文档库 最新最全的文档下载
当前位置:文档库 › 高等数学-第3章 3.4 函数的极值与最值

高等数学-第3章 3.4 函数的极值与最值

高等数学-第3章 3.4 函数的极值与最值
高等数学-第3章 3.4 函数的极值与最值

§3.4 函数的极值与最值

本节利用导数讨论函数的极值与最值的问题,具体来说,讨论函数在局部与全局的最大值、最小值(简称最值)问题,它在实际应用中有着重要的意义。

一、函数的极值 1. 极值的定义

观察图3.11,可以发现,函数()y f x =在点14,x x 的值比其邻近点的值都大,曲线在该点处达到“峰顶”;在点25,x x 的值比其邻近点的值都小,曲线在该点处达到“谷底”。对于具有这种性质的点,我们引入函数的极值的概念.

定义 3.3 设函数)(x f 在点0x 的某邻域内有定义,如果对于该邻域内的任意一点x (x ≠0x ),恒有

0()()f x f x <(或0()()f x f x >)

, 则称)(0x f 是函数)(x f 的极大值(或极小值),称0x 是函数)(x f 的极大值点(或极小值点)。

极大值与极小值统称为极值,极大值点与极小值点统称为极值点. 注:(1)函数的极值是一个局部性的概念,如果)(0x f 是函数)(x f 的极大值(或极小值),只是就0x 邻近的一个局部范围内,)(0x f 是最大的(或最小的),而对于函数)(x f 的整个定义域来说就不一定是最大的(或最小的)了。

(2)函数的极值只能在定义域内部取得。

图3.11

2. 极值的判别法

继续观察图3.4可以发现,在函数取得极值处,若曲线的切线存在(即函数的导数存在),则切线一定是水平的,即函数在极值点处的导数等于零。由此,有下面的定理.

定理3.4 (极值存在的必要条件) 如果函数)(x f 在点0x 可导,且在0x 处取得极值,则)(0x f '=0.

证明从略。

定义3.4 使()0f x '=的点,称为函数()f x 的驻点.

根据定理3.4,可导函数的极值点必定是它的驻点,但函数的驻点却不一定是极值点。例如,函数3x y =在点0=x 处的导数等于零,但如图1.3所示,0=x 不是3x y =的极值点。

此外,函数在它导数不存在的点处也可能取得极值。例如,函数||)(x x f =在点0=x 处不可导(参见§2.1例11),但如图1.4所示,||)(x x f =在点0=x 取得极小值。

归纳起来,一方面,函数可能取得极值的点是驻点和不可导点;另一方面,驻点和不可导点却又不一定是极值点。因此,若要求函数的极值,首先要找出函数的驻点和不可导点,然后判定函数在这些点是否取得极值,以及是极大值还是极小值。对此,参考图3.12和图3.13,可得下面的定理。

定理 3.5 (判别极值的第一充分条件) 设函数)(x f 在点0x 的某邻域

00(,)x x δδ-+内连续且可导(在0x 处可以不可导),则

3.12

图3.13

(1) 如果在点0x 的左邻域内,()0f x '>;在点0x 的右邻域内,()0f x '<,则函数)(x f 在0x 取得极大值;

(2) 如果在点0x 的左邻域内,()0f x '<;在点0x 的右邻域内,()0f x '>,则函数)(x f 在0x 取得极小值。

证明从略。

注:如果在点0x 的两侧,()f x '保持同号,则函数()f x 在点0x 没有极值。 根据上述讨论,利用定理3.5求函数的极值点和极值的步骤如下: (1)确定函数()f x 的定义域;

(2)求()f x ',求出()f x 的驻点及不可导点;

(3)用步骤(2)中求出的点将函数的定义区间划分为若干个子区间,确定

()f x '在各个子区间的符号,确定极值点和极值。

例1 求函数32()397f x x x x =--+的极值。 解 (1)函数的定义域为),(+∞-∞;

(2)2()369f x x x '=--3(1)(3)x x =+-,令()0f x '=,得驻点:1x =-,3x =;

(3)用1x =-和3x =将定义域划分为三个区间:)1,(--∞、)3,1(-、),3(+∞,列表确定()f x '的符号,函数的极值点和极值:

表3.5

所以,函数的极大值为(1)12f -=,极小值为(3)20f =-。

当函数()f x 在驻点处的二阶导数存在且不为零时,也可以利用下述定理来判定()f x 在驻点处是取得极大值还是极小值。

定理3.6 (判别极值的第二充分条件) 设函数()f x 在点0x 具有二阶导数,且

()00='x f ,()00≠''x f ,则

(1)当()00f x ''>时,函数()f x 在点0x 取得极小值; (2)当()00<''x f 时,函数()f x 在点0x 取得极大值。 证明从略。

注:定理3.5和定理3.6虽然都是判定极值点的充分条件,但在应用时又有区别.定理3.5对驻点和导数不存在的点均适用,定理3.6只对二阶导数存在且不为零的驻点适用,下列两种情形,定理3.6不适用:(1) 0()f x '不存在的点;(2) 0()0f x '=, 0()0f x ''=的点.这时,0x 可能是极值点,也可能不是极值点.

例2 求函数)(x f =1)1(32+-x 的极值。 解 (1)()f x 的定义域为(,)-∞+∞;

(2)22()6(1)f x x x '=- ,22"()6(1)(51)f x x x =--;令()0f x '=, 求得

驻点1x =-,0x =,1x =,没有不可导点;

(3)因为"(0)60f =>, 所以()f x 在0x =处取得极小值, 极小值为(0)0f =;因为"(1)"(1)0f f -==, 用定理3.6无法判定,改用定理3.5判定。因为在1x =-的左右邻域内'()0f x <, 所以()f x 在1x =-处没有极值;同理,()f x 在1x =处也没有极值。

综上所述,函数)(x f 只有极小值(0)0f =.

二、函数的最值

函数的极值是函数在局部范围内的最大值或最小值,本节讨论函数在其定义域或指定范围上的最大值或最小值。

1.闭区间上连续函数的最值

由定理1.5知道,若函数)(x f 在闭区间[,]a b 上连续,则)(x f 在[,]a b 上必有最大值与最小值。参照图3.11可知,函数的最值只能在驻点、不可导点、端点取得。

因此,求闭区间上连续函数)(x f 的最大值与最小值的方法如下: (1)求函数)(x f 的定义域;

(2)求()f x ',求出函数的驻点以及不可导点;

(3)计算)(x f 在驻点、不可导点、端点的函数值,比较大小,即可得函数的最大值与最小值。

例3 求函数42()82f x x x =-+在[]1,3-上的最大值和最小值。 解 (1)指定的区间为[]1,3-; (2)3()4164(2)(2)f x x x x x x '=-=+- 令()0f x '=,得(1,3)-内的驻点为0,2x =;

(3)(1)5f -=-,(0)2f =,(2)14f =-,(3)11f = 比较可得,函数的最大值为(3)11f =,最小值为(2)14f =-。

如图3.14、图3.15所示,如果函数)(x f 在某个连续区间内只有唯一的极值点0x ,可以断定,当0x 是)(x f 的极大(小)点时, 0()f x 就是函数)(x f 在该区间上的最大(小)值,这是实际应用中经常遇到的情况.

2. 实际问题的最值

在实际应用中,常常会遇到求最大值或最小值的问题(称为最优化问题),比如,制作一个容积一定的容器,要求用料最少;生产中投入同样多的人力、物力、财力,要求产出最大、利润最大,等等。这类问题在数学上往往可归结为求

图3.14

图3.15

某一函数(通常称为目标函数)的最大值或最小值问题。

应用极值和最值理论解决最优化问题时,首先要弄清要求最大值或最小值的量,该量与问题中其它量的关系怎样,以要最优化的量为目标,建立目标函数,并确定函数的定义域;其次,应用极值和最值理论求目标函数的最大值或最小值;最后应按问题的要求给出结论。

例4 如图3.16所示,设工厂C 到铁路的垂直距离为20km ,垂足为A ,铁路线上距A 点100km 处有一原料供应站B ,现在要在AB 线上选定一点D 修建一个原料中转车站,再由车站D 向工厂修筑一条公路。已知每吨公里铁路的运费与公路的运费之比为3:5,为了使

原料从供应站B 运到工厂C 的运费最省,问D 点应选在何处?

解 首先,建立目标函数。

设AD x =(km),则100DB x =-

,CD =;又设公路运费为5k /t km ?元(k 是正数),铁路运费为3k /t km ?元,从B 点到C 点需要的总运费为y (元),则目标函数为

53y kCD kDB =+,

53(100)y k x =- (0100x ≤≤)。

其次,将实际问题的最值转化为函数的最值。

问题转化为:求函数53(100)y k x =-在[0,100]上的最小值。 求导数,得

533)y k

k k '=-=-,

令'0y =, 得驻点15x =(15x =-舍去)。

因为运费问题中必有最小值,现在又只有一个驻点15x =,由此知15x =为函数y 的最小值点。因此,当车站D 建于A 、B 之间与A 相距15km 处时,运费

A B

图3.16

最省。

注:在实际问题中,如果函数()f x 在某区间内有唯一的驻点0x ,而且从实际问题本身又可知道()f x 在该区间内必定有最大值或最小值, 则0x 就是()f x 的最大值点或最小值点。

例5 如图3.17所示,把一根直径为d 的圆木锯成截面为矩形的梁,问矩形

截面的高h 和宽b 应如何选择才能使梁的抗弯截面模量21

6

W bh =最大?

解 首先,建立目标函数。 依题意,目标函数为

21

6

W bh =

因为

222h d b =-,

所以 231

()(0)6

W d b b b d =-<<。

其次,将实际问题的最值转化为函数的最值。

问题转化为:求函数221

()6

W b d b =-在(0,)d 内的最大值。

求导数,得

2

21(3)6

W d b '=

-. 令0W '=

,得驻点b =

。 由于梁的最大抗弯截面模量一定存在, 而且在(0,)d 内部取得,现在,函数W 在(0,)d 内只有一个驻点,

所以当b =

时,W 的值最大,这时, 22222212

33

h d b d d d =-=-=

,即h =

:h b =

=。

时,梁的抗弯截面模量最大。

图3.17

多元函数的极值与最值例题极其解析

多元函数的极值与最值 1.求函数z=x3+y3?3xy的极值。 步骤: 1)先求驻点(另偏导数等于0,联立) 2)再求ABC A=f xx(x0, y0) B=f xy(x0, y0) C=f yy(x0, y0) 3)(1)当B2-AC<0时,f(x,y)在点(x o,y o)处取得极值, 且当A<0时取得极大值f(x o,y o),当A>0时取得极小值f(x o,y o),当A<0时取得极大值f(x o,y o); (2)当B2-AC>0时,f(x o, y o )不是极值; (3)当B2-AC=0时,f(x o,y o)是否为极值不能确定,需另做讨论. =3x2?3y=0 解:?z ?x ?z =3y2?3x=0 ?y 联立得驻点为(0,0),(1,1) A=f xx(x0, y0)=6x(对x求偏导,再对x求偏导) B=f xy(x0, y0)=-3(对x求偏导,再对y求偏导) C=f yy(x0, y0)=6y(对y求偏导,再对y求偏导) 在点(0,0)处,A=0,B=-3,C=0,由B2-AC=9>0,故在此处

无极值。 在点(1,1)处,A=6,B=-3,C=0, B2-AC=-27<0,又因为 A>0,故在此处为极小值点,极小值为 F (1, 1) =x3+y3?3xy=?1 2.求函数f(x, y)=x2+(y?1)2的极值。 解:f x’=2x=0 F y’=2y-2=0 联立得驻点为(0,1) A=f xx(x0, y0) =2 B=f xy(x0, y0) =0 C=f yy(x0, y0) =2 在点(0,1)处A=2,B=0,C=2由B2-AC=-4<0,又因为A>0,故在此处为极小值点,极小值为 F (0, 1) = 0 3.制造一个容积为a的无盖长方体,使之用料最少,则长宽高为多少? 解:另长宽高分别为x, y, z 故xyz=a, z=a xy S=xy+2(x a xy +y a xy )=xy+2(a y +a x ) S x’=y+2(?a x2 )=0 S y ’= x+2(?a y )=0

同济第六版《高等数学》教案WORD版-第01章 函数与极限

第一章函数与极限 教学目的: 1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形。 5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限 之间的关系。 6、掌握极限的性质及四则运算法则。 7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限 的方法。 8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有 界性、最大值和最小值定理、介值定理),并会应用这些性质。 教学重点: 1、复合函数及分段函数的概念; 2、基本初等函数的性质及其图形; 3、极限的概念极限的性质及四则运算法则; 4、两个重要极限; 5、无穷小及无穷小的比较; 6、函数连续性及初等函数的连续性; 7、区间上连续函数的性质。 教学难点: 1、分段函数的建立与性质; 2、左极限与右极限概念及应用; 3、极限存在的两个准则的应用; 4、间断点及其分类; 5、闭区间上连续函数性质的应用。 §1. 1 映射与函数 一、集合 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示. 元素: 组成集合的事物称为集合的元素. a是集合M的元素表示为a?M. 集合的表示: 列举法: 把集合的全体元素一一列举出来. 例如A?{a, b, c, d, e, f, g}. 描述法: 若集合M是由元素具有某种性质P的元素x的全体所组成, 则M可表示为

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

高等数学基础知识点大全(94页完美打印版)

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A?A

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

(完整版)高等数学教材word版(免费下载)

目录 一、函数与极限 (2) 1、集合的概念 (2) 2、常量与变量 (3) 2、函数 (4) 3、函数的简单性态 (4) 4、反函数 (5) 5、复合函数 (6) 6、初等函数 (6) 7、双曲函数及反双曲函数 (7) 8、数列的极限 (8) 9、函数的极限 (10) 10、函数极限的运算规则 (11)

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑵、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集:

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

高等数学公式集合

1 高等数学公式 1. 导数公式 22()sec ()csc (sec )sec (csc )csc ()ln 1(log )ln x x a tgx x ctgx x x x tgx x x ctgx a a a x x a '='=-'=?'=-?'='= 2 (a r c s i n (a r c c o s 1 ()11 ()1x x arctgx x arcctgx x ''='= +'=- + 2. 基本积分公式 2 2 2222ln cos ln sin sec ln sec csc ln csc 11ln 21ln 2arcsin tgxdx x C ctgxdx x C xdx x tgx C xdx x ctgx C dx x arctg C a x a a dx x a C x a a x a dx a x C a x a a x x C a =-+=+=++=-+=++-=+-++=+--=+??????? 2 2 2 2 sec cos csc sin sec sec csc csc ln ln(x x dx xdx tgx C x dx xdx ctgx C x x tgxdx x C x ctgxdx x C a a dx C a shxdx chx C chxdx shx C x C ==+= =-+?=+?=-+= +=+=+=+????????? 20 2 2 21 sin cos ln(2ln 2arcsin 2n n n n n I xdx xdx I n a x C a x C a x C a ππ--=== ++??

高中数知识讲解_函数的极值与最值提高

导数的应用二------函数的极值与最值 【学习目标】 1. 理解极值的概念和极值点的意义。 2. 会用导数求函数的极大值、极小值。 3. 会求闭区间上函数的最大值、最小值。 4. 掌握函数极值与最值的简单应用。 【要点梳理】 要点一、函数的极值 (一)函数的极值的定义: 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 由函数的极值定义可知: (1)在函数的极值定义中,一定要明确函数y=f(x)在x=x 0及其附近有定义,否则无从比较. (2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域内可能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小. (3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值. (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. (二)用导数求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f ';

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

高等数学基本知识点大全

高等数学基本知识点

一、函数与极限 1、集合的概念 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 ⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 2、函数 ⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 ⑵、函数相等 由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。 ⑶、域函数的表示方法 a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2 b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。 c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为: 3、函数的简单性态 ⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. ⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1

多元函数的极值及其应用

多元函数的极值及其应用 作者:程俊 指导老师:黄璇 学校:井冈山大学 专业:数学与应用数学

【摘要】 多元函数的极值是函数微分学中的重要组成部分,本文对几种特殊的多元函数进行了简单的介绍,对多元函数的极值常见的求法进行了研究,并引入其在生活中、生产中解决实际问题的广泛应用,突显这一学术课题在生活中的重大意义。如今构建经济型节约社会慢慢成为我们共同努力的方向,而最优化问题是达到这一目标的有效途径,其常常有与多元函数的极值息息相关。对函数极值的研究不仅把理论数学推上一个高度,给经济方面,生活方面带来的益处不容小觑,本人浅谈极值问题,为了抛砖引玉,希望这一课题能有更广大额发展空间 【关键词】:多元函数;极值;生活中的应用

目录 Ⅰ引言 (1) Ⅱ多元函数极值的介绍………………………………………… 2.1什么是多元函数………………………………………… 2.2函数的极值理论………………………………………… Ⅲ几种函数的极值的常见求法……………………………… 3.1高中极值求法的弊端………………………………… 3.2拉格朗日乘数法……………………………………… 3.3消元法…………………………………………………… 3.4均值不等式法…………………………………………… Ⅳ多元函数在生活中的应用……………………………………

引言 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它有助于我们提高对函数的认识。而函数的极值的作用已经蔓延到经济领域,在各种解决最优化中应用广泛,从而引发了本人对该课题的研究兴趣。 编者 2014年2月

高等数学(同济大学版) 课程讲解 1.1映射与函数

课时授课计划 课次序号:01 一、课题:§1.1 映射与函数 二、课型:新授课 三、目的要求:1.了解集合与映射的有关概念; 2.理解函数的概念,了解函数的四种特性; 3.理解复合函数的概念,了解反函数的概念; 4.熟悉基本初等函数的性质及其图形; 5.会建立简单实际问题的函数关系式. 四、教学重点:函数的概念,函数的各种性态. 教学难点:反函数、复合函数、分段函数的理解. 五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编, 高等教育出版社; 2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社. 七、作业:习题1–1 3(1),6(4)(7),9(1) 八、授课记录: 九、授课效果分析:

第一章函数与极限 第一节映射与函数 高等数学研究的主要对象是函数. 为了准确而深刻地理解函数概念,集合与映射的知识是不可缺少的. 本节将简要复习回顾集合、映射的一些基本概念,在此基础上重点介绍函数概念与相关知识. 一、集合 1. 集合的概念 集合是数学中的一个最基本的概念.一般地,我们将具有某种确定性质的事物的全体叫做一个集合,简称集.组成集合的事物称为该集合的元素.例如,某大学一年级学生的全体组成一个集合,其中的每一个学生为该集合的一个元素;自然数的全体组成自然数集合,每个自然数是它的元素,等等. 通常我们用大写的英文字母A,B,C,…表示集合;用小写的英文字母a,b,c,…表示集合的元素.若a是集合A的元素,则称a属于A,记作a∈A;否则称a不属于A,记作 a?A(或a∈A). 含有有限个元素的集合称为有限集;不含任何元素的集合称为空集,用?表示;不是有限集也不是空集的集合称为无限集.例如,某大学一年级学生的全体组成的集合是有限集; 全体实数组成的集合是无限集;方程2x+1=0的实根组成的集合是空集. 集合的表示方法:一种是列举法,即将集合的元素一一列举出来,写在一个花括号内.例如,所有正整数组成的集合可以表示为N={1,2,…,n,…}.另一种表示方法是指明集合元素所具有的性质,即将具有性质p(x)的元素x所组成的集合A记作 A ={x|x具有性质p(x)}. 例如,正整数集N也可表示成N={n|n =1,2,3,…}; 又如A={(x,y)|2x+2y=1,x,y为实数}表示xOy平面单位圆周上点的集合. 2. 集合的运算 设A,B是两个集合,若A的每个元素都是B的元素,则称A是B的子集,记作A?B (或B?A);若A?B,且有元素a∈b,但a?A,则说A是B的真子集,记作A?B.对任何集A,规定??A.若A ?B,且B?A,则称集A与B相等,记作A=B.由属于A或属于B的所有元素组成的集称为A与B的并集,记作A∪B,即 A∪B={x|x∈A或x∈B}. 由同时属于A与B的元素组成的集称为A与B的交集,记作A∩B,即 A∩B={x|x∈A且x∈B}. 由属于A但不属于B的元素组成的集称为A与B的差集,记作A\B,即 A\B={x|x∈A但x?B}. 如图1-1所示阴影部分.

高等数学(函数与极限)完全归纳笔记

目录: 函数与极限 (1) 1、集合的概念 (1) 2、常量与变量 (2) 2、函数 (3) 3、函数的简单性态 (4) 4、反函数 (4) 5、复合函数 (5) 6、初等函数 (6) 7、双曲函数及反双曲函数 (7) 8、数列的极限 (8) 9、函数的极限 (9) 10、函数极限的运算规则 (11) 一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

高等数学(上册)教案15 函数的极值与最值

第3章 导数的应用 函数的极值与最值 【教学目的】: 1. 理解函数的极值的概念; 2. 掌握求函数的极值的方法; 3. 了解最大值和最小值的定义; 4. 掌握求函数的最值的方法; 5. 会求简单实际问题中的最值。 【教学重点】: 1. 函数极值的第一充分条件,第二充分条件; 2. 导数不存在情况下极值的判定; 3. 函数最值的求解方法; 4. 函数的最值的应用。 【教学难点】: 1. 导数不存在情况下极值的判定; 2. 区分函数的驻点、拐点、极值点以及最值点; 3. 区分极值点与极值,最值点与最值; 4. 函数的最值的应用。 【教学时数】:2学时 【教学过程】: 3.3.1函数的极值 从图3-7可以看出,函数)(x f y =在点2x 、5x 处的函数值2y 、5y 比它们近旁各点的函数值都大;在点1x 、4x 、6x 处的函数值1y 、4y 、6y 比它们近旁各点的函数值都小,因此,给出函数极值的如下定义: 一般地, 设函数)(x f y =在0x 的某邻域内有定义,若对 于0x 邻域内不同于0x 的所有x ,均有)()(0x f x f <,则称)(0x f 是函数)(x f y =的一个极大值,0x 称为极大值点;若对于0x 邻域内不同于0x 的所有x ,均有 )()(0x f x f >,则称)(0x f 是函数)(x f y =的一个极小值,0x 称为极小值点. 函数的极大值与极小值统称为极值,极大值点和极小值点统称为极值点. 注意 可导函数的极值点必是它的驻点,但反过来是不成立的,即可导函数的驻点不一定是它的极值点. 极值的第一充分条件 设函数)(x f y =在点0x 的邻域内可导且0)(0='x f ,则 (1)如果当x 取0x 左侧邻近的值时,0)(0>'x f ;当x 取0x 右侧邻近的值时, 图3-7 y O x a 1 x 2 x 3x 4x 5 x b

高等数学(上册)教案15函数的极值与最值

第3章导数的应用 函数的极值与最值 【教学目的】:1?理解函数的极值的概念; 2.掌握求函数的极值的方法; 3.了解最大值和最小值的定义; 4.掌握求函数的最值的方法; 5.会求简单实际问题中的最值。 【教学重点】: 1.函数极值的第一充分条件,第二充分条件; 2.导数不存在情况下极值的判定; 3.函数最值的求解方法; 4.函数的最值的应用。 【教学难点】: 1.导数不器在情况下极值的判定; 2.区分函数的驻点、拐点、极值点以及最值点; 3.区分极值点与极值,最值点与最值; 4.函数的最值的应用。 【教学时数】:2学时 【教学过程】: 3. 3.1函数的极值 从图3-7可以看出,函数y = /(x)在点勺、心处的函数值儿、儿 比它们近旁各点的函数值都大; 在点河、些、入处的函数值儿、 儿、儿比它们近旁各点的函数值 都小,因此,给出函数极值的如 下定义: 一般地,设函数y = /(x) 在旺 的某邻域内有定义,若对于?邻域内不同于厲的所有x,均有/(x) < /(“),则称/(儿)是函数y = f(x)的一个极大值,心称为极大值点;若对于耳邻域内不同于%的所有x,均 有f(x) > /(x0),则称/g)是函数y = /(x)的一个极小值,?称为极小值点. 函数的极大值与极小值统称为极值,极大值点和极小值点统称为极值点. 注意可导函数的极值点必是它的驻点,但反过来是不成立的,即可导函数的驻点不一定是它的极值点. 极值的第一充分矗件设函数y = /(x)在点心的邻域内可导且广凤)=0,则 (1)如果当x取兀左侧邻近的值时,广(心)>0;当x取心右侧邻近的值时, /V0)<0,则;为函数y = /(x)的极大值点,/(%)为极大值;

关于多元函数的极值和最值计算

关于多元函数的极值和最值计算 (一) 可微函数的无条件极值 如果(,)z f x y =在区域D 上存在二阶连续偏导数,我们可以用下面的方法求出极值。 首先,通过解方程''00 x y f f ?=??=?? 得到驻点。其次,对每个驻点求出二阶偏导数: '''''',,xx xy yy A f B f C f === 最后利用课本定理7.8进行判断。 20,0,AC B A ->> 函数在此点取极小值; 20,0,AC B A ->< 函数在此点取极大值; 20,AC B -< 函数在此点不取极值; 20,AC B -= 不能确定。 (二) 如何求多元函数的最值 如果函数(,)z f x y =在有界闭域D 上连续,那么函数(,)z f x y =在有界闭域D 上一定存在最大值和最小值。下面介绍如何求出(,)z f x y =在有界闭域D 上的最值。 首先, 在D 的内部求出函数(,)z f x y =的驻点 及 偏导数不存在的点。 其次,求出函数(,)z f x y =在D 的边界上的最大值点和最小值点。这里分两种情况处理: 第一种情况:D 的边界是由显函数来表示 的(包括边界是分段用显函数表示的情形),可以用消元法转化为一元函数在闭区间上的最值问题 来解决。 第二种情况:D 的边界是由 隐函数(,)0x y ?=来表示 的,而且函数(,)z f x y =,(,)x y ?在包含D 的区域上存在二阶连续偏导数,此时可以用拉格朗日乘数法求出驻点。 最后, 通过比较函数(,)z f x y =在我们得到的点上的函数值,就可得到(,)z f x y =在有界闭域D 上的最值。 (三) 如何求条件极值 下面介绍求函数(,)z f x y =在约束条件(,)0x y ?=下的条件极值。 第一种情况:如果(,)0x y ?=确定了显函数)(y g x =或者)(x h y =,可以用消元法转化为一元函数在闭区间上的极值问题 来解决。 第二种情况:如果函数(,)z f x y =,(,)0x y ?=在区域D 上存在二阶连续偏导数,而且(,)0x y ?=确定了隐函数,此时可以用拉格朗日乘数法。首先,求出拉格朗日函数),,(λy x L 在区域D 内的驻点。

文科高等数学(1.集合与函数)

第一章 微积分的基础和研究对象 §1. 1 微积分的基础——集合、实数和极限 一、集合 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A , B , M 等表示. 元素: 组成集合的事物称为集合的元素. a 是集合M 的元素表示为a ∈M . 集合的表示: 列举法: 把集合的全体元素一一列举出来. 例如A ={a , b , c , d , e , f , g }. 描述法: 若集合M 是由元素具有某种性质P 的元素x 的全体所组成, 则M 可表示为 A ={a 1, a 2, ? ? ?, a n }, M ={x | x 具有性质P }. 例如M ={(x , y )| x , y 为实数, x 2+y 2=1}. 几个数集: N 表示所有自然数构成的集合, 称为自然数集. N ={0, 1, 2, ? ? ?, n , ? ? ?}. N +={1, 2, ? ? ?, n , ? ? ?}. R 表示所有实数构成的集合, 称为实数集. Z 表示所有整数构成的集合, 称为整数集. Z ={? ? ?, -n , ? ? ?, -2, -1, 0, 1, 2, ? ? ?, n , ? ? ?}. Q 表示所有有理数构成的集合, 称为有理数集. },|{互质与且q p q Z p q p +∈∈=N Q 子集: 若x ∈A , 则必有x ∈B , 则称A 是B 的子集, 记为A ?B (读作A 包含于B )或B ?A . 如果集合A 与集合B 互为子集, A ?B 且B ?A , 则称集合A 与集合B 相等, 记作A =B . 若A ?B 且A ≠B , 则称A 是B 的真子集, 记作A ≠?B . 例如, N ≠?Z ≠?Q ≠?R . 不含任何元素的集合称为空集, 记作?. 规定空集是任何集合的子集. 2. 集合的运算 设A 、B 是两个集合, 由所有属于A 或者属于B 的元素组成的集合称为A 与B 的并集(简称并), 记作A ?B , 即 A ? B ={x |x ∈A 或x ∈B }. 设A 、B 是两个集合, 由所有既属于A 又属于B 的元素组成的集合称为A 与B 的交集(简称交), 记作A ?B , 即 A ? B ={x |x ∈A 且x ∈B }. 设A 、B 是两个集合, 由所有属于A 而不属于B 的元素组成的集合称为A 与B 的差集(简称差), 记作A \B , 即 A \ B ={x |x ∈A 且x ?B }.

导数与函数的极值、最值练习含答案

第2课时 导数与函数的极值、最值 一、选择题 1.下列函数中,既是奇函数又存在极值的是 ( ) A .y =x 3 B .y =ln(-x ) C .y =x e -x D .y =x +2 x 解析 由题可知,B ,C 选项中的函数不是奇函数,A 选项中,函数y =x 3单调递增(无极值),D 选项中的函数既为奇函数又存在极值. 答案 D 2.(2017·石家庄质检)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为 ( ) A .2 B .3 C .6 D .9 解析 f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,则a +b =6, 又a >0,b >0,则t =ab ≤? ????a +b 22 =9,当且仅当a =b =3时取等号. 答案 D 3.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ? ???? a >12,当x ∈(-2,0)时, f (x )的最小值为1,则a 的值等于 ( ) A.14 B.13 C.1 2 D .1 解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1 a , 当00;当x >1 a 时,f ′(x )<0.

∴f (x )max =f ? ???? 1a =-ln a -1=-1,解得a =1. 答案 D 4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是 ( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3×(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 5.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图像不可能为y =f (x )图像的是 ( ) 解析 因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0. 答案 D 二、填空题 6.(2017·咸阳模拟)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________.

相关文档
相关文档 最新文档