文档库 最新最全的文档下载
当前位置:文档库 › 华理概率论习题5答案

华理概率论习题5答案

华理概率论习题5答案
华理概率论习题5答案

华东理工大学

概率论与数理统计 作业簿(第五册)

学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________

第十三次作业

一. 填空题:

1.已知二维随机变量),(ηξ的联合概率分布为

()_______,),max(_______,)(2sin ____,______,==??

?

??+==ηξηξπηξE E E E ()_______

),max(=ηξD 。 2. 设随机变量321,,ξξξ相互独立,1ξ~)6,0(U ,2ξ~)4,0(N ,3ξ~)3(E ,则:

)32(321ξξξ+-E = ____4___,)32(321ξξξ+-D = __20_。

二. 选择题:

设),N(10~ξ,)4,0(~N η,ηξ?+=,下列说法正确的是( B )。 A. )5,0(~N ? B. 0=?E C. 5=?D D. 3=?D

05.15.025.02.136.0

三. 计算题:

1. 设二维随机变量),(ηξ的联合概率密度函数为

?????<<<<+=其他0

2

0,20)(81

),(y x y x y x p

求)(,,ξηηξE E E 。

解:ηξE y y x x x y x y x xp E D

==+==????67

d )(d 81d d ),(2020

3

4

d )(d 81d d ),()(2020=+=

=

????y y x xy x y x y x xyp E D

ξη 2. 二维随机变量),(ηξ服从以点(0, 1),(1, 0),(1, 1)为顶点的三角形区域上的均匀分布,试求)(ηξ+E 和)(ηξ+D 。 解

:

),(ηξ~2, (,),

(,)0, (,),

x y G p x y x y G ∈?=???

1

1

014()2()3y E dy x y dx ξη-+=+=

??,

11220111

()2()6

y E dy x y dx ξη-+=+=??,

2211161

()()[()]6918

D E E ξηξηξη+=+-+=-=

3. 有10个人同乘一辆长途汽车,沿途有20个车站,每到一个车站时,如果没有人下车,则不停车。设每位乘客在各站下车是等可能的,且各乘客是否下车是相互独立的,求停车次数的数学期望。 解:设1, ,

0, ,

i i i ξ?=??第站有人下车第站没人下车

P P i

==}0{ξ{10个人在第i 站都不下车}10

2011??

?

??-=,

从而10

20111}1{??

? ??

--==i P ξ

于是10

20111}1{1}0{0??

? ??

--==?+=?=i i i P P E ξξξ,

长途汽车停车次数2021ξξξξ+++= ,故

???

? ????? ??-=+++=1020

212019120ξξξξE E E E

第十四次作业

一.填空题:

1.已知9,4==ηξD D ,则当12)(=-ηξD 时,____

=ξη

ρ;当4.0=ξη

ρ时,

_______)(=+ηξD 。

2. 设二维随机变量)5.0;4,1;4,1(~),(N ηξ,ηξζ-=,则=),cov(ζξ .

二. 选择题:

1. 已知随机变量X 与Y 独立同分布,记Y X U +=,Y X V -=,则U 与V 必

( D )

A. 独立

B. 不独立

C. 相关

D.不相关 2. 设随机变量ξ与η的方差存在且不等于0,则ηξηξD D D +=+)(是ξ与η

( C )

A. 独立的充要条件

B. 独立的充分条件,但不是必要条件

C. 不相关的充要条件

D. 不相关的充分条件,但不是必要条件

121

8

.172

三. 计算题:

1. 已知二维随机变量),(ηξ的联合概率分布为

(1)求ξηρ;(2) ξ与η是否独立?说明理由。

解:

于是,

31313442E ξ=?+?=, 13313

012388882

E η=?+?+?+?=,

再由联合分布得3319

1112338884

E ξη=??+??+??=,

从而933

cov(,)0422

ξη=-?=, 故0ξηρ=

(2)由于3

(1)(0)32

P P ξη=?==, 而(1,0)0P ξη===, 故,ξη不独立.

2. 设二维随机变量),(ηξ的联合概率密度函数为

???<<<=其他01

03),(x y x y x p

求ξ与η的相关系数。

解: 先分别求出

11

203310y E dy x ydx ξη==

??, 112

0334y E dy x dx ξ==??, 110338y E dy xydx η==??,

11230335y E dy x dx ξ==??, 112201

35

y E dy xy dx η==??,

3333cov(,)1048160ξη=-?=, 2333

5480

D ξ??=-= ???, 2

131958320D η??=-= ???,

3

57

ξηρ=

=

=

.

3. 设二维随机变量),(Y X 的相关系数为XY ρ,而d cY b aX +=+=ηξ,,其中

d c b a ,,,为常量,并且已知0>ac ,试证XY ρρξη=。

证明:XY DY

DX ac Y X ac d cY D b aX D d cY b aX ρρξη=?=

+?+++=),cov()

()(),cov(

4. 设两个随机变量ηξ,,

5.0,9,4,4,2-====-=ξηρηξηξD D E E ,求

)323(22-+-ηξηξE 。 解

()()()

68

3

)(),cov(2)(33

)()(2)(3)323(2

2

2222=-+++-+-+-=-+-ηηηξηξξξηξηξηξηξE D E E E D E E E E =

第十四次作业

一. 选择题:

1. 设随机变量ξ密度函数为()p x ,则31ηξ=-的密度函数()p y η为( A )。

A 、

11()33y p + B 、13()3y p + C 、1(3(1))3p y + D 、1

3()3

y p - 2. 设随机变量ξ和η相互独立,其分布函数分别为 )(x F ξ与)(y F η,则

),max(ηξζ= 的分布函数 )(z F ζ等于 ( B )

A .)}(),(max{z F z F ηξ B. )()(z F z F ηξ

C .)]()([2

1

z F z F ηξ+ D. )()()()(z F z F z F z F ηξηξ-+

二. 计算题

1. 已知随机变量]2,0[~U ξ,求2ξη=的概率密度。

解: ???<≥--=?

?

?<≥≤≤-=≤=0

0)

()(00

}{}{)(2

y y y F y F y y y y P y P y F ξξ

ηξξ

故()

??

?

??<≥--=000)()(21

)(y y y p y p y y p ξξ

η=???

??≤≤其他

4041

y y

2. 设ηξ、 是两个相互独立且均服从正态分布???

??21,0N 的随机变量,求

|)(|ηξ-E 。

解: 由已知条件可得:)1,0(~N ηξ-,所以

π

π

π

π

ηξ2

e

22d e

22d e 21|||)(|0

2

2

2

222=

-

==

?

=-+∞

-

-

+-

+∞

-?

?x x x x x x x E

3. 已知随机变量ηξ、 的概率分布分别为

412

14

1}

{1

01i x P =-ξξ

2

12

1}

{1

0j y P =ηη

而且1}0{==ξηP 。

(1)求ηξ、 的联合概率分布;(2)问ηξ、 是否独立?

(3)求), max(

ηξζ=的概率分布。 解: 由于(0)1P ξη==,可以得到(1,1)(1,1)0P P ξηξη=-=====,从而

1(0,1)(1)2P P ξηη=====

, 1

(1,0)(1)4P P ξηξ=-===-=, 1

(1,0)(1)4P P ξηξ=====, (0,0)(0)(0,1)0P P P ξηξξη====-===,

汇总到联合分布列,即

(2)由于(,)()()P i j P i P j ξηξη==≠=?=,故,ξη不独立. (3)

1(0)(1,0)(0,0)4

P P P ζξηξη===-=+===

, 3(1)(1,1)(0,1)(1,0)(1,1)4

P P P P P ζξηξηξηξη===-=+==+==+===

4.设随机变量ηξ、 相互独立,其密度函数分别为

??

?≤>=???<<=-0

)(,

01

01)(y y e y p x x p y

ηξ其他 求ηξ+ 的概率密度函数。

解: 由,ξη相互独立得联合密度函数为

, 01,0,

(,)0, ,

y e x y p x y -?≤≤>=?

?其他 密度函数中非零部分对应的(,)x y 落在区域D 中,利用卷积公式,

当1z ≥时,1

()

()(1)z x z p z e

dx e e ζ---=

=-?,

当01z <<时,()

()1z

z x z p z e dx e ζ---==-?,

当0z ≤时,()0p z ζ=,

故 (1), 1,

()1, 01, 0, 0. z z e e z p z e z z ζ--?-≥?

=-<

5. 电子仪器由4个相互独立的部件)4,3,2,1(=i L i 组成,连接方式如图所示。设各个部件的使用寿命i ξ服从指数分布)1(E ,求仪器使用寿命ζ的概率密度。

1L 3L

2L 4L

解: 设各并联组的使用寿命为)2,1(=j j η,则

},m a x {},,max{},,min{43221121ξξηξξηηηζ=== 由i ξ独立同分布知21,ηη也独立同分布。现

??

?≤>-=-0

e 1)(x x x F x ξ 所以 ??

?≤>-==-0

00

)e 1()()(2

2

y y y F y F y ξη 从而

[][]

?

?

?≤>--=??

??

?≤>---=--=---0

00

)

e 2(e 1000)e 1(11)(11)(2

22

2

2

z z z z z F z F z z z ηζ ?

?

?≤>--==∴---000

)e 2)(e 1(e 4)(2z z z p z z z ζ。

哈工大概率论与数理统计课后习题答案 一

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i = , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B === 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件: (1)仅A 发生; (2),,A B C 中至少有两个发生;

概率论(复旦三版)习题五答案

概率论与数理统计(复旦第三版) 习题五 答案 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

10.760.840.9.n i i X P n =??????≤ ≤≥???????? ∑ 根据独立同分布的中心极限定理得 0.8n i X n P ??-??≤≤???? ∑ 0.9,=Φ-Φ≥ 整理得 0.95,10?Φ≥ ?? 查表 1.64,≥ n ≥268.96, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各 机床开动与否互不影响,开动时每部机床消耗电能15个单位. 问至少供应多少单位电能才可以95%的概率保证不致因供电不 足而影响生产. 【解】设需要供应车间至少15m ?个单位的电能,这么多电能最多能 同时供给m 部车床工作,我们的问题是求m 。 把观察一部机床是否在工作看成一次试验,在200次试验中, 用X 表示正在工作的机床数目,则~(200,0.7)X B , ()2000.7140, ()(1)2000.70.342,E X np D X np p ==?==-=??= 根据题意,结合棣莫弗—拉普拉斯定理可得 0.95{}P X m P =≤=≤=Φ

概率论与数理统计第四章习题及答案

概率论与数理统计习题 第四章 随机变量的数字特征 习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的). 解:设表示一次抽检的10件产品的次品数为ξ P =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)] 查二项分布表 1-=. 因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=??? ? ??04×× =. P (X =1)=???? ??14××=, P (X =2)= ???? ??24××=. P (X =3)=???? ??34××=, P (X =4)= ??? ? ??44××=. 从而 E (X )=np =4×= 习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==???? ??-=+j j X P j j j ,说明X 的数学期望不存在. 解: 由于 1 11 1133322(1) ((1))3j j j j j j j j j P X j j j j ∞ ∞∞++===-=-==∑∑∑,而级数1 12j j ∞ =∑发散,故级数1 11 33(1) ((1))j j j j j P X j j ∞ ++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X -2 0 2 k p 求)53(),(),(2 2 +X E X E X E . 解 E (X )=(-2)+0+2= 由关于随机变量函数的数学期望的定理,知 E (X 2)=(-2)2+02+22= E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[3 22 +5] = 如利用数学期望的性质,则有 E (3X 2+5)=3E (X 2)+5=3+5=

概率论课后习题答案

习题1解答 1、 写出下列随机试验的样本空间Ω: (1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数; (3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标、 解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为 {|0,1,2,,100}i i n n Ω==、 (2)设在生产第10件正品前共生产了k 件不合格品,样本空间为 {10|0,1,2,}k k Ω=+=, 或写成{10,11,12,}.Ω= (3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的就是正品,样本空间可表示为 {00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=、 (3)取直角坐标系,则有22 {(,)|1}x y x y Ω=+<,若取极坐标系,则有 {(,)|01,02π}ρθρθΩ=≤<≤<、 2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件、 (1) A 发生而B 与C 不发生; (2) A 、B 、C 中恰好发生一个; (3) A 、B 、C 中至少有一个发生; (4) A 、B 、C 中恰好有两个发生; (5) A 、B 、C 中至少有两个发生; (6) A 、B 、C 中有不多于一个事件发生、

概率论复习题及答案

复习提纲 (一)随机事件和概率 (1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。 (2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。 (3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式, 以及应用这些公式进行概率计算。 (4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。 (5)掌握Bernoulli 概型及其计算。 (二)随机变量及其概率分布 (1)理解随机变量的概念。 (2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。 (3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。 (4)会求简单随机变量函数的概率分布。 (三)二维随机变量及其概率分布 (1)了解二维随机变量的概念。 (2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律 及其性质,并会用它们计算有关事件的概率。 (3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。 (4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。 (5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。 (6)理解二维均匀分布和二维正态分布。 (四)随机变量的数字特征 (1)理解数学期望和方差的概念,掌握它们的性质与计算。 (2)掌握6种常用分布的数学期望和方差。 (3)会计算随机变量函数的数学期望。 (4)了解矩、协方差和相关系数的概念和性质,并会计算。 (五)大数定律和中心极限定理 (1)了解Chebyshev 不等式。 (2)了解Chebyshev 大数定律和Benoulli 大数定律。 (3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件 和结论,并会用相关定理近似计算有关随机事件的概率。

华理概率论习题5答案

华东理工大学 概率论与数理统计 作业簿(第五册) 学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________ 第十三次作业 一. 填空题: 1. 已知二维随机变量),(ηξ的联合概率分布为 则 ()_______,),max (_______,)(2sin ____,______,==??? ??+==ηξηξπηξE E E E ()_______),m ax (=ηξD 。 2. 设随机变量321,,ξξξ相互独立,1ξ~)6,0(U ,2ξ~)4,0(N ,3ξ~)3(E ,则: )32(321ξξξ+-E = ____4___,)32(321ξξξ+-D = __20_。 二. 选择题: 设),N(10~ξ,)4,0(~N η,ηξ?+=,下列说法正确的是( B )。 A. )5,0(~N ? B. 0=?E C. 5=?D D. 3=?D 05.15.025.02.136.0

三. 计算题: 1. 设二维随机变量),(ηξ的联合概率密度函数为 ?????< <<<+=其他0 2 0,20)(81 ),(y x y x y x p 求)(,,ξηηξE E E 。 解:ηξE y y x x x y x y x xp E D ==+= =????6 7 d )(d 81d d ),(2020 3 4 d )(d 81d d ),()(2020=+= = ????y y x xy x y x y x xyp E D ξη 2. 二维随机变量),(ηξ服从以点(0, 1),(1, 0),(1, 1)为顶点的三角形区域上的均匀分布,试求)(ηξ+E 和)(ηξ+D 。 解: ),(ηξ~2, (,),(,)0, (,),x y G p x y x y G ∈?=? ?? 1 1 014 ()2()3y E dy x y dx ξη-+=+= ??, 11220111 ()2()6 y E dy x y dx ξη-+=+=??, 2211161 ()()[()]6918 D E E ξηξηξη+=+-+=-= 3. 有10个人同乘一辆长途汽车,沿途有20个车站,每到一个车站时,如果没有人下车,则不停车。设每位乘客在各站下车是等可能的,且各乘客是否下车是相互独立的,求停车次数的数学期望。

华东理工大学概率论答案-4,5,6

华东理工大学 概率论与数理统计 作业簿(第二册) 学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________ 第四次作业 一. 填空题: 1.设事件A,B 相互独立,且5.0)(,2.0)(==B P A P ,则)(B A B P ∪= 4/9 2. 设A 、B 、C 两两独立,且ABC=Φ, P(A)=P(B)=P(C)< 21, 16 9)(=∪∪C B A P 则P(C)= 0.25 3. 已知事件A,B 的概率()0.4,()0.6P A P B ==且()0.8P A B ∪=,则(|)P A B = 13,(|)P B A =1 2 。 4. 已知()0.3,()0.5P A P B ==,(|)0.4P A B =,则()P AB = 0.2,()P A B ∪= 0.6, (|)P B A = 2 3 。 二. 选择题: 1. 设袋中有a 只黑球,b 只白球,每次从中取出一球,取后不放回,从中取两次,则第二次取出黑球的概率为( A );若已知第一次取到的球为黑球,那么第二次取到的球仍为黑球的概率为( B ) A.)(b a a + B.11?+?b a a C. )1)(() 1(?++?b a b a a a D.2 2)(b a a + 2.已知()0.7,()0.6,()0.6,P A P B P B A ===则下列结论正确的为( B )。 A .A B 与互不相容; B .A B 与独立; C .A B ?; D .()0.4P B A =.

华理概率论06-6-B-试卷答案

华东理工大学2005–2006学年第二学期 《概率论与数理统计》课程期末考试试卷 B 2006.06 开课学院: 理学院 ,专业:大面积 ,考试形式:闭卷 , 所需时间:120分钟 考生姓名: 学号: 班级 任课教师 一、 填空题(每题5分,共20分) (1)设 P ( A ) = 0.5 , P ( A B ) = 0.75 , a ) 若A 与 B 独立,则 P(B) = 0.5 ; b). 若A 与B 不相容 ,则 P(B) = 0.25 。 (2)设n X X X ,,21为总体2 ~(,)N ξμσ的样本,211 1,()n n i i i i X X X U n μσ==-==∑∑, 则它们分别服从 2(,)N n μσ 和 2()n χ 分布。 (3)设随机变量,ξη相互独立,且4D D ξη=。记23,23X Y ξηξη=+=-,则 {()()(E XY EX EY -= 725 。 (4) 设随机变量ξ的密度函数为:01 (),120ax x p x b x x ≤

(A )A 与B 互不相容; (B )A 与B 相容; (C )P(AB) = P(A) P(B); (D )()()P A B P A -=。 (2)设随机变量,ξη相互独立,且3, 2.1E D ξξ==;4, 2.4E D ηη==,则 2(2)E ξη-=( A )。 (A )14.8 ; (B ) 4 ; (C )12.4 ; (D )其它 。 (3)设随机变量X ,Y 相互独立,服从相同的两点分布:111212-?? ????,则下列结论中肯定正确的是( C ): (A )X=Y ; (B )P(X=Y) = 0 ; (C )P(X=Y) = 12; (D )P(X=Y) = 1 。 (4)设(,)X Y 服从二维正态分布,则随机变量,U X Y V X Y =+=-独立的充要条件为( B ): (A )EX EY =; (B )2222()()EX EX EY EY -=-; (C )22EX EY =; (D )2222()()EX EX EY EY +=+。 三、(共10分)袋中有5个白球,3个红球,甲先从袋中随机取出一球后,乙再从中随机取出一球。 (1)试求“乙取出的是白球”的概率; (2)若已知“乙取出的是白球”,计算“甲取到红球”的条件概率。 解:(1)设A ={ 甲取出的是白球 };B ={ 乙取出的是白球 };则 B AB AB =+,由全概率公式(或抓阄模型), ()()()()()P B P A P B A P A P B A =+=5435587878 ?+?=。(5分) (2) 利用贝叶斯公式,得 35()()()3 87()5()()78 P A P B A P AB P A B P B P B ?====。 (5分)

概率论习题答案

一.填空题(82142'=?') 1.已知41)(=A P ,31)(=A B P ,2 1)(=B A P ,则=)(B A P Y 31。 2.有零件8件,其中5件为正品,3件为次品。从中任取4件,取出的零件中有2件正品2件次品的概率为7 3482325=?C C ; 3.抛掷均匀的硬币,直到出现正面向上为止,则抛掷次数X 的概率分布为K ,2,1,5.05.05.0)(1==?==-k k X P k k ,X 服从分布)5.0(G 。 4.设随机变量X 的密度函数为?????<≥=1 ,01,)(2x x x c x p ,则常数=c 1 ,X 的分布函数 =)(x F ?? ???>-≤1,111 ,0x x x 。 5.设随机变量X 的密度函数为???<<=其他 ,010,2)(x x x p X ,则随机变量2X Y =的密度函数=)(y p Y ???<< 其它,010,1y 。 6.已知),(Y X 的联合分布函数为),(y x F ,且d c b a <<,,则=≤<≤<),(d Y c b X a P ),(),(),(),(c a F d a F c b F d b F +--。 7.设)2,1(~N X ,)4,3(~N Y ,且X 和Y 相互独立,则Y X Z +=2的密度函数=)(z p Z +∞<<-∞--z e z ,621 24)5(2 π。 8.)5.0,9,4,0,1(~),(N Y X ,则~Y )9,0(N ,=-])[(2Y X E 8 。 9.设),(Y X 的联合概率分布为

则X 的概率分布为 相关系数=XY ρ3 2-。 10.设随机变量n X X X ,,21Λ独立同分布, μ=1EX , 81=DX ,记∑==n i i n X n Y 11,则用切比雪夫不等式估计≥<-)2(μn Y P n 21-。 二.简答题(6') 叙述数学期望和方差的定义(离散型),并且说明它们分别描述什么? 数学期望:i i i p x ∑∞=1绝对收敛,则i i i p x EX ∑∞ ==1。(2分) EX 描述X 取值的平均。(1分) 方差: 2)(EX X E -存在,则2 )(EX X E DX -=(2分) DX 描述X 相对于EX 的偏差。(1分) 三.分析判断题(判断结论是否正确,并说明理由,0125'=?') 1.设随机变量X 的分布函数为)(x F ,b a <,则=≤≤)(b X a P )()(a F b F -。 不一定正确。(2分) 如X 为连续型随机变量,则=≤≤)(b X a P )()(a F b F -;如X 为离散型随机变量,且 0)(≠=a X P ,则≠≤≤)(b X a P )()(a F b F -(或举反例) 。(3分) 2.若随机变量X 和Y 不相关,则DX Y X D ≥-)(。 正确。(2分) .) 1)(,(2)(分)(分(分) 11DX DY DX Y X Cov DY DX Y X D ≥+=-+=- 四.计算题(65018810101'='+'+'+'+') 1.(01334'='+'+')进行4次独立试验,在每次试验中A 出现的概率均为3.0。如果A 不出现,则B 也不出现;如果A 出现一次,则B 出现的概率为6.0;如果A 出现不少于两次,

概率论与数理统计(第三版)课后答案习题1

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命, 解 (1) }, 100,,1,0{ n i n i ==Ω其中n 为班级人数(2)}18,,4,3{ =Ω (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

概率论与数理统计 习题(5)答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

整理得0.95,10n ??Φ≥ ? ??? 查表 1.64,10n ≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响, 开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,), ()140,()42,E X D X == 1400.95{0}().42m P X m P X m -?? =≤≤=≤=Φ ??? 查表知 140 1.64,42 m -= ,m =151. 所以供电能151×15=2265(单位). 4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量, 且都在区间(0,10)上服从均匀分布.记V = ∑=20 1 k k V ,求P {V >105}的近似值. 【解】易知:E (V k )=5,D (V k )= 100 12 ,k =1,2,…,20 由中心极限定理知,随机变量 20 1 205 ~(0,1).100100 20201212 k k V Z N =-?= =??∑近似的 于是105205{105}1010020201212P V P ????-?? >=>???? ????? 1000.3871(0.387)0.348,102012V P ????-?? =>≈-Φ=? ???????? 即有 P {V >105}≈ 5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100 根,问其中至少有30根短于3m 的概率是多少

华东理工大学概率论答案-2

华东理工大学概率论答案-2

华东理工大学 概率论与数理统计 作业簿(第二册) 学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________ 第四次作业 一. 填空题: 1. 设事件A,B 相互独立,且5.0)(,2.0)(==B P A P ,则)(B A B P ?= 4/9 2. 设A 、B 、C 两两独立,且ABC=Φ, P(A)=P(B)=P(C)<21, 16 9 )(=??C B A P 则P(C)= 0.25 3. 已知事件A,B 的概率()0.4,()0.6P A P B ==且()0.8P A B ?=,则(|)P A B = 13,(|)P B A =12 。 4. 已知()0.3,()0.5P A P B ==,(|)0.4P A B =,则()P AB = 0.2,()P A B ?= 0.6, (|)P B A = 2 3 。 二. 选择题: 1. 设袋中有a 只黑球,b 只白球,每次从中取出一球,取后不放回,从中取两次,则第二次取出黑球的概率为( A );若已知第一次取到的球为黑球,那么第二次取到的球仍为黑球的概率为( B ) A .)(b a a + B .11-+-b a a C . )1)(()1(-++-b a b a a a D .2 2 )(b a a +

2. 已知()0.7,()0.6,()0.6,P A P B P B A ===则下列结论正确的 为( B )。 A .A B 与互不相容; B .A B 与独立; C . A B ?; D .()0.4P B A =. 3.对于任意两事件A 和B ,则下列结论正确的是( C ) A .一定不独立,,则若 B A AB ?=; B .一定独立,,则若B A AB ?≠; C .有可能独立,,则若B A AB ?≠; D .一定独立,,则若B A AB ?= 4.设事件,,,A B C D 相互独立,则下列事件对中不相互独立的是( C ) )(A A 与BC D ?; )(B AC D ?与BC ; )(C BC 与A D -; )(D C A -与BD . 三. 计算题: 1.设有2台机床加工同样的零件,第一台机床出废品的概率为0.03,第二台机床出废品的概率为0.06,加工出来的零件混放在一起,并且已知第一台机床加工的零件比第二台机床多一倍。 (1) 求任取一个零件是废品的概率 (2) 若任取的一个零件经检查后发现是废品,则它是第二台机床加工 的概率。 解:(1)设B ={取出的零件是废品},1A ={零件是第一台机床生产的}, 2A ={零件是第二台机床生产的},则122 1(),()33 P A P A ==, 由全概率公式得: 112221()(|)()(|)()0.030.060.0433 P B P B A P A P B A P A =+=?+?= (2)222(|)()0.02 (|)0.5()0.04 P B A P A P A B P B === 2.某工厂的车床、钻床、磨床、刨床的台数之比为 1 :2:3:9,它们在一定时间内需要修理的概率 之比为 1:3:2:1,当一台机床需要修理时,求这台

概率论与数理统计答案 (4)

习题四 1.设随机变量X 的分布律为 求E (X )【解】(1) 11111()(1)012;82 8 4 2 E X =-? +?+?+?= (2) 222 2 2 11115()(1)012;8 2 8 4 4E X =-? +?+?+? = (3) 1(23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 【解】设任取出的5个产品中的次品数为X ,则X 的分布律为 故 ()0.5830 0.34010.07020.0073E X =?+?+?+?+?+?0.501, = 5 20 ()[()]i i i D X x E X P == -∑222 (00.501)0.583(10.501)0.340(50.501)00.432.=-?+-?++-?= 3.设随机变量X 的分布律为 且已知E (X )123【解】因1231P P P ++=……①, 又12331()(1)010.1E X P P P P P =-++=-= ……②, 2 2 2 2 12313()(1)010.9E X P P P P P =-++=+= ……③ 由①②③联立解得1230.4,0.1,0.5.P P P === 4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多 少? 【解】记A ={从袋中任取1球为白球},则 (){|}{}N k P A P A X k P X k ===∑ 全概率公式 1{}{} 1(). N N k k k P X k k P X k N N n E X N N === == == = ∑ ∑

华理概率论习题3答案

概率论与数理统计 作业簿(第三册) 学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________ 第七次作业 一.填空题: 1. ξ的分布列为: 则=E ξ 2.7 。 2. ξ的分布列为: 则=E ξ13, (1)-+=E ξ3, 2 =E ξ24 。 二.选择题: 1. 若对任意的随机变量X ,EX 存在,则))((EX E E 等于( C ) 。 A .0 B .X C .EX D .2)(EX 2. 现有10张奖券,其中8张为2元,2张为5元,某人从中随机地无放回地抽取3张,则此人所得奖金的数学期望为 ( C ) (A )6.5 (B )12 (C )7.8 (D )9 三.计算题 1. 设随机变量X 的概率密度为21101()10x x f x θ θ θ--?<1,求 EX 。

解 21 1 111 10011111011----====--??EX x x dx x dx x θθθθθθθθ θ 2. 设随机变量ξ的概率密度函数 ,0 (=0,0 x e x p x x -?>? ≤?) 求 2,(2),()E E E e ξξξξ-+。 解 0 1,x E xe dx ξ+∞-==? (2 )22, E E ξξ== 22204 ()()13 x x E e E E e e e dx ξξξξ+∞ ----+=+=+?= ?。 3. 一台机器由三大部件组成,在运转中各部件需要调整的概率分别为0.1,0.2和0.3。假设各部件的状态相互独立,用ξ表示同时需要调整的部件数,试求ξ的数学期望。 解 设A i ={第i 个部件需要调整}(i=1,2,3),则P(A 1)=0.1,P(A 2)= 0.2,P(A 3)=0.3 。所以 123(0)()0.90.80.70.504P P A A A ξ===??=, 123123123(1)()()()0.389,P P A A A P A A A P A A A ξ==++= 123123123(2)()()()0.092,P P A A A P A A A P A A A ξ==++= 123(3)()0.006.P P A A A ξ=== 从而 00.50410.38920.09330.0060.6E ξ=?+?+?+?=。 4. 设球的直径均匀分布在区间[a , b ]内,求球的体积的平均值。 解 设球的直径长为ξ,且[,]U a b ξ~,球的体积为η,与直径ξ的关系为3 432πξη?? = ???,那 么,3 3223 4()()326 624b a x a b a b E E E dx b a πξπππηξ++??=?=?== ?-???.

概率论复习题答案

一、单项选择题 1 已知随机变量X 在(1,5)之间服从均匀分布,则其在此区间的概率密度为( C ) A. B. C. D 4 2 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<1)之间服从均匀分布,则其在此区间的概率密度为( B ) A. 0 B. 2 C. D 1 3 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<2)之间服从均匀分布,则其不在此区间的概率密度为( A ) A. 0 B. 2 C. 1 D 4 4 已知P(A)= ,则)(A A P ? 的值为( D ) (A) (B) (C) 0 (D) 1 5 已知P(A)= ,则)(A A P 的值为( C ) (A) 1 (B) (C) 0 (D) Φ 6.,,A B C 是任意事件,在下列各式中,成立的是( C ) A. A B =A ?B B. A ?B =AB C. A ?BC=(A ?B)(A ?C) D. (A ?B)(A ? B )=AB 7 设随机变量X~N(3,16), 则P{X+1>5}为( B ) A. Φ B. 1 - Φ C. Φ(4 ) D. Φ(-4) 8 设随机变量X~N(3,16), Y~N(2,1) ,且X 、Y 相互独立,则P{X+3Y<10}为( A ) A. Φ B. 1 - Φ C. Φ(0 ) D. Φ(1) 9. 已知随机变量X 在区间(0,2)的密度函数为, 则其在此区间的分布函数为( C ) A. 2 x B. C. 2 x D. x 10 已知随机变量X 在区间(1,3)的密度函数为, 则x>3区间的分布函数为( B ) A. 2 x B. 1 C. 2 x D. 0 11. 设离散型随机变量X 的分布律为 P{X=n}=! n e n λλ, n=0,1,2…… 则称随机变量X 服从 ( B ) A. 参数为λ的指数分布 B. 参数为λ的泊松分布 C. 参数为λ的二项式分布 D. 其它分布 12. 设f (x )为连续型随机变量X 的密度函数,则f (x )值的范围必须( B )。

概率论(复旦三版) 习题三 答案

概率论与数理统计(复旦第三版) 习题三 答案 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 的可能取值为:0,1,2,3;Y 的可能取值为:0,1. 222??222 ??2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 的可能取值为:0,1,2,3;Y 的可能取值为:0,1,2. 24 7C 3 C 35= 2 4 7C 2C 35= 22 4 7C C 6C 35=1122 4 7C C 12C 35=12 4 7C 2C 35 = 2 4 7C 1C 35 = 2122 4 7C C 6C 35 =224 7C 3 C 35 = 3.设二维随机变量(,)X Y 的联合分布函数为 ππsin sin ,0,0(,)220,x y x y F x y ? ≤≤≤≤ ?=??? 其它 求二维随机变量(,)X Y 在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式

ππππππ(,)(,)(0,)(0,)434636 F F F F --+ ππππππ sin sin sin sin sin 0sin sin 0sin 434636 1).=--+= 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(,)X Y 的分布密度 (34)e ,0,0 (,)0,x y A x y f x y -+?>>=? ? 其他 求:(1) 常数A ; (2) 随机变量(,)X Y 的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由 -(34)0 (,)d d e d d 112 x y A f x y x y A x y +∞ +∞ +∞ +∞ +-∞ -∞ == =?? ? ? 得 A =12 (2) 由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ = ?? (34)340012e d d (1 e )(1e )0,0, 0,0, y x u v x y u v y x -+--??-->>?==?? ?????其他 (3) {01,02}P X Y ≤<≤< (34)380102 {01,02} 12e d d (1e )(1e )0.9499.x y x y P X Y x y -+--<≤<≤=<≤<≤= =--≈?? 5.设随机变量(,)X Y 的概率密度为 (6),02,24 (,)0,k x y x y f x y --<<<

概率论习题五答案

习题五 1.设抽样得到样本观测值为: 计算样本均值、样本标准差、样本方差与样本二阶中心矩。 10__ 110 __ 2221 __2 211 :(38.2+40.0+42.4+37.6+39.2+41.0+44.0+43.2+38.8+40.6)40.5; 1010 2.1587; 1 () 2.1587 4.66;91()10i i i i i x x s s x x x x σ========= -===-∑∑解10219 4.194. 10 i S ===∑ 2.设抽样得到100 计算样本均值、样本方差与样本二阶中心矩。 解:由书上127页()()()式可知: 6___ 1 6___ 2 22216___2 2 111(11522132542051267) 3.14; 10010011()[(1 3.14)15(6 3.14)7] 2.1216;9999 199() 2.1216 2.1004.100100i i i i i i i i i x x n s x x n x x n σ=====?+?+?+?+?+?==-=-?++-?==-=?=∑∑∑ 3.略 4.从总体中抽取容量为n 的样本1, ,n X X ,设c 为任意常数,k 为任意正数,作变换(),1,2, ,.i i Y k X c i n =-= 证明:(1);Y X c k =+(2)2 2 2;y x S S k =其中X 及2x S 分别是1, ,n X X 的样本均值及样本方差;Y 及2 y S 分别 是1,,n Y Y 的样本均值及样本方差。 证明(1) 11,n i i X X n ==∑由()i i Y k X c =-得i i Y X c k =+ 11111()n n i i i i Y Y X c Y nc c n k k n n k ==∴=+=+?=+?∑∑

概率论与数理统计浙大四版习题答案

概率论与数理统计浙大四版习题答案 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-

第七章 参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σ μ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为 未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,) 1()(<<=-==- 为未知参数。 解:(1) X θc θθc θc θc θdx x c θdx x xf X E θθc θ θ =--=-== = +-∞+-∞+∞ -? ? 1 ,11)()(1令,得 c X X θ-= (2) ,1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =?

3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211)()()(+-===∏θn θn n n i i x x x c θx f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑==n i i n i i x c n n θ θd θL d x θc θn θn θL ∑=-= n i i c n x n θ1 ln ln ? (解唯一故为极大似然估计量) (2) ∑ ∏=-- =-+-=== n i i θn n n i i x θθn θL x x x θ x f θL 1 1 212 1 ln )1()ln(2)(ln ,) ()()( ∑∑ ====+?-=n i i n i i x n θx θ θn θd θL d 1 2 1 ) ln (?,0ln 21 12)(ln 。(解唯一)故为极大 似然估计量。 (5)∑∑==- =-??? ? ?????? ??===∏ n i n i i i x mn x n n i i p p x m x m x X P p L 1 1 )1(}{)(11 , ()),1ln()(ln ln )(ln 1 1 1 p x mn p x p L n i i n i i n i m x i -- ++= ∑∑∑=== 01) (ln 1 1 =--- =∑∑==p x mn p x dp p L d n i i n i i 解得 m X mn x p n i i = = ∑=2 ,(解唯一)故为极大似然估计量。 4.[四(2)] 设X 1,X 1,…,X n 是来自参数为λ的泊松分布总体的一个样本,试求λ的极大似然估计量及矩估计量。

相关文档
相关文档 最新文档