文档库 最新最全的文档下载
当前位置:文档库 › PH0208 琼脂糖凝胶DNA回收试剂盒实验操作步骤原理

PH0208 琼脂糖凝胶DNA回收试剂盒实验操作步骤原理

PH0208 琼脂糖凝胶DNA回收试剂盒实验操作步骤原理
PH0208 琼脂糖凝胶DNA回收试剂盒实验操作步骤原理

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

大量全血基因组DNA提取试剂盒操作方法及步骤说明书

大量全血基因组DNA提取试剂盒 目录号:DN04 DN0401 16次×10ml DN0402 32次×10ml DN0403 96次×10ml 适用范围: 适用于快速提取各种动物全血基因组DNA 试剂盒组成、储存、稳定性: 试剂盒组成保存16次×10ml 32次×10ml 96次×10ml 10x红细胞裂解液室温50 ml 100 ml 300 ml 细胞核裂解液室温180 ml 180×2 ml 250 m l×4 蛋白沉淀液室温55 ml 110 ml 330 ml DNA溶解液室温15 ml 30 ml 90 ml 本试剂盒在室温储存18个月不影响使用效果。 储存事项: 1.环境温度低时细胞核裂解液中某些去污剂成份会析出出现浑浊或者沉淀,可在 37℃水浴加热几分钟,即可恢复澄清,不要剧烈摇晃,以免形成过量的泡沫。 2.蛋白沉淀液可能出现析出和沉淀,可以在37℃水浴几分钟帮助重新溶解,如果不 能完全溶解,也不影响使用效果,直接取用上层溶液即可。

3.避免试剂长时间暴露于空气中产生挥发、氧化、pH值变化,各溶液使用后应及时 盖紧盖子。 产品介绍: 本试剂盒根据全血特点采用几个快速步骤提取基因组DNA。首先红细胞裂解液裂解去除不含DNA的红细胞,细胞核裂解液裂解白细胞释放出基因组DNA,然后蛋白沉淀液选择性沉淀去除蛋白,最后纯净的基因组DNA通过异丙醇沉淀并重溶解于DNA 溶解液。 产品特点: 1.从十几个配方中优选出的红细胞裂解液配方,裂解快速完全。 2.不需要使用有毒的苯酚等试剂。 3.快速,简捷,单个样品操作一般可在1小时内完成。 4.结果稳定,产量高(典型的产量10ml全血可提取出150-500μg),OD260/OD280 典型的比值达 1.7~1.9,长度可达50kb-150kb,可直接用于构建文库、PCR、Southern-blot和各种酶切反应。 注意事项 1.所有的离心步骤均在室温完成,使用转速可以达到2,500 x g,并配备容纳50ml心 管转头的传统台式离心机。 2.用户需自备异丙醇和70%乙醇。 3.典型的产量10ml全血可提取出150-500μg基因组DNA(不同样品尤其疾病样品中 中白细胞数量差异可能非常大,因此产量的个体差异也可能非常大)。 4.本试剂盒为溶液型,可以很容易的按照比例扩大或者缩小每次处理的全血量 (20μl-10ml),请联系我们索取其它处理量的操作手册。

通信原理实验3

实验三FSK调制及解调实验 一、实验目的 1、掌握用键控法产生FSK信号的方法。 2、掌握FSK非相干解调的原理。 二、实验器材 1、主控&信号源、9号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 FSK调制及解调实验原理框图 2、实验框图说明 基带信号与一路载波相乘得到1电平的ASK调制信号,基带信号取反后再与二路载波相乘得到0电平的ASK调制信号,然后相加合成FSK调制输出;已调信号经过过零检测来识别信号中载波频率的变化情况,通过上、下沿单稳触发电路再相加输出,最后经过低通滤波和门限判决,得到原始基带信号。 四、实验步骤 实验项目一FSK调制 概述:FSK调制实验中,信号是用载波频率的变化来表征被传信息的状态。本项目中,通过调节输入PN序列频率,对比观测基带信号波形与调制输出波形来验证FSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【FSK数字调制解调】。将9号模块的S1拨为0000。调节信号源模块的W2使128KHz载波信号的峰峰值为3V,调节W3使256KHz载波信号的峰峰值也为3V。 3、此时系统初始状态为:PN序列输出频率32KH。 4、实验操作及波形观测。 (1)示波器CH1接9号模块TH1基带信号,CH2接9号模块TH4调制输出,以CH1为触发对比观测FSK调制输入及输出,验证FSK调制原理。 (2)将PN序列输出频率改为64KHz,观察载波个数是否发生变化。 答:PN序列输出频率增大后,载波个数会增多。 实验项目二FSK解调 概述:FSK解调实验中,采用的是非相干解调法对FSK调制信号进行解调。实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证FSK解调原理。观测解调输出的中间观测点,如TP6(单稳相加输出),TP7(LPF-FSK),深入理解FSK解调过程。 1、保持实验项目一中的连线及初始状态。 2、对比观测调制信号输入以及解调输出:以9号模块TH1为触发,用示波器分别观测9号模块TH1和TP6(单稳相加输出)、TP7(LPF-FSK)、TH8(FSK解调输出),验证FSK解

组织基因组DNA提取试剂盒磁珠法

组织基因组DNA提取试剂盒(磁珠法) 使用说明书(Cat#Yu-TD02-1) 【产品介绍】 组织基因组DNA提取试剂采用国内领先的专利技术合成的纳米磁珠颗粒和多次实验优化的缓冲液体系,能从样品中分离纯化高质量DNA。在一定条件下,磁珠表面修饰的基团高效吸附目的DNA,而当条件改变时,磁珠释放吸附的DNA,达到快速分离纯化DNA的目的。整个过程安全、无毒、便利,提取的DNA质量稳定、纯度高。纯化后的DNA适用于多种后续实验。本试剂盒可以从少量动物组织中分离纯化出高质量、高浓度的DNA。 【产品特点】 1. 效率高:DNA提取得率高,操作简便。 2. 安全、无毒害:整个操作过程无需使用苯酚、氯仿等有毒物质,提取环境更加安全。 3. 高纯度:OD260/230在1.5左右,OD260/280在2.0左右。可直接用于各种分子生物学实验。 【试剂盒组成】 【规格】50T/盒 【自备试剂】无水乙醇,异丙醇 【贮藏与有效期】 裂解吸附液和Buffer AW1必须室温(15-25℃)避光保存;磁珠室温保存;其他所有试剂室温保存,有效期为1年。 【注意事项】

1、Buffer AW1使用前,加入18mL无水乙醇,混匀,使乙醇含量为60%。★ 2、Buffer AW2使用前,加入21mL无水乙醇,混匀,使乙醇含量为70%。★ 3、磁珠使用前必须充分混匀。★ 4、组织最好置于组织核酸(DNA/RNA)保存液(Cat#Yu-TP01)或液氮中保存。【操作步骤】 1、样本的处理 1.1、液氮中保存的组织将组织在液氮中磨成粉末后,使液氮充分挥发。再以50-100mg组织中加入1mL裂解吸附液,充分研磨。以下进入步骤2。 1.2、组织保存液中保存的样本取出在组织保存液中保存的组织,加入1mL无水乙醇洗涤组织两次。再以50-100mg组织中加入1mL裂解吸附液,充分研磨。以下进入步骤2。 2、吸取400μL研磨后的裂解吸附液转入1.5mL的EP管中,加入5μL蛋白酶K,60℃1500rpm10分钟。 3、取出EP管,加入250μL异丙醇和10μL混匀的磁珠,闭盖,充分混匀。室温1500rpm振荡10min。 4、取出EP管,瞬时离心,将EP管放于磁力架上,吸附磁珠4分钟。 5、在磁力架上,打开EP管盖,吸弃液体,保留磁珠。 6、加入600μL Buffer AW1,闭盖。从磁力架上取下EP管,充分混匀使磁珠完全分散至洗液中。 注:可以在漩涡振荡仪上3000rpm振荡20秒,使EP管壁上的磁珠完全分散至洗液中。 7、将EP管放回磁力架,吸附磁珠3分钟至液体清澈(吸附磁珠2分钟后,颠倒磁力架3次,使EP管盖上残留的磁珠被充分回收)。打开EP管盖子,吸弃液体,保留磁珠(需吸干EP管底和管盖中的残留液体)。 注:由于各个实验室磁力架磁力不尽相同,吸附时间可以延长,直至液体清澈。 8、加入600μL Buffer AW2,闭盖。从磁力架上取下EP管,充分混匀使磁珠完全分散至洗液中。 注:可以在漩涡振荡仪上3000rpm振荡20秒,使EP管壁上的磁珠完全分散至洗液中。

通信原理实验七

实验七抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性。 2、掌握自然抽样及平顶抽样的实现方法。 3、理解低通采样定理的原理。 4、理解实际的抽样系统。 5、理解低通滤波器的幅频特性对抽样信号恢复的影响。 6、理解低通滤波器的相频特性对抽样信号恢复的影响。 7、理解带通采样定理的原理。 二、实验器材 1、主控&信号源、3号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 图1-1 抽样定理实验框图 2、实验框图说明 抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关

S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。 要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验步骤 实验项目一抽样信号观测及抽样定理验证 概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。 3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。 4、实验操作及波形观测。 (1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。 MUSIC主控&信号源抽样输出3#

DNAzol基因组DNA快速提取试剂盒操作方法及步骤说明书

DNAzol 基因组DNA快速提取试剂 目录号:DN26 DN2601 50ml DN2602 100ml 产品介绍: DNAzol 是一种完全的、可直接使用的基因组DNA提取试剂,简单高效,结果可靠,可快速提取基因组DNA,适用于多种大量或少量样品。DNAzol 可在一个步骤中裂解细胞并水解RNA,经过乙醇沉淀后即可快速得到基因组DNA。整个过程只需10-30 分钟,DNA 回收率可达70-100%,得到的DNA 不需再纯化,可直接用于Southern 杂交、斑点杂交、分子克隆、PCR 反应和其他分子生物学应用。 产品储存: 室温保存至少一年。 注意事项: DNAzol 有毒害性,应避免直接接触皮肤和眼睛。 操作步骤:(实验前请先阅读注意事项) 1.裂解,匀浆 a.组织:25-50mg 组织加1ml DNAzol ,使用匀浆仪处理5-10 次。少量 (5-10mg)柔软组织,如脾或脑组织,可切成或者捣成小块使用微量取样器吹打

混匀,室温放置5-10 分钟。 b.细胞:单层培养的细胞应直接裂解,倒出培养基,加入DNAzol 用取样器吹 打几次混匀。每10cm2 细胞培养板加0.75-1.0ml DNAzol。 c.细胞沉淀或悬浮液:每1-3×107细胞(体积小于0.1ml)加1ml DNAzol,反复 吹打混匀。 以上均要使用大口径枪头吹打,以免过度剪切断基因组。 2.离心 4 -25℃,10000g 离心10 分钟。将得到的上清转入新管。 此步骤去除组织碎片、部分水解的RNA和多糖。如果所提样品为含较多细胞和细胞外物质的样品,如肝、肌肉和大部分植物组织等,或要提取不含RNA 的DNA 时,可加此步骤。其他样品可省略此步。 3.沉淀 每使用1ml DNAzol 加0.5ml 100%乙醇,颠倒离心管5-8 次,混匀样品至出现DNA 沉淀,室温放置1-3分钟。可以看见DNA 絮状沉淀,让沉淀自然沉降到管底,尽可能吸弃上清。用枪头搅绕DNA贴附在离心管上端壁上,仔细吸弃剩下的在管底和管壁的上清。如果因为剪切太厉害导致形成小片段或者量少的DNA(少于15ug),无法缠绕到枪头上,可在4 -25℃,4000g 离心1-2分钟沉淀DNA,弃上清。 4.漂洗 用0.8-1ml 75%乙醇漂洗DNA 两次。漂洗时,将DNA 悬浮在乙醇中,颠倒离心管3-6 次,然后静置0.5-1 分钟使DNA 沉降到管底,尽可能吸弃上清。 如果需要,可在4 -25℃,1000g 离心1-2 分钟沉淀DNA。从组织中提取DNA 时,如需去除其他内含物,第一次漂洗可用70%DNAzol 和30%乙醇的溶液代替75%乙醇。

通信原理实验习题解答

实验一 1. 根据实验观察和纪录回答: (1)不归零码和归零码的特点是什么 (2)与信源代码中的“1”码相对应的AMI码及HDB3码是否一定相同 答: 1)不归零码特点:脉冲宽度等于码元宽度Ts 归零码特点:<Ts 2)与信源代码中的“1”码对应的AMI码及HDB3码不一定相同。因信源代码中的“1”码对应的AMI码“1”、“-1”相间出现,而HDB3码中的“1”,“-1”不但与信源代码中的“1”码有关,而且还与信源代码中的“0”码有关。举例: 信源代码 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 AMI 1 0 0 0 0 -1 1 0 0 0 0 -1 0 0 0 0 0 1 HDB3 1 0 0 0 1 -1 1 -1 0 0 -1 1 0 0 0 1 0 -1 2. 设代码为全1,全0及0111 0010 0000 1100 0010 0000,给出AMI及HDB3码的代码和波形。 答: 信息代码 1 1 1 1 1 11 AMI 1 -1 1 -1 1-1 1 HDB3 1 -1 1 -1 1 -1 1 信息代码0 0 0 0 0 0 0 0 0 0 0 0 0 AMI0 0 0 0 0 0 0 0 0 0 0 0 0 HDB3 0 0 0 1-10 0 1-1 0 0 1 -1 信息代码 0 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 AMI0 1 -1 1 0 0 -1 0 0 0 0 0 1 -1 0 0 0 0 1 0 0 0 0 0 HDB30 1 -1 1 0 0 -1 0 0 0-1 0 1 -1 1 0 0 1 -1 0 0 0 –1 0 3. 总结从HDB3码中提取位同步信号的原理。 答: 位同步信号HDB3 整流窄带带通滤波器整形移相 HDB3中不含有离散谱f S(f S在数值上等于码速率)成分。整流后变为一个占空比等于的单极性归零码,其连0个数不超过3,频谱中含有较强的离散谱f S成分,故可通过窄带带通滤波器得到一个相位抖动较小的正弦信号,再经过整形、移相后即可得到合乎要求的位同步信号。

通用基因组DNA提取试剂盒使用说明

通用基因组DNA提取试剂盒使用说明 货号:D2100 规格:50T/100T 保存:室温(15℃-25℃)干燥保存,复检期12个月,2℃-8℃保存时间更长。开封后请将RNase A,蛋白酶K于-20℃保存。 试剂盒内容:D2100-50T D2100-100T RNase A1ml1ml×2 蛋白酶K1ml1ml×2 溶液A25ml50ml 溶液B25ml50ml 漂洗液15ml15ml×2 洗脱液15ml30ml 吸附柱50个100个 收集管50个100个 说明书1份1份 产品简介: 本试剂盒为通用型,适合于从土壤,粪便,昆虫,以及其他样本中提取基因组DNA。对细菌,真菌,昆虫等样本都具有很好的裂解效果,最大限度的保留了生物DNA的多态性。 使用本试剂盒提取的DNA产量大、完整性好,可直接用于各种常规操作,包括酶切、PCR、文库构建、Southern杂交等实验。

操作步骤: 使用前请先在漂洗液中加入无水乙醇,加入体积请参照瓶上的标签。所有离心步骤均为使用台式离心机在室温下离心。 1、样品的处理: 1)土壤:称取0.1-0.3g(根据干湿)土壤,放入研钵中,倒入适量的液氮,立即研磨,重复3次,使土壤颗粒研成粉末,加500ul溶液A,振荡至彻底悬浮。 2)粪便:称取0.1-0.3g(根据干湿)粪便,加500ul溶液A,振荡至彻底悬浮。 3)昆虫:称取0.1-0.3g昆虫,倒入适量的液氮,立即研磨,重复3次,使昆虫研成粉末,加500ul溶液A,振荡至彻底悬浮。 4)未知样品,如为细未状,可直接称取0.1-0.3g(根据干湿)加500ul 溶液A,如为块状,可0.1-0.3g用液氮研磨成粉未,再加500ul溶液A,振荡至彻底悬浮。 2、向悬浮液中加入20ul10mg/ml的RNase A,55℃放置10min。 3、加入20ul10mg/ml的蛋白酶K,充分混匀,55℃水浴消化,30min。消化期间可颠倒离心管混匀数次,12000转离心10min。将上清转移到一个新的离心管中。如有沉淀,可再次离心。 4、加入500ul溶液B,充分混匀。如出现白色沉淀,于55℃放置5min,沉淀即会消失,不影响后续实验。如溶液未变清亮,说明样品消化不彻底,可能导致提取的DNA量少及不纯,还有可能导致上柱后堵柱子,请增加消化时间。

通信原理实验报告

通信原理实验报告 一.实验目的 熟悉掌握MATLAB软件的应用,学会对一个连续信号的频谱进行仿真,熟悉sigexpand(x2,ts2/ts1)函数的意义和应用,完成抽样信号对原始信号的恢复。 二.实验内容 设低通信号x(t)=cos(4pi*t)+1.5sin(6pi*t)+0.5cos(20pi*t); (1)画出该低通信号的波形 (2)画出抽样频率为fs=10Hz(亚采样)、20Hz(临界采样)、50Hz(过采样)的抽样序列 (3)抽样序列恢复出原始信号 (4)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的时域波形的差异。 原始信号与恢复信号的时域波形之差有何特点?有什么样的发现和结论? (5)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的频域特性的差异。 原始信号与恢复信号的频域波形之差有何特点?有什么样的发现和结论? 实验程序及输出结果 clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df; subplot(2,1,1) plot(t,x) title('抽样时域波形') xlabel('t') grid; subplot(2,1,2) plot(f,abs(Y)); title('抽样频域信号 |Y|'); xlabel('f'); grid;

定义sigexpand函数 function[out]=sigexpand(d,M) N=length(d); out=zeros(M,N); out(1,:)=d; out=reshape(out,1,M*N); 频域时域分析fs=10Hz clear; close all; dt=0.1; t0=-2:0.01:2 t=-2:dt:2 ts1=0.01 x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); B=length(t0); Y2=fft(x0)/B*2; fs2=1/0.01; df2=fs2/(B-1); f2=(0:B-1)*df2; N=length(t); Y=fft(x)/N*2;

mobioDNA提取试剂盒说明书翻译

1.加2g土壤到15mL Bead Tube中 2.加入0.25mLSR1和0.8mLSR2之后,加入2.5mL Bead Solution到Bead Tube 3.加入3.5mL酚:氯仿:异戊醇25:24:1到试管中,加盖后涡旋混合直到分层消失。 4.最大转速涡旋震荡15min 5.室温,2500g离心10min 6.取出后,小心地转移上层水相到干净的15mL收集管中,弃掉下层酚 7.加1.5mL SR3到水相中,然后涡旋混匀,4℃孵育10min 8.室温,2500g离心10min。转移上清到一个新的15mL收集管中 9.加入5mL SR4溶液到装有上清的收集管中,混匀,室温孵育30min 10.室温,2500g离心30min 11.倒掉上清,将收集管倒置在纸上5min 12.震荡SR5混合。加1mL SR5到15mL收集管中,并反复吹打使完全重悬。 13.为每一个RNA样品准备一个RNA Capture Column A.拿去15mL收集管的盖子,将RNA Capture Column放入15mL收集管中。 B.加2mL SR5到RNA Capture Column中,让其完全流尽。 14.从第12步加入RNA样品至RNA Capture Column中,然后让其在重力作用下流尽。收集 液体。 15.用1mLSR5清洗柱子。重力流尽,收集洗脱液。 16.转移柱子到新的收集管,加入SR6震荡混合,然后加入1mL SR6到RNA Capture Column 洗脱RNA到15mL收集管中,重力流尽。 17.转移洗脱的RNA到2.2mL收集管中,并且加入1mL SR4.颠倒至少一次混合,然后-20℃ 孵育最少10min 18.室温13000g离心15min浓缩RNA 19.倒掉上清并倒转收集管在纸上10min晾干 20.用100μL SR7溶液重悬RNA沉淀,去除其中的基因组

通信原理实验报告一

实验一信号源实验 一、实验目的 1、了解通信系统的一般模型及信源在整个通信系统中的作用。 2、掌握信号源模块的使用方法。 二、实验内容 1、对应液晶屏显示,观测DDS信源输出波形。 2、观测各路数字信源输出。 3、观测正弦点频信源输出。 4、模拟语音信源耳机接听话筒语音信号。 三、实验仪器 1、信号源模块一块 2、20M双踪示波器一台 四、实验原理 信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。 1、DDS信源 DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。 正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。 三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。 方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。 输出波形如下图1-1所示。

正弦波:1Hz-200KHz 三角波:1Hz-20KHz 锯齿波:1Hz-20KHz 方波A:1Hz-50KHz(占空比50%) 方波B:1Hz-20KHz(占空比0%-100%可调) 图1-1 DDS信源信号波形 2、数字信源 (1)数字时钟信号 24.576M:钟振输出时钟信号,频率为24.576MHz。 2048K:类似方波的时钟信号输出点,频率为2048 KHz。64K:方波时钟信号输出点,频率为64 KHz。 32K:方波时钟信号输出点,频率为32KHz。 8K:方波时钟信号输出点,频率为8KHz。 输出时钟如下图1-2所示。

粪便基因组DNA提取试剂盒使用说明

粪便基因组DNA提取试剂盒使用说明 货号:D2700 规格:50T/100T 保存:室温(15℃-25℃)干燥保存,复-检期12个月,2℃-8℃保存时间更长。 试剂盒内容:D2700-50T D2700-100T 溶液SA25ml50ml 溶液SB3ml6ml 溶液SC5ml10ml 溶液SD10ml20ml 漂洗液15ml15ml×2 洗脱液15ml30ml 吸附柱50个100个 收集管50个100个 说明书1份1份 注:试剂盒开封后溶液SA、SB、SC、SD需在2-8℃保存。 产品简介: 粪便基因组DNA提取试剂盒适合于从各种粪便中提取微生物DNA。对粪便中各种细菌、真菌有很好裂解效果,最大限度的保留了微生物DNA的多态性。 使用本试剂盒提取的DNA产量大、完整性好,可直接用于各种常规操作,包括酶切、PCR、文库构建、Southern杂交等实验。 操作步骤: 使用前请先在漂洗液中加入无水乙醇,加入体积请参照瓶体上的标签。所有离心步骤均为使用台式离心机在室温下离心。

1、称取粪便样本0.1-0.5g,在液氮中充分研磨成细粉末,加入450ul溶液SA震荡混匀。 *也可直接称取样本0.1-0.5g于离心管(建议使用2ml圆底管),加入450ul溶液SA剧烈震荡混匀1-2min至没有固体块。使用液氮研磨效果最佳。 2、加入50ul溶液SB充分颠倒混匀(不要剧烈震荡),65℃水浴6min,每2min充分颠倒混匀一次。 3、加入100ul溶液SC充分颠倒混匀(不要剧烈震荡),12000rpm离心10min。 4、将上清转移到新的离心管,12000rpm离心2min。 5、在吸附柱中加入200ul溶液SD,将离心后的上清加入到带有溶液SD的吸附柱中,用移液器吹吸几次混匀,12000rpm离心1min。 6、将收集管中的滤出液混匀后重新吸入吸附柱(必须),12000rpm离心1min。 7、倒掉收集管中的废液,在吸附柱中加入漂洗液500ul,12000rpm离心1min。 8、倒掉收集管中的废液,重复步骤7两次(共漂洗三次)。 9、倒掉收集管中的废液,将吸附柱放回收集管,12000rpm离心2min。 10、拿出吸附柱在室温干燥数分钟(因季节及气候等因素不等),或50℃干燥1min。 11、将吸附柱放入一个新的离心管中,加入50-100ul洗脱液(65℃预热),12000rpm离心1min。 12、将离心管中的液体重新加入到吸附柱中,12000rpm离心1min。离心管中即为粪便微生物DNA溶液。 注意事项: 1、新鲜的粪便样本会得到更高的产率,不同样本在采样前应先查阅相应的最佳保存条件。 2、若溶液中出现浑浊可在37℃水浴中溶解片刻至清澈,不会影响结果。 3、在需要吸取上清液的步骤中应避免吸到沉淀,否则会堵塞吸附柱,并影响产物纯度。

通信原理实验大全(完整版)

通信实验指导书电气信息工程学院

目录 实验一AM调制与解调实验???????? 1 实验二FM调制与解调实验??????????? 5 实验三ASK调制与解调实验?????????8 实验四FSK调制与解调实验?????????11 实验五时分复用数字基带传输??????14 实验六光纤传输实验???????????19 实验七模拟锁相环与载波同步????????27 实验八数字锁相环与位同步????????32

实验一AM 调制与解调实验 一、实验目的 理解AM 调制方法与解调方法。 二、实验原理 本实验中AM 调制方法:原始调制信号为 1.5V 直流+1KHZ 正弦交流信号,载波为20KHZ 正弦交流信号,两者通过相乘器实现调制过程。 本实验中AM 解调方法:非相干解调(包络检波法)。 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1. 熟悉实验所需部件。 2. 按下图接线。 3. 用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4. 结合上述实验结果深入理解AM 调制方法与解调方法。

实验一参考结果

实验二FM 调制与解调实验 一、实验目的 理解FM 调制方法与解调方法。 二、实验原理 本实验中FM 调制方法:原始调制信号为2KHZ 正弦交流信号,让其通过V/F (电压/频率转换,即VCO 压控振荡器)实现调制过程。 本实验中FM 解调方法:鉴频法(电容鉴频+包络检波+低通滤波) 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1. 熟悉实验所需部件。 2. 按下图接线。 3. 用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4. 结合上述实验结果深入理解FM 调制方法与解调方法。

动物组织基因组DNA提取试剂盒说明书

磁珠法动物组织基因组DNA提取试剂盒 MagBeads Tissues Gen DNA Extraction Kit 【目录号】TGDE-5005、TGDE-5030 【运输条件】2~25℃; 【保存条件】磁珠悬浮液2~8℃,其它组分室温保存; 【试剂盒组成】 【注意事项】 1. 磁珠悬浮液严禁反复冻融和离心,使用前请充分混匀; 2. 使用前请检查裂解液1和裂解液2是否出现结晶,如有结晶请置于65℃水浴重新溶解; 3. 在使用本试剂盒前,请用户自配80%乙醇; 4. 如需去除RNA请自备RNase A溶液(100mg/mL, 分散液10mM Tris-HCl, 1mM EDTA, pH值8.0); 5. 本操作指南经本公司反复验证,使用前请仔细阅读,并且按照操作指南的建议操作。

磁珠法·自动化:为生命科学提供自动化磁纳米捕获方案 【产品简介】 本产品适用于从各种动物组织以或者细胞样本中提取基因组DNA。试剂盒采用具有独特分离作用的纳米磁珠和独特的缓冲液系统。特殊技术包埋的纳米磁珠在特定条件下对核酸具有极强的亲和力,而当条件改变时可以释放所吸附的核酸,从而达到快速分离纯化核酸的目的。 本试剂盒提取所得基因组DNA产物得量高、纯度好,适用于各种下游分子生物学实验,如:酶切、PCR、QPCR、文库构建、Southern 杂交、芯片检测和高通量测序等。本试剂盒可配合核自动化酸提取仪或工作站使用,实现高通量操作。 【试剂盒说明】 【自备仪器、耗材及试剂】 仪器自动版 研钵(或组织研磨机、匀浆机)、英芮诚ETP-300型全自动核酸提取仪、核酸提取仪配套用磁棒套、水浴锅或金属浴、涡旋振荡仪、96孔方孔圆底板、80%乙醇、异丙醇、液氮。 手动版 研钵(或组织研磨机、匀浆机)、水浴锅或金属浴、涡旋振荡仪、真空干燥箱、80%乙醇、异丙醇、2.0mL离心管、离心管配套用磁力架、液氮。 【仪器自动版操作步骤】 本操作以英芮诚ETP-300型全自动核酸提取仪为例,同步可完成32个样本的提取。 1.准备96孔板 参照下表向96孔板各孔位中分别加入相应试剂:

土壤基因组DNA提取试剂盒使用说明

土壤基因组DNA提取试剂盒使用说明 货号:D2600 规格:50T/100T 保存:室温(15℃-25℃)干燥保存,复检期12个月,2℃-8℃保存时间更长。 试剂盒内容:D2600-50T D2600-100T 溶液A25ml50ml 溶液B3ml6ml 溶液C5ml10ml 溶液D10ml20ml 漂洗液15ml15ml×2 洗脱液10ml20ml 吸附柱50个100个 收集管50个100个 PCR增强剂500ul1ml 说明书1份1份 注:试剂盒开封后溶液A、B、C、D需在2-8℃保存。PCR增强剂-20℃保存。 产品简介: 本试剂盒适合于从褐土、淤泥、火山灰等各种极端土壤环境中提取微生物DNA。对土壤中各种细菌、真菌有很好裂解效果,最大限度的保留了微生

物DNA的多态性。 本试剂盒采用我公司特有的腐殖质吸附材料,可高效专一的去除各种腐殖质成分而丝毫不会影响DNA的产率,纯度较酚、氯仿抽提法提高数倍。使用本试剂盒提取的DNA产量大、完整性好,可直接用于各种常规操作,包括酶切、PCR、文库构建、Southern杂交等实验。 操作步骤: 使用前请先在漂洗液中加入无水乙醇,加入体积请参照瓶体上的标签。所有离心步骤均为使用台式离心机在室温下离心。 1、称取土壤样本0.1-0.5g,在液氮中充分研磨成细粉末,加入450ul溶液A震荡混匀。 *也可直接称取样本0.1-0.5g于离心管(建议使用2ml圆底管),加入450ul溶液A剧烈震荡混匀1-2min至没有固体块。使用液氮研磨效果最佳。 2、加入50ul溶液B充分颠倒混匀(不要剧烈震荡),65℃水浴6min,每2min充分颠倒混匀一次。 3、加入100ul溶液C充分颠倒混匀(不要剧烈震荡),12000rpm离心10min。 4、将上清转移到新的离心管,12000rpm离心2min。 5、在吸附柱中加入200ul溶液D,将离心后的上清加入到带有溶液D 的吸附柱中,用移液器吹吸几次混匀,12000rpm离心1min。 6、将收集管中的滤出液混匀后重新吸入吸附柱(必须),12000rpm离心1min。

试剂盒DNA提取详细操作步骤

一、试剂盒打开后需要准备的工作 1、Proteinase K(蛋白酶K)的溶解 ①取4.5ml双蒸水加入蛋白酶K粉中使其充分溶解 ②将溶解好的蛋白酶K溶液分装进小离心管,每管100u l~200ul ③将分装好的Proteinase K放入-20℃冰箱中保存,使用期限为12个月 2、组织抑制剂(Inhibitor Removal buffer)的调配 加入20ml无水乙醇(absolute ethanol)颠倒混匀并在空白方框处打钩 3、洗液(wash buffer)的调配 加入80ml无水乙醇(absolute ethanol)颠倒混匀并在空白方框处打钩 二、组织DNA提取(试剂盒) 1、组织样品处理与消化 ①将采集来的样品剪碎(≤0.1cm)洗净保存液。 ②加入组织破解液Tissue-lysis 200ul 蛋白酶K 40ul然后放入55℃水浴锅内3个小时使其充分消化。 2、DNA提取 ①在消化好的组织样品中加入结合液binding buffer 200ul 然后放入70°水浴锅中10分钟。 ②再加异丙醇100ul 混合均匀吸取上清液放入柱体中,然后离心8000g一分钟。 ③倒掉底液,加500ul组织抑制剂Inhibitor Removal 然后离心倒掉底液 ④加洗液washing buffer500ul离心(洗液加两次) ⑤在70℃预热Elution Buffer,然后将洗好的柱体下部分丢掉,换新的离心管加入Elution Buffer200ul溶解10分钟离心保留底液放-20℃保存。 三、细胞DNA的提取(试剂盒) 1、组织样品处理与消化 ①将带有培养基的样品用PBS清洗干净8000rpm/1min离心,倒掉上清 ②加PBS200ul振荡摇匀使之样品成为单个细胞的悬浊液 ③加200ul Binding Buffer,40ul蛋白酶K 混合均匀放入70℃水浴锅内消化10 分钟。 2、DNA提取 ①加异丙醇100ul 混合均匀吸取上清液放入柱体中,然后离心8000g一分钟。 ②倒掉底液,加500ul组织抑制剂Inhibitor Removal 然后离心倒掉底液 ③加洗液washing buffer500ul离心(洗液加两次) ④预热双蒸水(37℃)然后将洗好的柱体下部分丢掉,换新的离心管加入双蒸水 100ul溶解10分钟离心保留底液放-20℃保存。(注:最好溶解两次)。 四、分光密度仪的操作方法及样品的测试结果 1、光密度(optical delnsity)简称OD 2、操作示意图 电源开关→主界面→按1键→核酸dsDNA 3、检测 ①首先做一个空白对照,将1ul的水滴到镜头上盖上盖子,按一下蓝色键

2018通信原理实验指导书

实验1 CMI码型变换实验 一、实验目的 1、了解CMI码的编码规则。 2、观察输入全0码或全1码时各编码输出码型,了解是否含有直流分量。 3、观察CMI码经过码型反变换后的译码输出波形及译码输出后的时间延迟。 4、熟练掌握CMI与输入信号的关系。 二、实验器材 1、主控&信号源、2号、8号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 CMI/BPH编译码实验原理框图 2、实验框图说明 CMI编码规则是遇到0编码01,遇到1则交替编码11和00。由于1bit编码后变成2bit,输出时用时钟的1输出高bit,用时钟的0输出低bit,也就是选择器的功能。CMI译码首先也是需要找到分组的信号,才能正确译码。CMI码只要出现下降沿了,就表示分组的开始,找到分组信号后,对信号分组译码就可以得到译码的数据了。

四、实验步骤 概述:本项目通过改变输入数字信号的码型,分别观测编码输入输出波形与译码输出波形,测量CMI编译码延时,验证CMI编译码原理并验证CMI码是否存在直流分量。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【CMI码】→【无误码】。13号模块的开关S3置为0011,即提取512K同步时钟。 3、此时系统初始状态为:PN为256K。 4、实验操作及波形观测。 (1)观测编码输入的数据和编码输出的数据:用示波器分别观测和记录TH38#和TH68#的波形,验证CMI编码规则。 (2)观测编码输入的数据和译码输出的数据:用示波器分别观测和记录TH38#和TH138#的波形,测量CMI码的时延。 (3)断开电源,更改连线及设置。 开电,设置主控菜单,选择【主菜单】→【通信原理】→【CMI码】→【无误码】。将模块13的开关S3置为0011即提取512K同步时钟。 将模块2的开关置为00000000 00000000 00000000 00000011,用示波器分别观测编码输入的数据和编码输出的数据,调节示波器,将信号耦合状况置为交流,观察记录波形。保持

通信原理实验内容概要

《通信原理》MATLAB 仿真实验 实验一 模拟调制的仿真实验 一、 实验目的 熟悉MATLAB 软件的使用,并学会用MATLAB 来产生信号并实现信号模拟调制的可视化。 二、 实验原理 1、 理论原理 AM 调制就是由调制信号去控制高频载波的幅度,使之随调制信号作线性变化的过程。在波形上,幅度已调信号的幅度随基带信号的规律而呈正比地变化;在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移(精确到常数因子)。由于这种搬移是线性的,因此,幅度调制通常又称为线性调制。 解调方法利用相干解调。解调就是实现频谱搬移,通过相乘器与载波相乘来实现。相干解调时,接收端必须提供一个与接受的已调载波严格同步的本地载波,它与接受的已调信号相乘后,经低通滤波器取出低频分量,得到原始的基带调制信号。 通过信号的功率谱密度的公式,得到功率谱密度。即: 在AM 信号中,载波分量并不携带信息,信息完全由边带传送。如果将载波抑制,只需在将直流0A 去掉,即可输出抑制载波双边带信号,简称双边带信号(DSB )。 DSB 调制器模型如图1所示。 图1 DSB 调制器模型 其中,设正弦载波为 0()cos()c c t A t ω?=+ 式中,A 为载波幅度;c ω为载波角频率;0?为初始相位(假定0?为0)。 调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。 双边带解调通常采用相干解调的方式,它使用一个同步解调器,即由相乘器和低通滤波器组成。在解调过程中,输入信号和噪声可以分别单独解调。相干解调的原理框图如图2所示: )] ()([2 1 )]()([)(cos )]([)(00c c c c AM c AM F F A s t t f A t s ωωωωωωδωωδπωω-+++-++=+=

相关文档