应与电路 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

专题 4 电磁感应与电路 思想方法提炼 电磁感应是电磁学的核心内容,也是高中物理综合性最强的内容之一,高考每年必考。题型有选择、填空和计算等,难度在中档左右,也经常会以压轴题出现。 在知识上,它既与电路的分析计算密切相关,又与力学中力的平衡、动量定理、功能关系等知识有机结合;方法能力上,它既可考查学生形象思维和抽象思维能力、分析推理和综合能力,又可考查学生运用数知识(如函数数值讨论、图像法等)的能力。 高考的热点问题和复习对策: 1.运用楞次定律判断感应电流(电动势)方向,运用法拉第电磁感应定律,计算感应电动势大小.注重在理解的基础上掌握灵活运用的技巧. 2.矩形线圈穿过有界磁场区域和滑轨类问题的分析计算。要培养良好的分析习惯,运用动力学知识,逐步分析整个动态过程,找出关键条件,运用运动定律特别是功能关系解题。 3.实际应用问题,如日光灯原理、磁悬浮原理、电磁阻尼等复习时应多注意。 此部分涉及的主要内容有: 1.电磁感应现象. (1)产生条件:回路中的磁通量发生变化. (2)感应电流与感应电动势:在电磁感应现象中产生的是感应电动势,若回路是闭合的,则有感应电流产生;若回路不闭合,则只有电动势,而无电流. (3)在闭合回路中,产生感应电动势的部分是电源,其余部分则为外电路. 2.法拉第电磁感应定律:E=n ,E=BLvsinq , 注意瞬时值和平均值的计算方法不同. 3.楞次定律三种表述: (1)感应电流的磁场总是阻碍磁通量的变化(涉及到:原磁场方向、磁通量增减、感应电流的磁场方向和感应电流方向等四方面).右手定则是其中一种特例. (2)感应电流引起的运动总是阻碍相对运动. (3)自感电动势的方向总是阻碍原电流变化. 4.相关链接 (1)受力分析、合力方向与速度变化,牛顿定律、动量定理、动量守恒定律、匀速圆周运动、功和能的关系等力学知识. (2)欧姆定律、电流方向与电势高低、电功、电功率、焦耳定律等电路知识. (3)能的转化与守恒定律. 感悟 · 渗透 · 应用 【例1】三个闭合矩形线框Ⅰ、Ⅱ、Ⅲ处在同一竖直平面内,在线框的正上方有一条固定的长直导线,导线中通有自左向右的恒定电流,如图所示,若三个闭合线框分别做如下运动:Ⅰ沿垂直长直 导线向下运动,Ⅱ沿平行长直 导线方向平动,Ⅲ绕其竖直中心 轴OO ′转动. (1)在这三个线框运动的过程中, 哪些线框中有感应电流产生 方向如何 (2)线框Ⅲ转到图示位置的瞬间,是否有感应电流产生 【解析】此题旨在考查感应电流产生的条件.根据直线电流周围磁场的特点,判断三个线框运动过程中,穿过它们的磁通量是否发生变化. (1)长直导线通有自左向右的恒定电流时,导线周围空间磁场的强弱分布不变,但离导线越远,磁场越弱,磁感线越稀;离导线距离相同的地方,磁场强弱相同. t ??Φ

电磁感应图像

电磁感应图像问题 电磁感应中常涉及磁感应强度B、磁通量Ф、感应电动势E和感应电流i 随时间的t 的变化的图象,即B-t 图象、Ф-t 图象、E-t 图象和i-t 图象.对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E和感应电流i 随线圈位移x 变化的图象,即E-x 图象和i-x 图象. 这些图象问题大体上可分为两类: ①由给定的电磁感应过程选出或画出正确的图象. ②由给定的有关图象分析电磁感应过程,求解相应的物理量. 不管何种类型,电磁感应中的图象问题常需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决. 类型一:因面积变化而感应(含切割模型) 1、如图所示,边长为L 正方形导线圈,其电阻为R ,现使线圈以恒定速度v 沿x 轴正方向运动,并穿过匀强磁场区域B ,如果以x 轴的正方向作为力的正方向,线圈从图示位置开始运动, 请画出(1)穿过线圈的磁通量随x 变化的图线; (2)线圈中产生的感应电流随x 变化的图线; (3)磁场对线圈的作用力F 随x 变化的图线; 2、如图所示,两平行的虚线间的区域内存在着有界匀强磁场,有一较小的三角形线框abc 的ab 边与磁场边界平行,现使此线框向右匀速穿过磁场区域,运动过程中始终保持速度方向与ab 边垂直.则下列 各图中哪一个可以定性 地表示线框 在进入磁场的过程中感应电流随时间变化的规律: ( D ) t B

3、如图所示,一直角三角形金属框,向左匀速地穿过一个方向垂直于纸面向内的匀强磁场,磁场仅限于虚线边界所围的区域内,该区域的形状与金属框完全相同,且金属框的下边与磁场区域的下边在一直线上。若取顺时针方向为电流的正方向,则 金属框穿过磁场过程听感应电流随时间变化的图象是下列四个图中 ( C ) 4.如图(甲)所示,两条平行虚线之间存在匀强磁场,虚线间的距离L ,磁场方向垂直纸面向里.Abcd 是位于纸面内的梯形线圈,ad 与bc 间的距离也为L.t=0时刻,bc 边与磁场区域边界重合,现令线圈 以恒定的速度υ B ) 5、如图,一个边长为l 的正方形虚线框内有垂直于纸面向里的匀强磁场; 一个边 长也为l 的正方形导线框所在平面与磁场方向垂直; 虚线框对角线ab 与导线框的 一条边垂直,ba 的延长线平分导线框.在t=0时, 使导线框从图示位置开始以恒定速度沿ab 方向移动,直到整个导线框离开磁场区域.以i 表示导线框中感应电流的强度,取逆时针方向为正.图2中表示i-t 关系的图示中,可能正确的是 (C ) 6.如图a 所示,虚线上方空间有垂直线框平面的匀强磁场,直角扇形导线框绕垂直于线框平面的轴O 以角速度ω匀速转动。设线框中感应电流方向以逆时针为正,那么在图b 中能正确描述线框从图a 中 图(甲) 图(乙)

电磁感应与电路

电磁感应与电路 1、如图所示,匀强磁场的磁感应强度B=1T,平行导轨宽 l=1m。两根相同的金属杆MN、PQ在外力作用下均以v=1m/s 的速度贴着导轨向左匀速运动,金属杆电阻为r="0.5" ?。导轨 右端所接电阻R=1?,导轨电阻不计。(已知n个相同电源的并 联,等效电动势等于任意一个电源的电动势,等效内阻等于任 意一个电源内阻的n分之一) (1)运动的导线会产生感应电动势,相当于电源。用电池等符号画出这个装置的等效电路图(2)求10s内通过电阻R的电荷量以及电阻R产生的热量 2、如图所示,宽度为L=0.20 m的足够长的平行光滑金属导轨固 定在绝缘水平面上,导轨的一端连接阻值为R=1.0Ω的电阻。导轨 所在空间存在竖直向下的匀强磁场,磁感应强度大小为B="0.50" T。一根质量为m=10g的导体棒MN放在导轨上与导轨接触良好, 导轨和导体棒的电阻均可忽略不计。现用一平行于导轨的拉力拉 动导体棒沿导轨向右匀速运动,运动速度v="10" m/s,在运动过程中保持导体棒与导轨垂直。求: (1)在闭合回路中产生的感应电流的大小;(2)作用在导体棒上的拉力的大小; 3、如图所示,带有微小开口(开口长度可忽略)的单匝线圈处于垂直 纸面向里的匀强磁场中,线圈的直径为m,电阻,开口 处AB通过导线与电阻相连,已知磁场随时间的变化图 像如乙图所示,求:⑴线圈AB两端的电压大小为多少?⑵在前2 秒内电阻上的发热量为多少?

4、(12分)如图所示,在竖直向上磁感强度为B的匀 强磁场中,放置着一个宽度为L的金属框架,框架的右 端接有电阻R.一根质量为m,电阻忽略不计的金属棒 受到外力冲击后,以速度v沿框架向左运动.已知棒与 框架间的摩擦系数为μ,在整个运动过程中,通过电阻 R的电量为q,设框架足够长.求: (1)棒运动的最大距离;(2)电阻R上产生的热量。 5、(15分)如图所示,两平行金属导轨间的距离 L=0.40m,金属导轨所在的平面与水平面夹角θ=37o,在导 轨所在平面内,分布着磁感应强度B=0.50T、方向垂直于 导轨所在平面的匀强磁场。金属导轨的一端接有电动势 E=4.5V、内阻r=0.50Ω的直流电源。现把一个质量 m=0.04kg的导体棒ab放在金属导轨上,导体棒恰好静止。 导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨 接触的两点间的电阻R0=2.5Ω,金属导轨的其它电阻不 计,g取10m/s2。已知sin37o=0.60, cos37o=0.80,试求: ⑴通过导体棒的电流⑵导体棒受到的安培力大小⑶导体棒受到的摩擦力的大小。 6、(10分)如图所示,固定于水平桌面上足够长的 两平行光滑导轨PQ、MN,其电阻不计,间距 d=0.5m,P、M两端接有一只理想电压表,整个装置 处于竖直向下的磁感应强度B0=0.2T的匀强磁场中, 两金属棒L1、L2平行地搁在导轨上,其电阻均为r= 0.1Ω,质量分别为M1=0.3kg和M2=0.5kg。固定棒L1,使L2在水平恒力F=0.8N的作用下,由静止开始运动。试求: (1) 当电压表读数为U=0.2V时,棒L2的加速度为多大; (2)棒L2能达到的最大速度v m.

第13讲 电磁感应规律及其应用(原卷版)

2020年高考物理二轮精准备考复习讲义 第四部分 电磁感应与电路 第13讲 电磁感应规律及其应用 目录 一、理清单,记住干 (1) 二、研高考,探考情 (2) 三、考情揭秘 (4) 四、定考点,定题型 (5) 超重点突破1楞次定律和法拉第电磁感应定律的应用 (5) 超重点突破2 电磁感应中的图象问题 (7) 超重点突破3 电磁感应中的电路与动力学问题 (8) 超重点突破4 电磁感应中的能量问题 (9) 五、固成果,提能力 (11) 一、理清单,记住干 1.电磁问题方向判断“三定则、一定律”的应用 (1)安培定则:判断运动电荷、电流产生的磁场方向。 (2)左手定则:判断磁场对运动电荷、电流的作用力的方向。 (3)楞次定律:判断闭合电路磁通量发生变化产生的感应电流的磁场方向。 (4)右手定则:判断闭合电路中部分导体切割磁感线产生的感应电流的方向。 2.楞次定律推论的应用技巧 (1)“增反减同”;(2)“来拒去留”;(3)“增缩减扩”。 3.四种求电动势的方法 (1)平均电动势E =n ΔΦΔt 。 (2)垂直切割E =BLv 。 (3)导体棒绕与磁场平行的轴匀速转动E =12 Bl 2ω。 (4)线圈绕与磁场垂直的轴匀速转动e =nBSωsin ωt 。 4.感应电荷量的两种求法 (1)当回路中的磁通量发生变化时,由于感应电场的作用使电荷发生定向移动而形成感应电流。通过的电荷

量表达式为q =I Δt =n ΔΦΔtR 总·Δt =n ΔΦR 总 。 (2)导体切割磁感线运动通过的电荷量q 满足的关系式:-B I l Δt =-Blq =m Δv 。 5.解决电磁感应图象问题的两种常用方法 (1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负以及是否过某些特殊点,以排除错误的选项。 (2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象进行分析和判断。 6.三步解决电磁感应中电路问题 (1)确定电源:E =n ΔΦΔt 或E =Blv 。 (2)分析电路结构:分析内、外电路,以及外电路的串并联关系,画出等效电路图。 (3)应用闭合电路欧姆定律及串并联电路的基本规律等列方程求解。 7.电磁感应中力、能量和动量综合问题的分析方法 (1)分析“受力”:分析研究对象的受力情况,特别关注安培力的方向。 (2)分析“能量”:搞清楚有哪些力做功,就可以知道有哪些形式的能量发生了变化,根据动能定理或能量守恒定律等列方程求解。 (3)分析“动量”:在电磁感应中可用动量定理求变力的作用时间、速度、位移和电荷量(一般应用于单杆切割磁感线运动)。 ①求速度或电荷量:-B I l Δt =mv 2-mv 1,q =I Δt 。 ②求时间:F Δt +I A =mv 2-mv 1,I A =-B I l Δt =-Bl ΔΦR 总 。 ③求位移:-B I l Δt =-B 2l 2v Δt R 总=mv 2-mv 1,即-B 2l 2 R 总 x =m (v 2-v 1)。 二、研高考,探考情 【2019·全国卷Ⅰ】(多选)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图a 中虚线MN 所示。一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上。t =0时磁感应强度的方向如图a 所示;磁感应强度B 随时间t 的变化关系如图b 所示。则在t =0到t =t 1的时间间隔内( )

电磁感应中的图像问题

电磁感应中的图像问题 1.如图甲所示,在竖直方向分布均匀的磁场中水平放置一个金属圆环,圆环所围面积为0.1m 2,圆环电阻为0.2Ω。在第1s 内感应电流I沿顺时针方向。磁场的磁感应强度B 随时间t 的变化规律如图乙所示(其中在4~5s 的时间段呈直线)。则 A. 在0~4s 时间段,磁场的方向竖直向下 B . 在2~5s 时间段,感应电流沿逆时针方向 C. 在0~5s时间段,感应电流先减小再不断增大 D. 在4~5s 时间段,线圈的发热功率为5.0×10-4W 2.如图甲所示,一边长为0.2m 、电阻为0.1Ω的单匝矩形线框处于匀强磁场中,线框平面与磁场方向垂直。规定垂直纸面向内为磁场正方向,磁场的磁感应强度B 随时间t 的变化关系如图乙所示,则( ) A. 14s s -内线框中有逆时针方向的感应电流 B. 第7s 内与第8s 内线框中的感应电流方向相反 C. 14s s -内线框中的感应电流大小为0.8A D. 47s s -内线框中的感应电流大小为3.2A 3.如图1所示,甲、乙两个并排放置的共轴线圈,甲中通有如图2所示的电流,则下列判断正确的是 A . 在t l到t 2时间内,甲乙相吸 B. 在t 2到t 3时间内,甲乙相吸 C. 在t 1到t2时间内,乙中电流减小 D . 在t 2到t 3时间内,乙中电流减小 4.如图甲所示,水平放置的平行金属导轨连接一个平行板电容器C 和电阻R,导体棒MN 放在导轨上且接触良好,整个装置放于垂直导轨平面的磁场中,磁感应强度B 的变化情况如图乙所示(图示磁感应强度方向为正),MN 始终保持静止则0~t 2时间内( ) A. 电容器C 的电荷量大小始终不变 B. 电容器C的a 板先带正电后带负电 C . MN所受安培力的方向先向右后向左 D. MN 所受安培力的大小始终不变 5.三角形导线框放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度B 随时间t变化的规律如图所示,t =0时磁感应强度方向垂直纸面向里。下图中分别是线框中的感应电流i 随时间t 变化的图线和a b边受到的安培力F随时间t 变化的图线,其中可能正确的是 A. B. C . D.

(含答案解析)电磁感应中的电路问题

电磁感应中的电路问题 一、基础知识 1、内电路和外电路 (1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源. (2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路. 2、电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦ Δt . (2)路端电压:U =IR =E -Ir . 3、对电磁感应中电源的理解 (1)电源的正负极、感应电流的方向、电势的高低、电容器极板带电问题,可用右手定则或楞次定律判定. (2)电源的电动势的大小可由E =Blv 或E =n ΔΦ Δt 求解. 4、对电磁感应电路的理解 (1)在电磁感应电路中,相当于电源的部分把其他形式的能通过电流做功转化为电能. (2)“电源”两端的电压为路端电压,而不是感应电动势. 5、解决电磁感应中的电路问题三步曲 (1)确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,利用E =n ΔΦ Δt 或E =Blv sin θ求感应电动势的大小,利用右手定则 或楞次定律判断电流方向. (2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图. (3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 二、练习 1、[对电磁感应中等效电源的理解]粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场 中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是 ( )

答案 B 解析 线框各边电阻相等,切割磁感线的那个边为电源,电动势相同均为Blv .在A 、C 、D 中,U ab =14Blv ,B 中,U ab =3 4 Blv ,选项B 正确. 2、如图所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直 时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环 的最高点A 铰链连接的长度为2a 、电阻为R 2 的导体棒AB 由水平 位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两 端的电压大小为 ( ) A. Bav 3 B. Bav 6 C.2Bav 3 D .Bav

电磁感应中的电路和图象问题汇总.doc

第三节 电磁感应中的电路和图象问题 一、电磁感应中的电路问题 1.内电路和外电路 (1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源. (2)该部分导体的电阻或线圈的电阻相当于电源的内阻 ,其余部分是外电阻. 2.电源电动势和路端电压 (1)电动势:E =Bl v 或E =n ΔΦ Δt . (2)路端电压:U =IR =E R +r ·R . 1.(单选)如图所示 ,一个半径为L 的半圆形硬导体AB 以速度v 在水平U 形 框架上向右匀速滑动 ,匀强磁场的磁感应强度为B ,回路电阻为R 0 ,半圆形硬导体AB 的电阻为r ,其余电阻不计 ,则半圆形导体AB 切割磁感线产生的感应电动势大小及AB 之间的电势差分别为( ) A .BL v BL v R 0 R 0+r B .2BL v BL v C .2BL v 2BL v R 0 R 0+r D .BL v 2BL v 答案:C 二、电磁感应中的图象问题 1.图象类型 (1)随时间t 变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象. (2)随位移x 变化的图象如E -x 图象和i -x 图象. 2.问题类型 (1)由给定的电磁感应过程判断或画出正确的图象. (2)由给定的有关图象分析电磁感应过程 ,求解相应的物理量. (3)利用给出的图象判断或画出新的图象. 2.(单选)(2015·泉州模拟)如图甲所示 ,光滑导轨水平放置在与水平方向夹 角为60°的斜向下的匀强磁场中 ,匀强磁场的磁感应强度B 随时间t 的变化规律如图乙所示

(规定斜向下为正方向) ,导体棒ab 垂直导轨放置 ,除电阻R 的阻值外 ,其余电阻不计 ,导体棒ab 在水平外力F 作用下始终处于静止状态.规定a →b 的方向为电流的正方向 ,水平向右的方向为外力F 的正方向 ,则在0~t 1时间内 ,选项图中能正确反映流过导体棒ab 的电流i 和导体棒ab 所受水平外力F 随时间t 变化的图象是( ) 答案:D 考点一 电磁感应中的电路问题 1.对电源的理解:在电磁感应现象中 ,产生感应电动势的那部分导体就是电源 ,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能. 2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈 ,外电路由电阻、电容等电学元件组成. 3.解决电磁感应中电路问题的一般思路: (1)确定等效电源 ,利用E =n ΔΦ Δt 或E =Bl v sin θ求感应电动势的大小 ,利用右手定则或楞 次定律判断电流方向. (2)分析电路结构(内、外电路及外电路的串、并联关系) ,画出等效电路图. (3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. (2015·石家庄质检)如图甲所示 ,两根足够长的平行光滑金属导轨MN 、PQ 被 固定在水平面上 ,导轨间距l =0.6 m ,两导轨的左端用导线连接电阻R 1及理想电压表V ,电阻为r =2 Ω的金属棒垂直于导轨静止在AB 处;右端用导线连接电阻R 2 ,已知R 1=2 Ω ,R 2=1 Ω ,导轨及导线电阻均不计.在矩形区域CDFE 内有竖直向上的磁场 ,CE =0.2 m ,磁感应强度随时间的变化规律如图乙所示.开始时电压表有示数 ,当电压表示数变为零后 ,对金属棒施加一水平向右的恒力F ,使金属棒刚进入磁场区域时电压表的示数又变为原来的值 ,金属棒在磁场区域内运动的过程中电压表的示数始终保持不变.求: (1)t =0.1 s 时电压表的示数; (2)恒力F 的大小; (3)从t =0时刻到金属棒运动出磁场的过程中整个电路产生的热量. [思路点拨] (1)在0~0.2 s 内 ,R 1、R 2和金属棒是如何连接的?电压表示数等于感应电动势吗? (2)电压表示数始终保持不变 ,说明金属棒做什么运动? [解析] (1)设磁场宽度为d =CE ,在0~0.2 s 的时间内 ,有E =ΔΦΔt =ΔB Δt ld =0.6 V 此时 ,R 1与金属棒并联后再与R 2串联 R =R 并+R 2=1 Ω+1 Ω=2 Ω

电磁感应现象中的几种常见图象

电磁感应现象中的几种常见图象 江西省都昌县第一中学李一新 高考《考试说明》中关于能力要求中,要考核的能力的第4点是“应用数学处理物理问题的能力”中,指出“能够根据具体问题列出物理量之间的关系式,进行推导和求解,并根据结果得出物理结论;必要时能运用几何图形、函数图象进行表达、分析。”因此在每年高考中,关于图象的考查备受高考命题专家的青睐,而电磁感应现象的中图象更是高考的热点。在电磁感应现象中,涉及磁感应强度B.磁通量Φ、感应电动势E和感应电流I随时间t变化的图象,即B—t图象、Φ—t图象、E—t图象I—t图象。对于导体切割磁感线产生感应电动势和感应电流的情况,还涉及感应电动势E和感应电流I随位移x变化的图象即E—x和I—x图象。由于感应电流的产生,导体受到安培力作用,其运动情况又会发生动态变化,又有v—t、v—x和a—x等图象。 一、E—t图象 例1(2007全国卷Ⅱ)如图1所示,在PQ、QR区域中存在着磁感应强度大小相等、方向相反的匀强磁场、磁场方向均垂直于纸面。一导线框abcdef位于纸面内,框的邻边都相互垂直,bc边与磁场的边界P重合,导线框与磁场区域的尺寸如图所示。从t=0时刻开始,线框匀速横穿两个磁场区域。以a→b→c →d→e→f为线框中的电动势E的正方向,以下四个E-t关系示意图中正确的是() 解析:bc边进入PQ区域的磁场时,切割磁感线的导线有效长度为l,感应电动势方向为负;bc边进入QR区域的磁场时,de边同时也进入PQ区域磁场中,它们切割磁感线的导线产生的感应电动势大小相等、方向相反,总电动势为零;bc边离开磁场时,de边进入QR区域磁场中,af边同时也进入PQ区域磁场中,它们切割磁感线产生的感应电动势方向均为正,总感应电动势相加;以后便只有af边在QR区域切割磁感线,产生的感应电动势方向为负,故正确的选项为C。

电磁感应的发现

中学高二年级选修3-2 册物理学科导学案(学生版) 课题:电磁感应的发现 【学习目标】(清晰、具体、可检测性强) 1.了解电磁感应现象的发现过程,认识电磁感应现象的时代背景和思想历程。 2.知道电磁感应现象产生的电流叫感应电流。 3.知道科学探究的的一般方法,了解相关的实验。 【学习重点】 认识电磁感应现象,了解相关实验 【学习过程】(预热衔接、问题引领、自主学习、交流互助、学生展示、质疑探究、精彩点评) 一、复习:奥斯特-----电流的磁效应。 阅读教材并回忆有关奥斯特发现电流磁效应的内容。 (1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景? (2)奥斯特发现电流磁效应的过程是怎样的?回忆学过的知识如何解释? (3)电流磁效应的发现有何意义?谈谈自己的感受。 二、学习过程: 1.法拉第发现电磁感应现象。 (1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的观点? (2)法拉第做了大量实验都是以失败告终,失败的原因是什么? (3)法拉第经历了多次失败后,终于发现了电磁感应现象,他发现电磁感应现象的具体的过程是怎样的?之后他又做了大量的实验都取得了成功,他认为成功的“秘诀”是什么? (4)从法拉第探索电磁感应现象的历程中,你学到了什么?谈谈自己的体会。 2.电磁感应现象的分类。 阅读教材并回答: 法拉第发表的论文中,把电磁感应现象分为五类: ①、 ②、

③、 ④、 ⑤、 学生活动:自主完成。 3.感应电流:由产生的电流叫感应电流。 (1)讨论交流,设计实验,如何利用提供的器材产生感应电流?(画出设计草图) (2)观察演示实验,认识感应电流。 4.电磁感应现象发现的意义。 阅读教材并思考回答电磁感应发现的意义: (1)电磁感应的发现,使人们发明了,把能转化为能。 (2)电磁感应的发现,使人们发明了,解决了电能远距离传输中的能量大量损耗的问题。 (3)电磁感应的发现,使人们制造了,反过来把能转化为能,比如生活中的、、。 【课堂总结】 1、我们可以通过哪些实验与现象来说明(证实)磁现象与电现象有联系? 2、如何让磁生成电? 3、生活中电磁有关的现象? 【当堂训练】 【例1】发电的基本原理是电磁感应。发现电磁感应现象的科学家是(C) A.安培B.赫兹C.法拉第D.麦克斯韦 【例2】发现电流磁效应现象的科学家是__奥斯特__,发现通电导线在磁场中受力规律的科学家是_安培_,发现电磁感应现象的科学家是_法拉第_,发现电荷间相互作用力规律的的科学家是_库仑_。 【例3】下列现象中属于电磁感应现象的是(B) A.磁场对电流产生力的作用B.变化的磁场使闭合电路中产生电流 C.插在通电螺线管中的软铁棒被磁化D.电流周围产生磁场 【作业】思考:产生感应电流的条件?

高中物理经典复习资料电磁感应与电路规律的综合应用

黑龙江省哈尔滨市木兰高级中学高中物理 经典复习资料 电磁感应与 电路规律的综合应用 教学目标: 1.熟练运用右手定则和楞次定律判断感应电流及感应电动势的方向。 2.熟练掌握法拉第电磁感应定律,及各种情况下感应电动势的计算方法。 3.掌握电磁感应与电路规律的综合应用 教学重点:电磁感应与电路规律的综合应用 教学难点:电磁感应与电路规律的综合应用 教学方法:讲练结合,计算机辅助教学 教学过程: 一、电路问题 1、确定电源:首先判断产生电磁感应现象的那一部分导体(电源),其次利用t n E ??Φ=或θsin BLv E =求感应电动势的大小,利用右手定则或楞次定律判断电流方向。 2、分析电路结构,画等效电路图 3、利用电路规律求解,主要有欧姆定律,串并联规律等 二、图象问题 1、定性或定量地表示出所研究问题的函数关系 2、在图象中E 、I 、B 等物理量的方向是通过正负值来反映 3、画图象时要注意横、纵坐标的单位长度定义或表达 【例1】如图所示,平行导轨置于磁感应强度为B 的匀强磁场 中(方向向里),间距为L ,左端电阻为R ,其余电阻不计,导轨右 端接一电容为C 的电容器。现有一长2L 的金属棒ab 放在导轨上,ab 以a 为轴顺时针转过90°的过程中,通过R 的电量为多少? 解析:(1)由ab 棒以a 为轴旋转到b 端脱离导轨的过程中,产

生的感应电动势一直增大,对C 不断充电,同时又与R 构成闭合回路。ab 产生感应电动势的平均值 t S B t E ??=??Φ= ① S ?表示a b 扫过的三角形的面积,即223321L L L S =?= ? ② 在这一过程中电容器充电的总电量Q =CU m ⑤ U m 为ab 棒在转动过程中产生的感应电动势的最大值。即 ωω22)22 1(2BL L L B U m =???= ⑥ 联立⑤⑥得:C BL Q ω222= (2)当ab 棒脱离导轨后(对R 放电,通过R 的电量为 Q 2,所以整个过程中通过 R 的总电量为: Q =Q 1+Q 2=)223(2C R BL ω+ 电磁感应中“双杆问题”分类解析 【例2】匀强磁场磁感应强度 B=0.2 T ,磁场宽度L=3rn ,一正方形金属框边长ab=l =1m ,每边电阻r=0.2Ω,金属框以v =10m/s 的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图所示,求:

电磁感应中的图像问题专题练习

电磁感应中的图像问题专题练习 1.(2016武汉模拟)如图(甲)所示,矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直.规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图(乙)所示.若规定顺时针方向为感应电流i的正方向,图中正确的是( ) 2.(2016山西康杰中学高二月考)如图所示,两条平行虚线之间存在匀强磁场,磁场方向垂直纸面向里,虚线间的距离为L.金属圆环的直径也是L.自圆环从左边界进入磁场开始计时,以垂直于磁场边界的恒定速度v穿过磁场区域.规定逆时针方向为感应电流i的正方向,则圆环中感应电流i随其移动距离x的变化的i x图像最接近( )

3.如图(甲)所示,光滑导轨水平放置在竖直方向的匀强磁场中,匀强磁场的磁感应强度B随时间的变化规律如图(乙)所示(规定向下为正方向),导体棒ab垂直导轨放置,除电阻R的阻值外,其余电阻不计,导体棒ab在水平外力F的作用下始终处于静止状态.规定a→b的方向为电流的正方向,水平向右的方向为外力的正方向,则在0~2t0时间内,能正确反映流过导体棒ab的电流与时间或外力与时间关系的图线是( ) 4.如图所示,有一个等腰直角三角形的匀强磁场区域其直角边长为L,磁场方向垂直纸面向外,磁感应强度大小为B.边长为L、总电阻为R 的正方形导线框abcd,从图示位置开始沿x轴正方向以速度v匀速穿过磁场区域.取沿abcda的感应电流方向为正,则表示线框中电流i随bc边的位置坐标x变化的图像正确的是( )

5.如图所示,EOF和E′O′F′为空间一匀强磁场的边界,其中EO∥E′O′,FO∥F′O′,且EO⊥OF,OO′为∠EOF的角平分线,OO′间的距离为l,磁场方向垂直于纸面向里,一边长为l的正方形导线框ABCD 沿O′O方向匀速通过磁场,t=0时刻恰好位于图示位置.规定导线框中感应电流沿逆时针方向时为正,则在图中感应电流i与时间t的关系图线可能正确的是( ) 6.如图所示,用导线制成的矩形框长2L,以速度v穿过有理想界面的宽为L的匀强磁场,那么,线框中感应电流和时间的关系可用下图中的哪个图表示( )

电磁感应与电路全面版

电磁感应与电路 思想方法提炼 电磁感应是电磁学的核心内容,也是高中物理综合性最强的内容之一,高考每年必考。题型有选择、填空和计算等,难度在中档左右,也经常会以压轴题出现。 在知识上,它既与电路的分析计算密切相关,又与力学中力的平衡、动量定理、功能关系等知识有机结合;方法能力上,它既可考查学生形象思维和抽象思维能力、分析推理和综合能力,又可考查学生运用数知识(如函数数值讨论、图像法等)的能力。 高考的热点问题和复习对策: 1.运用楞次定律判断感应电流(电动势)方向,运用法拉第电磁感应定律,计算感应电动势大小.注重在理解的基础上掌握灵活运用的技巧. 2.矩形线圈穿过有界磁场区域和滑轨类问题的分析计算。要培养良好的分析习惯,运用动力学知识,逐步分析整个动态过程,找出关键条件,运用运动定律特别是功能关系解题。 3.实际应用问题,如日光灯原理、磁悬浮原理、电磁阻尼等复习时应多注意。 此部分涉及的主要内容有: 1.电磁感应现象. (1)产生条件:回路中的磁通量发生变化. (2)感应电流与感应电动势:在电磁感应现象中产生的是感应电动势,若回路是闭合的,则有感应电流产生;若回路不闭合,则只有电动势,而无电流. (3)在闭合回路中,产生感应电动势的部分是电源,其余部分则为外电路. 2.法拉第电磁感应定律:E=n ,E=BLvsin θ, 注意瞬时值和平均值的计算方法不同. 3.楞次定律三种表述: (1)感应电流的磁场总是阻碍磁通量的变化(涉及到:原磁场方向、磁通量增减、感应电流的磁场方向和感应电流方向等四方面).右手定则是其中一种特例. (2)感应电流引起的运动总是阻碍相对运动. (3)自感电动势的方向总是阻碍原电流变化. 4.相关链接 (1)受力分析、合力方向与速度变化,牛顿定律、动量定理、动量守恒定律、匀速圆周运动、功和能的关系等力学知识. (2)欧姆定律、电流方向与电势高低、电功、电功率、焦耳定律等电路知识. t ??Φ

电磁感应中的电路和图像问题

第3节电磁感应中的电路和图像问题 要点一电磁感应中的电路问题 1.电磁感应中电路知识的关系图 1.(多选)(2015焦作一模)如图9-3-2所示,两根足够长的光滑金属导轨水平平行放置,间距为I = 1 m, cd间、de间、cf间分别接着阻值R= 10 Q的电阻。一阻值R= 10 Q的导体棒ab以速度v = 4 m/s匀速向左运动, 导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小B= 0.5 T、方向竖直向下的匀强磁场。 F列说法中正确的是() A.导体棒ab中电流的流向为由b到a B.cd两端的电压为1 V C.de两端的电压为1 V D. fe两端的电压为1 V 2,磁感应强度大小为B的匀强磁场垂直穿过环平面,环的最高点A处用铰链 连接长度为2a、电阻为r的导体棒AB AB由水平位置紧贴环面摆下,当摆到竖直位置时,B点的线速度为v,则此时A B两端的电压大小为()1 2.分析电磁感应电路问题的基本思路

A. gR av 2 C^Rav D. Rav

3、如图所示,匀强磁场B= 0.1 T,金属棒AB长0.4 m , 、1 与框架宽度相同,电阻为3 Q,框架电阻不计,电阻 2 Q, 艮=1 Q,当 金属棒以5 m/s的速度匀速向左运动时,求: (1)流过金属棒的感应电流多大? (2)若图中电容器C为0.3折,则充电荷量是多少? 要点二电磁感应中的图像问题 1、(2013山东高考)将一段导线绕成图9-3-4甲所示的闭合 回路,并固定在水平面(纸面)内。回路的ab边置于垂直纸面向里的匀强 磁场I中。回路的圆环区域内有垂直纸面的磁场n,以向里为磁场n的正方 向,其磁感应强度B随时间t变化的图像如图乙所 示。用F表示ab边受到的安培力,以水平向右为F的正方向,能 正确反映F随时间t变化的图像是() (二)V-t图像 2、(2013福建高考)如图9-3-5,矩形闭合导体线框在匀强磁场上方,由不同 高度静止释放,用t1、12分别表示线框ab边和cd边刚进入磁场的时刻。线框下落 X X X 1 ------------------- XXX X n用 X xC x x袖 X X XXX X X X XXX LL L n:T\ t ,\ B D

第九讲电磁感应

第九讲电磁感应 例1.如图所示,阻值为R,质量为m,边长为l的正方形金属框位于光滑水平面上。金属框的ab 边与磁场边缘平行,并以一定的初速度进入矩形磁场区域,运动方向与磁场边缘垂直。磁场方向垂 直水平面向下,在金属框运动方向上的长度为L ( L>l)。已知金属框的ab边进入磁场后,框在进、 出磁场阶段中的运动速度与ab边在磁场中的位置坐标之间关系为v = v0-cx( x

经典总结电磁感应:专题1:电磁感应图像问题

专题一:电磁感应图像问题 电磁感应中经常涉及磁感应强度、磁通量、感应电动势、感应电流等随时间(或位移)变化的图像,解答的基本方法是:根据题述的电磁感应物理过程或磁通量(磁感应强度)的变化情况,运用法拉第电磁感应定律和楞次定律(或右手定则)判断出感应电动势和感应电流随时间或位移的变化情况得出图像。高考关于电磁感应与图象的试题难度中等偏难,图象问题是高考热点。 【知识要点】 电磁感应中常涉及磁感应强度B 、磁通量Φ、感应电动势E 和感应电流I 等随时间变化的图线,即B -t 图线、Φ-t 图线、E -t 图线和I -t 图线。 对于切割产生的感应电动势和感应电流的情况,有时还常涉及感应电动势和感应电流I 等随位移x 变化的图线,即E -x 图线和I -x 图线等。 还有一些与电磁感应相结合涉及的其他量的图象,例如P -R 、F -t 和电流变化率 t t I -??等图象。 这些图像问题大体上可分为两类:由给定的电磁感应过程选出或画出正确的图像,或由给定的有关图像分析电磁感应过程,求解相应的物理量。 1、定性或定量地表示出所研究问题的函数关系; 2、在图象中E 、I 、B 等物理量的方向是通过正负值来反映; 3、画图象时要注意横、纵坐标的单位长度定义或表达。 【方法技巧】 电磁感应中的图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)是否大小恒定,用楞次定律或右手定则判断出感应电动势(感应电流)的方向,从而确定其正负,以及在坐标中范围。分析回路中的感应电动势或感应电流的大小,要利用法拉第电磁感应定律来分析,有些图像还需要画出等效电路图来辅助分析。 不管是哪种类型的图像,都要注意图像与解析式(物理规律)和物理过程的对应关系,都要用图线的斜率、截距的物理意义去分析问题。 熟练使用“观察+分析+排除法”。 一、图像选择问题 【例1】如图,一个边长为l 的正方形虚线框内有垂直于纸面向里的匀强磁场;一个边长也为l 的正方形导线框所在平面与磁场方向垂直;虚线框对角线ab ba 的延长线平分导线框。在t= 0时,使导线框从图示位置开始以恒定速度沿ab 方向移动,直到整个导线框离开磁场区域。以i 表示导线框中感应电流的强度, 取逆时针方向为正。下列表示i -t 关系的选项中,可能正确的是() 【解析】:从正方形线框下边开始进入到下边完全进入过程中,线框切割磁感线的有效长度逐渐增大,所以感应电流也逐渐拉增大,A 项错误;从正方形线框下边完全进入至下边刚穿出磁场边界时,切割磁感线有效长度不变,故感应电流不变,B 项错;当正方形线框下边离开磁场,上边未进入磁场的过程比正方形线框上边进入磁场过程中,磁通量减少的稍慢,故这两个过程中感应电动势不相等,感应电流也不相等,D 项错,故正确选项为C . 求解物理图像的选择类问题可用“排除法”,即排除与题目要求相违背的图像,留下正确图像;

电磁感应与电路

专题检测(六) (时间90分钟,满分100分) 一、选择题(每小题5分,共50分) 1.(2010·重庆理综)一输入电压为220 V ,输出电压为36 V 的变压器副线圈烧坏.为获知此变压器原、副线圈匝数,某同学拆下烧坏的副线圈,用绝缘导线在铁芯上新绕了5匝线圈,如图1所示,然后将原线圈接到220 V 交流电源上,测得新绕线圈的端电压为1 V .按理想变压器分析,该变压器烧坏前的原、副线圈匝数分别为 A .1 100,360 B .1 100,180 C .2 200,180 D .2 200,360 解析 根据U 1U 2=n 1n 2可得2001=n 1 5,可知n 1=1 100.排除C 、D 两项.再由22036=n 1 n 2 可知n 2=180,故A 错B 对. 答案 B 2.(2010·福建理综)中国已投产运行的1 000 kV 特高压输电是目前世界上电压最高的输电工程.假设甲、乙两地原来用500 kV 的超高压输电,输电线上损耗的电功率为P .在保持输送电功率和输电线电阻都不变的条件下,现改用1 000 kV 特高压输电,若不考虑其他因素的影响,则输电线上损耗的电功率将变为 A.P 4 B.P 2 C .2P D .4P 解析 设输送功率为P ,输送电流为I ,输送电压为U ,则P =UI ,I =P U ,P 损=I 2R .输送电压升为原来的2倍,则输送电流降为原来的一半,P 损降为原来的四分之一,故选A. 答案 A 3.(2009·海南国兴中学联考)如图2所示,等腰三角形内分布有垂直于纸面向外的匀强磁场,它的底边在x 轴上且长为2L ,高为L .纸面内一边长为L 的正方形导线框沿x 轴正方向做匀速直线运动穿过匀强磁场区域,在t =0时刻恰好位于图中所示的位置.以顺时针方向为导线框中电流的正方向,在图3中能够正确表示电流-位移(I -x )关系的是

第一讲电磁感应中的电路与电荷量问答

第一讲电磁感应中的电路与电荷量问题 电磁感应往往与电路问题联系在一起,解决电磁感应中的电路问题只需要三步: 第一步:确定电源。切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,则该导体或回路就相 当于电源,利用求感应电动势的大小,利用右手定则或楞次定律判断电流方向。如果在一个电路中切割磁感线的有几个部分但又相互联系,可等效成电源的串、并联。 第二步:分析电路结构(内、外电路及外电路的串并联关系),画等效电路图。 第三步:利用电路规律求解。主要应用欧姆定律及串并联电路的基本性质等列方程求解。 感应电动势大小的计算——法拉第电磁感应定律的应用。 1、折线或曲线导体在匀强磁场中垂直磁场切割磁感线平动,产生的感应电动势:E=BLvsinθ; 2、直导体在匀强磁场中绕固定轴垂直磁场转动时的感应电动势:; 3、圆盘在匀强磁场中转动时产生的感应电动势:; 4、线圈在磁场中转动时产生的感应电动势:(θ为S与B之间的夹角)。 2、电磁感应现象中的力学问题 (1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是: ①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向; ②求回路中电流强度; ③分析研究导体受力情况(包含安培力,用左手定则确定其方向); ④列动力学方程或平衡方程求解。 (2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。

3、电磁感应中能量转化问题 导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是: ①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向; ②画出等效电路,求出回路中电阻消耗电功率表达式; ③分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。 4、电磁感应中图像问题 电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定。用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围。 另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断。 题型一等效电源、电路问题 例1:把总电阻为2R的均匀电阻丝焊接成一半径为a的圆环,水平固定在竖直向下,磁感应强度为B的匀强磁场中,如图所示,一长度为2a,电阻等于R,粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的接触。当金属棒以恒定速度v向右移动经 过环心O时,求: (1)流过棒的电流的大小、方向及棒两端的电压U MN。 (2)在圆环和金属棒上消耗的总热功率。

相关文档
相关文档 最新文档