文档库 最新最全的文档下载
当前位置:文档库 › 检流计的特性研究

检流计的特性研究

检流计的特性研究
检流计的特性研究

大学物理

仿真实验报告

专业:能源动力与自动化专业班级:能动-15

姓名:张琦

日期:2012.11.29

一.实验简介:

检流计是磁电式仪表,它是根据载流线圈在磁场中受到力矩而偏转德原理制成的。

普通电表中线圈是安放在轴承上,用弹簧游丝来维持平衡,用指针来指示偏转。

由于轴承有摩擦,被测电流不能太弱。检流计使用极细的金属悬丝代替轴承悬挂

在磁场中,由于悬丝细而长,反抗力矩很小,所以有很弱的电流通过线圈就足以

使它产生显著的偏转。因而检流计比一般的电流表灵敏的多,可以测量微电流

(10-7~10-10A)或者微电压(10-3~10-6V),如光电流、生理电流、温差电动势等。

首次记录神经动作电位,就是用此类仪器实现的。

检流计的另一种用途是平衡指零,即根据流过检流计的电流是否为零来判断电路

是否平衡,它被广泛使用在直流电桥和电位差计中。

本实验的目的就是为了了解磁电式检流计的结构、原理和运动规律,测量临界电

阻,通过测量它的灵敏度和内阻,学习正确的使用方法。

二.实验原理

磁电式检流计的结构

以光点式检流计为例,结构如图 1和图 2所示,检流计由三部分组成:

磁场部分:由永久磁铁(N,S)产生磁场,圆柱形软铁心(J)使气隙中磁场呈均匀辐射状。

●偏转部分:能在气隙中转动的矩形线圈C及从上下拉紧线圈的金属张丝E,只要有很小的力矩作用,就能使线圈偏转。

●读数部分:小镜M固定在动圈上,它把光源射进来的光束反射到标尺上形成一个光标,当电流流过动圈时,动圈受力偏转而带动小镜M转过α角,因而反射光束偏转的角度为,光标在标尺上移动的距离,L为小镜到标尺的距离。

磁电式检流计的结构

以光点式检流计为例,结构如图 1和图 2所示,检流计由三部分组成:

●磁场部分:由永久磁铁(N,S)产生磁场,圆柱形软铁心(J)使气隙中磁场呈均匀辐射

状。

●偏转部分:能在气隙中转动的矩形线圈C及从上下拉紧线圈的金属张丝E,只要有很

小的力矩作用,就能使线圈偏转。

●读数部分:小镜M固定在动圈上,它把光源射进来的光束反射到标尺上形成一个光

标,当电流流过动圈时,动圈受力偏转而带动小镜M转过α角,因而反射光束偏转

的角度为,光标在标尺上移动的距离,L为小镜到标尺的距离。

检流计的工作原理

当被测电流I

(或电压)经悬丝流过动圈时,载流动圈受到气隙中永久磁

G

铁产生的磁场(磁感应强度B)的作用。由于磁场是辐射装的,因此手里的动圈不管偏转到什么位置,B的方向总与l(即I G)的方向垂直,那么N匝载流动圈受到的总磁力矩为

M = N B I

G S= G I

G &

(1)

其中S为动圈面积,G = N B S 为检流计的结构常数。

在电磁力矩M的作用下动圈偏转,同时悬丝受扭力而产生反作用力矩(扭转力矩),当作用在动圈上的电磁力矩和悬丝的反作用扭力矩平衡时,动圈停止偏转,则

N B I

G

S = W α (2)

为悬丝的扭转系数,偏转角α的大小由读数装置读出,

n = 2L α (3)

(4)

(5)

C I 称为检流计的电流常数或分度值,单位是A/mm。如果检流计的结构已定,则C

I

为一定值。

在使用中,W或其他结构参数可能有变化,所以必须用实验测定C

I

在实际中,也常用灵敏度S

I

来表示,即

(6)

S

I

的单位是mm/A。

检流计的运动状态

检流计的动圈通电流后,除了受到电磁力矩和扭转力矩的作用外,还存在空气阻尼力矩

和电磁阻尼力矩,而悬丝是弹性材料制成,若动圈的转动惯量为J,则动圈运动状态

(7)

(8)

其中称为衰减系数,为阻尼系数,,为固有角频率,根据衰减系数的不同,有不同的运动状态:

欠阻尼状态(β < ωo 时):

公式8的解为:

(9)

其中α

F =

G I

G

/ W , 。此时外电阻R较大,动圈以平衡位置

αF为中心作一衰减振动,并且逐渐趋紧于平衡位置,运动曲线如图2.1.1-3中的曲线I。特

别当外电路断开和无空气阻尼(D=0)时候,动圈为无阻尼运动,以平衡位置α

F

中心作等幅振动,运动曲线如图2.1.1-3中的曲线IV。实际实验中由于空气阻尼D很小,当外电路断开时动圈以位置α

F

为中心作一衰减系数很小的振动。

临界阻尼状态(β = ωo 时):

公式8的解为:

(10)

其中α

F =

G I

G

/ W 。动圈无振动的很快达到平衡位置,此时的外电阻称为临界电阻Rc,它的

运动曲线如图2.1.1-3中的曲线II。一般来说,检流计的临界阻尼状态是它的理想工作状态。

过阻尼状态(β > ωo ,即R

公式8的解为:

(11)

其中α

F =

G I

G

/ W , 。此时动圈也是做单向偏转运动,缓慢

的趋向平衡位置α

F

, 运动曲线如图2.1.1-3中的曲线III。R越小,到达平衡位置的时间越长。因为过阻尼运动中,动圈到达平衡的时间长,而且不易判断动圈是否到达平衡位置,因此它对于测量是不利的。

测量电路

由于检流计很灵敏,一般通过电流不能超过1uA,在实际测量中常采用图2.1.1-4的电路。电压经过两次分压后得到很小的电压(常小于1mV)后才加到检流计电路中。第一次采用滑线变阻器分压,第二次采用固定电阻的数量级分压。K2是换向开关,用它可以变换过检流计的电流方向,K3是阻尼开关,将它合上就可以将检流计短路,检流计的动圈就停止振动。

如图4,我们得到

I G ( R G+R KP ) = ( I-I G )R1(12)

(13)

因为R

1<

,所以

(14)

电流常数

(15)

加在开关K

2两端的电压,由于R

G

+R

KP

>> R

1,

由公式(11)得

(16) 检流计电压常数

(17)

检流计的工作原理

当被测电流I

G

(或电压)经悬丝流过动圈时,载流动圈受到气隙中永久磁铁产生的磁场(磁感应强度B)的作用。由于磁场是辐射装的,因此手里的动圈不管偏转到什么位置,B的方向总与l(即I G)的方向垂直,那么N匝载流动圈受到的总磁力矩为

M = N B I

G S= G I

G &

(1)

其中S为动圈面积,G = N B S 为检流计的结构常数。

在电磁力矩M的作用下动圈偏转,同时悬丝受扭力而产生反作用力矩(扭转力矩),当作用在动圈上的电磁力矩和悬丝的反作用扭力矩平衡时,动圈停止偏转,则

N B I

G

S = W α (2)

为悬丝的扭转系数,偏转角α的大小由读数装置读出,

n = 2L α (3)

(4)

(5)

C I 称为检流计的电流常数或分度值,单位是A/mm。如果检流计的结构已定,则C

I

为一定值。

在使用中,W或其他结构参数可能有变化,所以必须用实验测定C

I

在实际中,也常用灵敏度S

I

来表示,即

(6)

S

的单位是mm/A。

I

检流计的运动状态

检流计的动圈通电流后,除了受到电磁力矩和扭转力矩的作用外,还存在空气阻尼力矩

和电磁阻尼力矩,而悬丝是弹性材料制成,若动圈的转动惯量为J,则动圈运动状态

(7)

(8)

其中称为衰减系数,为阻尼系数,,为固有角频率,根据衰减系数的不同,有不同的运动状态:

欠阻尼状态(β < ωo 时):

公式8的解为:

(9)

其中α

F =

G I

G

/ W , 。此时外电阻R较大,动圈以平衡位置

αF为中心作一衰减振动,并且逐渐趋紧于平衡位置,运动曲线如图2.1.1-3中的曲线I。特

别当外电路断开和无空气阻尼(D=0)时候,动圈为无阻尼运动,以平衡位置α

F

为中心作等幅振动,运动曲线如图2.1.1-3中的曲线IV。实际实验中由于空气阻尼D很小,

当外电路断开时动圈以位置α

F

为中心作一衰减系数很小的振动。

临界阻尼状态(β = ωo 时):

公式8的解为:

(10)

其中α

F =

G I

G

/ W 。动圈无振动的很快达到平衡位置,此时的外电阻称为临界电阻Rc,它的

运动曲线如图2.1.1-3中的曲线II。一般来说,检流计的临界阻尼状态是它的理想工作状态。

过阻尼状态(β > ωo ,即R

公式8的解为:

(11)

其中α

F =

G I

G

/ W , 。此时动圈也是做单向偏转运动,缓慢

的趋向平衡位置α

F

, 运动曲线如图2.1.1-3中的曲线III。R越小,到达平衡位置的时间越长。因为过阻尼运动中,动圈到达平衡的时间长,而且不易判断动圈是否到达平衡位置,因此它对于测量是不利的。

测量电路

由于检流计很灵敏,一般通过电流不能超过1uA,在实际测量中常采用图2.1.1-4的电路。电压经过两次分压后得到很小的电压(常小于1mV)后才加到检流计电路中。第一次采用滑线变阻器分压,第二次采用固定电阻的数量级分压。K2是换向开关,用它可以变换过检流计的电流方向,K3是阻尼开关,将它合上就可以将检流计短路,检流计的动圈就停止振动。

如图4,我们得到

I G ( R G+R KP ) = ( I-I G )R1(12)

(13)

a)因为R

1<

,所以

(14)

电流常数

(15)

加在开关K

2两端的电压,由于R

G

+R

KP

>> R

1,

由公式(11)得

(16)

检流计电压常数

(17)

三.实验内容

按照图 4 接好线路,取的比例。将检流计上的开关拨到“直接”档。

1.观察检流计运动状态并测量临界电阻。

合上开关K1,调节变阻器R使得光标偏转至60mm,断开K1使检流计处于测量状态。

(1)根据临界阻尼的工作状态要求,测量临界电阻Rc。

(2)选取R kp分别为时,判别检流计的运动状态,测出光

标第一次回到自然平衡位置(零点)的时间和最终达到平衡位置的阻尼时间(每

种状态测两次)。

在上述操作中,选取合适的R0/R1,使得光标偏转60mm。

2.测量检流计的电流常数C I和电压常数C V。

(1)选择R kp= Rc,使检流计工作在临界状态,选择合适的R0/R1,调节滑线变阻器R,

使光标n=60mm,记下对应的刻度n1和电压V01,然后将开关K2迅速倒向,记下反

方向偏转n1’。

(2)调节变阻器R,使得光标每次减少5mm,重复(1)的步骤,得到一组n i、n i’ 和V0i

的数据。

(3)由,做出n-V曲线,求出K=?n/?V,带入(15)和(17),计算C I和

C V。

3.测量阻尼时间Tc

阻尼时间Tc是指在临界状态下,检流计从最大偏转位置(如60mm)到达稳定平衡位置需要的时间,断开开关K1,测量三次Tc。

4.根据步骤2的数据,求最大偏转(60mm)时的。

5.测量R kp= 0.5Rc和2Rc及满偏60mm时的C I和C V。

四.实验仪器

AC-15/3-6直流复射式检流计(光点检流计)、滑线电阻、电压表、电阻箱、开关等。AC-15/3-6直流检流计是属于便携型磁电式结构。它的测量机构工作原理是基于有电流

经过线圈与永久磁铁磁场间的互相作用,活动线圈放置在软铁所制成的铁心及永久磁铁中间,当有电流通过导电游丝,拉丝而经过线圈时,检流计活动部分产生转矩而转动,检流计活动部分偏转的角度依通过线圈的电流值,拉丝及导电游丝的反作用力矩所决定。

由于检流计极其灵敏,一般通过的电流不能超过1μA,否则要损坏检流计,在实际测

量电路中,电压经两次分压后得到很小的电压(常小于1μA)才加到检流计电路中去,第一次就用滑线电阻器分压。

五.数据处理

1.测量得到Ω=9200C R ,

2. Ω==9200C KP R R 时, Ω=200000R , Ω=21R , Ω=520G R

n-V 曲线

K=15.90269mm/V Uk=0.32835

C1=6.46806*10^(-10) Cv=6.28762*10^(-10)

满偏时: ()

1

1110

000R R R R R R R R R R R R R R n n V V C C KP G KP G KP G KP

G I I ++?+?+

?++++

?+?+?=?

()

11010

1

000

0R R R R R R R R n n V V C C V

V ?++

+?+

?+?=?

其中:0375.05.7100

5.00=?=

?V 5.0=?n

%5.0=?G

G R R

电阻箱误差???

?

?

?+

±=R 6005.0%1.0σ 所以07243.042

.06005.0%1.010=?+

=?=?R R

06622.046

.06005.0%1.0=?+

=?KP R

带入得

()

()

05569.09200

520206622

.0520%5.007243.09200

52022920052010

207243.060

5.045

.30375.04

1111000

0=+++?+

?++++

?+

+

=++?+?+

?++++

?+?+?=?R R R R R R R R R R R R R R n n V V C C KP G KP G KP

G KP

G I

I

()()

01821

.007243.02

10

210

22

2

10

207243

.060

5.045

.30375.04

4

4

1

1010

10000=?+??++?++

=?++

+?+

?+?=?R R R R R R R R n n V V C C V

V

3.测量C T

s T C 56.11= s T C 51.12= s T C 48.13=

∴s T C 516.1= 4. Ω==

4600

1C KP R R 时, Ω=200000R , Ω=21R , Ω=520G R

n-V 曲线

V mm V

n K /82441.29=??=

59403.0=K U

()

()

()

mm

A R R R KR R R R R nR R V n I C KP G KP G G I /10

54619.62460052010282441.292

10

4

101

101

0-?=++???=

++=

++=

=

()

()

(

)

mm A R R K R R R n R V n

V C G V /10

35262.32

10282441.292

6

4

101

1010-?=+??=

+=

+=

=

5. Ω==184002C KP R R 时, Ω=200000R , Ω=21R , Ω=520G R

n-V 曲线

V mm V

n K /87626.7=??=

09342.0=K U

()

()

()

mm

A R R R KR R R R R nR R V n I C KP G KP G G I /10

70985.621840052010287626.72

10

4

101

101

0-?=++???=

++=

++=

=

()

()

(

)

mm A R R K R R R n R V n

V C G V /10

26951.12

10

287626.72

5

4

101

1010-?=+??=

+=

+=

=

六.思考题

1.由于测量方法和对象不同,选择检流计不仅要求灵敏度合适,而且

要求测量回路电阻与临界电阻匹配。

2.在被测电流大小未知的情况下,使用检流计时,应注意配一只分流

器或串一只很大的保护电阻,才能进行测试。当确认不会损坏检流

表时,在提高检流计的灵敏度,直到直接接通为止。

灵敏电流计的特性研究

实验九 灵敏电流计的特性研究 实验目的 1.了解灵敏电流计的工作原理. 2.掌握灵敏电流计内阻和灵敏度的测定方法. 3.观察灵敏电流计的三种动动状态. 仪器与用具 电源,复射式检流计,电压表,电阻箱,标准电阻,滑线变阻器,电子秒表等. 实验原理 1.灵敏电流计的结构 灵敏电流计是一种灵敏度很高的磁电系仪表,它主要用于较量式电磁测量中作指零器,也可用于测量微弱电流和电压,如测量光电流,生物电流,温差电势等.灵敏电流计的内部结构原理如图8-1所示,它与磁电系电流表相同,不同的是转动线圈轻而狭长,以减小其转动惯量,如图8-1所示为直流复射检流计,它是用经过几次反射后形成的光斑代替了指针,相当于指针式电表的指针大大加长了,指针越长,分辨本领越高,加之扭转系数很小的张丝,消除了摩擦,因此直流复射式检流计具有更高的灵敏度,一般达到108~1010分度·安-1(div ·A -1)灵敏度是灵敏电流计的一个重要参数,它的定义式为 g i I n S = (8-1) 式中n 为通过灵敏电流计的电 流为g I 时,光标偏转的分格数 (或θ角)仪器铭牌上是用i S 的倒数i S C 1=安·格-1来表示,叫 做电流常数.一般C =10-8~ 10-10安·格-1.据此,我们就可 以从光标偏转的格数读出通过 灵敏电流计的电流的大小.但是仪器经过长期使用、维修,这些常数是有变化的,使用前必须重新测量. 图8—1 2.灵敏电流计的运动特性. 使用中,我们发现,在某些情况下,当通过它的电流发生变化后,光标会来回摆动很久才逐渐停在新的平衡位置,如在这种状态下进行测量,就很费时间,而一般指针式电表就没有这个问题,一旦通电,指针很快平稳地摆到平衡位置,这是因为指针式电表内部设有阻尼装

实验3.2灵敏电流计实验误差分析

误差分析 1. 半片法测检流计内阻的误差讨论 1. 系统误差 半偏法实验条件要求保持0U 不变,但实际上,“半偏”与“满偏”时2R 不同,0U 也 不同,当将2R 调大时,与0R 并联的电路部分电阻阻值增大,该并联线以外的电阻值不变,因此,由欧姆定律可知,在0R 上的分压增大,即0U 与之前的0U 不同了,而我们在实验时,是将两次测得的0U 看成不变的值,这里即存在了系统误差,实验中采用尽量使得0U 的值达到电压表满偏的地方的方法,以减小由于读数的偶然误差而增加的误差。另外也可以证明02R R R g -≈。这里0R 为Ω001.,如果把2R 当作g R ,则有一个固定的系统误差,因此最后确定测量结果时应地这项系统误差进行修正。 修正结果为:Ω=Ω-=-=1715411715502.).(R R R g 2. 由检流计灵敏阈所决定的误差1? 所谓灵敏阈指引起仪表的示值发生一可察觉变化的被测量的最小变化值。检流计的灵敏阈可取为0.2分度所对应的电流值。在检流计中当电流的改变小于灵敏阈时,我们一般很难察觉出光标读数的变化,这就给内阻的测量带来误差。测灵敏阈的方法是在调好半偏后,可以人为地增大2R 到)'R R (?+2,使光标偏转减小2个分度,从而推算出0.2分度所对应的电阻的改变值为0.1'R ?。故灵敏阈对内阻测量的影响约导致 Ω±=Ω?±=?±=?80202810101...'R .。 3. 由于电压U 波动所引起的误差2? 实验要求电压表V 的示值不变,而实际上电压可能有波动,而我们却察觉不出电压表指针的变化。这项误差可按电压表灵敏阈为0.2分度来考虑,即U 的相对误差约为0.2分度的电压值除以电压表的示值,可得 半偏法: Ω ±=Ω???±=?±=?0367042020020201715722022../)..(./).(R g 电压表示值分度的电压值

RLC电路的动态和频率特性综合研究

RLC电路的动态和频率特性综合研究 ——电路分析研讨 学院:电子信息工程学院

RLC 电路的动态特性和频率特性综合研究 谐振频率和电压的关系 谐振频率的概念 如图所示,二阶RLC 串联电路,当外加正弦电压源的为某一个频率时, 端口阻抗 呈现为纯电阻性,称电路对外加信号频率谐振。 1:以输入电压为参考相量,写出谐振时各电压的幅度和相位。用仿真软件测量 谐振时各电压有效值。改变电阻值分别为10、20、30时,仿真测量各电压有 效值有什么变化? 对图1所示的RLC 串联组合,可写出其阻抗为: R j(wL 三)R j(X L X C ) R jX wC 1 谐振的条件是复阻抗的虚部为零,即: X L X C =O , w L = wC , w 丄 f 1_ 可解得: LC 或 2 LC (1)理论值分析: 我们在此取 V 2CM f 10KHz L 1 1mH C 1 253nF 然后通过改变电阻F 来研究各电压有效值的变化 ①电阻值R=10时, 谐振角频率为0 Z R jwL 1 jwC 1 图1

I V V 2A 1 R jwL 1R v I jwC C j2 fC V L I j2 fL j125.66V V R I R20V ②电阻值R=20时 I V V 1A 1 R jwL 1R V I jwC C j2 fC j125.81V V L I j2 fC j 62.83V V R ②电阻值R=30时 , v V 2 A I A R jwL 1 R 3I V C jwC j2 fC V L I j2 fC j41.89V j 62.91V I R 20V j41.94V R 20V (2)电路仿真如下: ①电阻值R=10时 2?3r*F 1 mH (^^20W1DkHz/0Deg ----------------- Il “羽Al

灵敏电流计的研究实验报告

竭诚为您提供优质文档/双击可除灵敏电流计的研究实验报告 篇一:实验十三灵敏电流计特性的研究 实验十三灵敏电流计特性的研究 【实验目的】 1.了解灵敏电流计的基本结构和工作原理。2.掌握测量灵敏电流计内阻和灵敏度的方法。3.学会正确使用灵敏电流计。 【实验仪器】 灵敏电流计,直流稳压电源,滑线变阻器,电阻箱,标准电阻,直流电压表等。 【实验原理】 灵敏电流计是一种重要的电学测量仪器,它的灵敏度很高,用来检测闭合回路中的微弱电流(约10—10A)或微弱电压(约10—10V),如光电流、生理电流、温差电动势等,更常用作检流计,如作为电桥、电位差计中的示零器。常见的有指针式、壁架式和光点式等。本实验 研究的是光点式灵敏电流计。

1.光点式灵敏电流计的基本结构和工作原理 光点式灵敏电流计的结构如图2.13.1所示。在永久磁 铁之间有一圆柱形软铁芯,使空隙中 -6 -10 -3 -6 图2.13.1检流计光路图 的磁场呈辐射状分布。用张丝将一多匝矩形线圈垂直悬挂于空隙中,在线圈下端装置了一平面小镜。从光源发出的一束定向聚焦光首先投射在小镜上,反射后射到凸面镜上,再反射到 长条平面镜上,最后反射到弧形标度尺上,形成一个中间有一条黑色准丝像的方形光斑。当有微弱电流通过线圈时,此线圈(及小镜)在电磁力矩作用下以张丝为轴而偏转,于是小镜的反射光也改变方向。这个反射光起了电流计指针的作用。由于这种装置没有轴承,消除了难以避免的机械摩擦;又由于发射光线多次来回反射,增加了“光指针”的长度,使在同样转角下,“光指针针尖”(光斑)所扫过的弧长增加,所以这种电流计的灵敏度得到大大提高。由此可知,光点式灵敏电流计是磁电式电表的一种。因此,通过电流计线圈的电流Ig与线圈的偏角θ成正比,由图2.13.2可知,线圈(及

电路实验__电路频率特性的研究要点说明

东南大学电工电子实验中心 实验报告 课程名称:电路实验 第二次实验 实验名称:电路频率特性的研究 院(系):仪器科学与工程学院专业: 姓名:学号: 实验室: 实验组别: 同组人员:实验时间: 评定成绩:审阅教师:

电路频率特性的研究 一、 实验目的 1. 掌握低通、带通电路的频率特性; 2. 应用Multisim 软件测试低通、带通电路频率特性及有关参数; 3. 应用Multisim 软件中的波特仪测试电路的频率特性。 二、 实验原理 研究电路的频率特性,即是分析研究不同频率的信号作用于电路所产生的响应函数与激励函数的比值关系。通常情况下,研究具体电路的频率特性,并不需要测试构成电路所有元件上的响应与激励之间的关系,只需要研究由工作目的所决定的某个元件或支路的响应与激励之间的关系。本实验主要研究一阶RC 低通电路,二阶RLC 低通、带通电路的频率特性。 (一):网络频率特性的定义 电路在一个正弦电源激励下稳定时,各部分的响应都是同频率的正弦量,通过正弦量的相量,网络函数|()|H jw 定义为:. ().|()||()|j w Y H w H jw e X ?== 其中Y 为输出端口的响应,X 为输入端口的激励。由上式可知,网络函数是频率的函数,其中网络函数的模|()|H jw 与频率的关系称为幅频特性,网络函数的相角()w ?与频率的关系称为相频特性,后者表示了响应与激励的相位差与频率的关系。 (二):网络频率特性曲线 1. 一阶RC 低通网络 网络函数: 其模为: 辐角为: 显然,随着频率的增高,|H(j ω)|将减小, 即响应与激励的比值减小,这说明低频信 4590 (a) RC低通网络(b) 幅频特性 (c) 相频特性 ()H j ω()) RC ?ω=().0.1/1 1/1i U j c H j R j C j RC U ωωωω=== ++

灵敏电流计内阻及灵敏度的测量

【实验名称】 灵敏电流计内阻和灵敏度的测量 【实验目的】1.了解灵敏电流计的结构及工作原理。2.观察灵敏电流计在欠阻尼、过阻尼及临界阻尼条件下的三种运动状态。3.掌握测定灵敏电流计内阻和灵敏度的方法。 【实验仪器】 灵敏电流计、直流稳压电源、直流电压表、标准电阻、直流电阻箱、停表、单双刀开关。 【实验原理】1.灵敏电流计的工作原理 当线圈中通有电流I S 时,由于气隙磁场的作用而产生的电磁力矩推动线圈偏转。线圈在偏转过程中,支承它的张丝发生扭曲变形,同时产生与电磁力矩方向相反的弹性回复力矩,该力矩与线圈偏转角成正比。当这两个力矩大小相等时,线圈不再偏转而处于平衡位置a 0,此时有:NSBI g = D α0,式中N 为线圈的匝数,S 为线圈的面积,B 为线圈所在气隙处的磁感应强度,D 为张丝的扭转系数,这几个量均为灵敏电流计的固有参数。变换式(31-1)可得: s i g I S I D NSB ==0α。其中,D NSB S i 定义为电流计的电流灵敏度,其倒数i i S K 1=称为电流计常量。 2、灵敏电流计的内阻和电流灵敏度的测定 灵敏电流计的内阻和灵敏度是电流计的两个重要参数,通过测量获取这两个参数的数值对于电流计的正确选用具有实际意义。 测量线路如图31-3所示。由于灵敏电流计允许通过的电流,很小,所以采用了二级分压线路。下面推导测量公式。由图31-3可知,标准电阻R s 两端的电压U s 为: )(2g g s s s R R I R I U +==或:g s g s I R R R I +=2又: g g I R R R R V Is -++=) //(221其中,I s 和I g 分别为流过R s 和电流计的电流,V 是电压表的示值。考虑到R s 的值 相对R 1很小,所以式(31-6)可近似为:g s I R V I -=1 ,即:V R a S R R R R i s g s 1 02)(++-=。或写成 bV a R +=2其中,10),(R a S R b R R a i s g s =+-=。 【实验内容】 测定灵敏电流计内阻和灵敏度(R g 、S i ) 图31-3

灵敏电流计特性的研究[1]

院-系:理学院物理系 专业:物理学 年级: 09 物理 学生姓名:母永方 学号: 200902050234

灵敏电流计的研究 摘要:本文主要是通过对灵敏电流计的原理进行了解,然后通过实验对相关量的测定,来 求灵敏电流计的自由振荡周期、电流计的灵敏度和内阻,以及观察三种运动状态并无额定临界阻尼。 关键词: 实验目的 实验原理 实验步骤 实验数据处理 讨论 【实验目的】 1.了解灵敏电流计的工作原理,并观察在阻尼、欠阻尼及临界阻尼下的三种运动状态 。 2.掌握测定灵敏电流计、内阻的方法 。 3.学习正确使用灵敏电流计 4.了解灵敏电流计的结构和工作原理 【实验仪器】 灵敏电流计 直流电阻箱 直流电压表 标准电阻箱 直流电源 标准电阻器 双刀双掷开关 单刀开关 秒表 【实验原理】 1.电流计的构造与灵敏度 灵敏电流计是一种高灵敏度的磁电式仪表,可以测量7 10-~12 10 -A 的微小电流。在精 密测量中,除用它来测量微小电流外,还可用作检流计,以检测电路中是否有微小电流通过。分为指针式和光点式两种。复射式灵敏电流计称光点反射式电流计,由于用了极细的金属悬丝代替轴承,且将线圈悬挂在磁场中,由于悬丝细而长,反抗力矩很小,所以当有极弱的电流流过线圈时,就会使它有明显的偏转,因而它比一般的电流表要灵敏得多,可以测量 610-~1110-A 范围的微弱电流和 310-~810- V 范围的微小电压,如光电流、物理电流、 温差电动势等;更常用来作检流计,在电桥、电位差计中作为指零仪。 灵敏电流计是磁电式仪表。用金属丝E (称为张丝)绷紧可转动线圈。由于用张丝代替了普通的转轴和轴承、曲调了机械摩擦,使电表的灵敏度大大提高。在动圈上固定有小镜m (见图1)它把装在电流计前部小灯泡射来的光反射到标尺上并形成一个光斑。当电流流进线圈时线圈带动小镜转动。设转角为θ(见图2)反射光线将转过2θ角,光斑在标尺上移动距离n=2l θ(l 为小镜m 至标尺的距离)由n 可测出电流的大小。由于用没有重量的光指针代替普通电表的金属指针,相当于大大加长了指针的长度,进一步提高了电表的灵敏度。这就是“光电检流计”。 n 用毫米作单位,它正比于流过线圈的电流I=kn ,称k 为电流计常数,单位是A/mm ,即光移动1mm 所对应的电流数值,一般由制造厂家给出。k 的倒数S=1/k 称为电流灵敏度。

一阶RC电路频率特性的研究实验报告

北京交通大学电子信息工程学院2011~2012 实验报告 实验题目:一阶RC电路频率特性的研究。 实验内容及结果: 1.低通电路的研究 实验电路: 实验数据: 低通电路数据 频率电平频率 a b 相位差100 -0.1 100 0.6 4.8 7.1808 300 -0.9 200 1.2 4.4 15.8266 475 -2 300 1.9 4.2 26.8965 560 -2.5 400 2.2 4 33.367 641 -3 500 2.4 3.6 41.8103 704 -3.5 600 2.4 3.2 51.3752 788 -4 700 2.4 3 53.1301 849 -4.5 800 2.4 2.8 58.9973 926 -5 1000 2 2.4 56.4427 1000 -5.5 2000 3.2 3.4 70.2501 1072 -6 3000 2.1 2.2 72.6586 1149 -6.5 5000 1.2 1.2 90 1240 -7 1340 -7.5 1430 -8 1520 -8.5 1600 -9 1660 -9.5 1860 -10 2400 -12 3040 -14 3780 -16 4700 -18 5000 -19

电平图: 相位差图:

2.高通电路研究 实验数据: 高通电路数据 频率电平频率 a b 相位差5000 0 5000 0.6 4.6 7.4947 1500 -0.4 4000 0.8 4.6 10.0154 1200 -0.8 3000 1 4.5 12.8396 1030 -1 2000 1.4 4.5 18.1262 899 -1.4 1000 2 4 30 740 -2 600 2.4 3.2 48.5904 663 -2.4 500 2.4 3.1 50.732 588 -3 400 2.1 2.4 61.045 532 -3.5 300 2 2.1 72.2472 481 -4 100 0.8 0.8 90 440 -4.5 400 -5 372 -5.5 344 -6 339 -6.5 325 -7 261 -8 227 -9 200 -10 165 -11 100 -16

灵敏电流计使用说明

灵敏电流计使用说明 一、概述 J0409型灵敏电流计具有测量机构灵敏度高、结构合理、使用方便等特点,可供中学物理分组实验用,检查判定直流电路中是否存在微弱的电流或电势差用,同时也可用于某些演示实验时的演示电流计无法测量其电流或电势差上使用。 二、结构 J0409型灵敏电流计主要由测量结构、测量线路、外壳等组成。 测量机构采用磁电系仪表结构,即由永久磁铁、磁轭、软铁芯组成的均匀辐射永久磁场,磁场中装有一个能绕中心轴线旋转线圈,线圈轴两端上焊有游丝,其中一端装有指示器、标度盘、机械零位调节臂均固定在支架上。整个测量机构装在斜坡形表壳内,罩框表壳采用塑料注塑制成。在靠近罩框中间有一机械零位调节器,接线端钮下的指示标牌有正、负极接线位置、相应的测量范围和内部电路图。J0409型灵敏电流计的电路图见图所示: 三、主要技术指标: 1、准确度等级:2.5级。即在规定使用条件,最大误差不超过满刻度值的±2.5%; 2、灵敏度:-300~0~300μA; 3、内阻:G0:80~125Ω;G1:2.4~3KΩ; 4、使用条件:A1组,即在工作温度为0~40℃,相对湿度不大于85%; 5、防外磁场标称范围极限值:397.89A/m; 6、阻尼时间:<4s; 7、绝缘强度:经受500V正弦交流电压历时1min的试验。 8、标准代号:JY0330-1993; 9、外形尺寸:138㎜×100㎜×97㎜; 10、重量:210g; 11、标度盘上符号说明:(1) 2.5 表示准确度等级为2.5级; (2)∠45°表示标度盘相对水平面倾斜45°。 (3)G 表示灵敏电流计;(4)表示磁电系电表;(5)☆表示试验电压为500V。 四、使用 1、使用前先检查指示器是否对准零位,如有偏移,可调节机械零位调节器,使指示器指向零位。 2、使用灵敏电流计检查被测电路中微弱电流时,可直接串联在被测电路中,从电流计指示器是否偏转判定电路中有无电流通过, 电流的方向在电流计内是从正接线端钮到负接线端钮上,如指示器向左偏转,则表明电流方向由负接线端钮到正接线端钮上。 3、使用灵敏电流计检查被测电路中两点间是否存在电势差时,可直接并联在被测电路中待测的两点上,根据指示器的偏转来判定电路中两点间是否存在着电势差,并且可以根据指示器偏转的方向来判定两点电势的高低。 4、灵敏电流计只可用于检查判定被测电路中是否存在着电流或电势差,不能测定其电流强度或电势差的准确数值。 1、在任何状态下,不允许通过灵敏电流计的电流强度超过其满刻度的电流值。 2、切勿将灵敏电流计误作安培计或伏特计而接入电路中。 3、仪表附近不能有强大磁场存在,以免损坏测量机构,影响读数。 4、仪表应避免敲击、碰撞和震动,以防损害内部结构。 5、使用中发生异常噪音、气味、烟雾,应即切断电源停止使用。 6、仪表出厂前经校准检验,不得随意拆开。 7、仪表使用完毕,应存放于干燥通风处,谨防受潮及腐蚀性有害气体侵蚀。 8、非专业修理人员,请勿将表拆开,以免造成不必要的损坏。

实验五、灵敏电流计特性的研究.

实验五、灵敏电流计特性的研究 灵敏电流计是一种用途十分广泛的高灵敏度的直读式磁电式仪表。它常常用来测量微弱电流(10510~10--A),如生理电流、光电流等。还可用它来测量微弱电压(6510~10--V ),如温差电动势等。正因为灵敏电流计有较高的灵敏度,所以常用它做为电桥和电位差计中的平衡指示仪(也称检流计)。 灵敏电流计在获得高灵敏度的同时,伴随带来了如何控制电流计指示迅速稳定和迅速回零的问题,因此,有必要了解灵敏电流计线圈在磁场中的运动特性,最佳工作状态,以及它的内阻和灵敏度等。 灵敏电流计的种类较多,现以常用的直流复射式检流计(AC15型)为例,了解灵敏电流计的基本构造、工作原理、主要参数的测定及正确使用方法。 实验目的 (1) 了解灵敏电流计的构造和工作原理。 (2) 并观察在过阻尼、欠阻尼及临界阻尼下的三种运动状态。 (3) 掌握测定灵敏电流计内阻和灵敏度的方法。 (4) 学习正确使用灵敏电流计的方法。 仪器和用具 AC15型直流复射式灵敏电流计、ZX21直流电阻箱(2个)、DM -V 9数字电压表、BZ3标准电阻器(1Ω)、WYT -10直流电源、BX -7型滑线变阻器(0~100Ω)、双刀双掷开关(1个) 、单刀双掷开关(2个)、秒表(1块),fx-3600p 计算器。 实验原理 一、 灵敏电流计的构造原理 灵敏电流计的构造如(图1)所示。它由一个多匝线圈和 永久磁铁组成,线圈用上下两根很细且有弹性的金属丝(扁铍青铜丝),铅直悬挂在永久磁铁与圆柱形软铁所形成的匀强磁场的空隙中。线圈可以以金属丝为轴转动,上下两根金属丝分别为线圈两端电流引入线,由于用金属丝代替了变通磁电式仪表线框上的转动轴和轴承,减少了摩擦,从而大大提高了灵敏电流计的灵敏度。 在灵敏电流计中,线圈通电转动的角度不用指针来指示,而采用光学放大的方法来指示,如(图2)所示,在线圈上端的金属丝装置了一个小平面镜M ,由光源S 向这小镜M 射来一束定向的聚焦平行光。这束光经小镜M 反射后,投影到以转轴OO ˊ为中心的弧形标尺BD 上,并形成一个有黑色准线象的光标(以下简称光标),当有微弱电流通过线圈,线圈在磁场中磁力作用下,和小镜M 一起转过θ角时,光标则转过2θ角,光标中央的黑色准线象在标尺上移动的距离为 θl d 2= (1)

关于灵敏电流计内阻的研究

关于灵敏电流计内阻的研究 【摘要】本文通过误差分析和实验数据对比,依据多点测量取平均的原理,对传统的测量方法进行改进,提出了一种近几年开始应用的测量灵敏电流计内阻的新方法。 【关键词】灵敏电流计的使用内阻研究方法 灵敏电流计内阻测定是大学物理实验中电学的常规实验,其内阻是一个重要的电学参量。过去,都假定灵敏电流计处于理想工作状态,一般采用半偏法进行测量,但从我们多年教学实践的情况来看,这种方法测得的内阻或大或小,误差较大,重复性差,不利于学生对误差理论知识的巩固和实践,本文通过对半偏法测定灵敏电流计内阻存在的问题,提出了用变偏法测定电流计内阻的一种方法。 1 电流表的使用方法 1.1 三个按键功能说明 (1)“—”键:设定/确认/提取功能键。 该键的作用是进入仪表的设定状态、提取出原存的设定值,待新的设定值修改完成后再按该键确认修改有效并存入仪表内存,随即再提取出下一个设定值。 (2)“∧”键:显示数据加1/显示窗口切换功能键。在设定状态下单次按该键使数据加1;按住该键不动,显示值将快速增加,松手后停止。在显示状态下(显示测量值)按该键切换显示窗口:测量值/上行程电流最大值/下行程电流最大值/百分比;1)“HA”灯“LA”灯都不亮显示测量值;2)“HA”灯亮显示上行程电流最大记录值;3)“LA”灯亮显示下行程电流最大记录值;4)HA”灯“LA”灯同时亮显示下行程电流最大值与上行程电流最大值的百分比。 (3)“∨”键:显示数据减1/清零功能。在设定状态下单次按该键使数据减1;按住该键不动,显示值将快速减少,松手后停止。在显示状态下按住该键5——6秒等上下限灯同时亮后,则上行程电流最大记录值、下行程电流最大记录值、百分比值都同时被清零。 1.2 仪表参数的设定 在显示状态下按下“—”键显示窗将显示“C109”。“C”是密码的提示符,“109”是密码的基数值,按“∧”和“∨”键将“109”修改成“123”,再按“—”键,即进入设定状态。在此状态下可以修改百分比设定值和误差修正值,百分比设定值的提示符为“P”,误差修正值的提示符为“E”。 1.3 仪表的信号输入

灵敏电流计的研究

选六灵敏电流计的研究 一、目的要求 通过测量灵敏电流计的电流常熟、内阻、临界阻尼等对电流计的构造、运动状态等有所了解。要求达到: 1.了解灵敏电流计的构造; 2.掌握控制灵敏电流计运动状态的方法; 3.学会等偏转法测量光电检流计的内阻和电流常熟; 4.会根据光电的运动状态来测定外临界阻尼; 5.熟悉用最小二乘法处理实验数据。 二、仪器设备 光点检流计、伏特计、滑线变阻器、标准电阻、稳压电源、停表。 三、原理 灵敏电流计是一种用来测量微弱电流(10-6~10-9A)的高灵敏度仪表,常用作检流计。 1.构造 灵敏电流计是磁电式仪表。用金属丝E(称为张丝)绷紧可转动线圈。由于用张丝代替了普通的转轴和轴承、曲调了机械摩擦,使电表的灵敏度大大提高。在动圈上固定有小镜m (见图1)它把装在电流计前部小灯泡射来的光反射到标尺上并形成一个光斑。当电流流进线圈时线圈带动小镜转动。设转角为α(见图2)反射光线将转过2α角,光斑在标尺上移动距离n=2lα(l为小镜m至标尺的距离)由n可测出电流的大小。由于用没有重量的光指针代替普通电表的金属指针,相当于大大加长了指针的长度,进一步提高了电表的灵敏度。这就是“光电检流计”。 n用毫米作单位,它正比于流过线圈的电流I=kn,称k为电流计常数,单位是A/mm,即光移动1mm所对应的电流数值,一般由制造厂家给出。k的倒数S=1/k称为电流灵敏度。 图1 图2 2.电流计的运动状态: 灵敏电流计可动部分的运动特性(可动部分的阻尼情况)与它是否能迅速、准确地读取示值是密切相关的。在高灵敏度的磁电式检流机种,由于需要匝数多的动框和小的空气隙,必须采用无骨架的动框,可动部分的阻尼作用只有动框来担任。这时在某些条件下它能保证有良好的阻尼,但在另一些条件下阻尼并不好。为了研究在各种使用条件下见流计的状况,必须间就他的可动部分在运动过程中的情况。根据研究结论,在实际使用检流计时刻以加接一些外部线路,利用点磁阻尼来控制线圈的运动状态,使光斑能迅速停在平衡位置上,缩短

RC一阶电路(动态特性 频率响应)研究

9 RC 一阶电路(动态特性 频率响应) 一个电阻和一个电容串联起来的RC 电路看起来是很简单的电路。实际上其中的现象已经相当复杂,这些现象涉及到的概念和分析方法,是电子电路中随处要用到的,务必仔细领悟。 9.1 零输入响应 1.电容上电压的过渡过程 先从数学上最简单的情形来看RC 电路的特性。在图9.1 中,描述了问题的物理模型。假定RC 电路接在一个电压值为V 的直流电源上很长的时间了,电容上的电压已与电源相等(关于充电的过程在后面讲解),在某时刻t 0突然将电阻左端S 接地,此后电容上的电压会怎么变化呢?应该是进入了图中表示的放电状态。理论分析时,将时刻t 0取作时间的零点。数学上要解一个满足初值条件的微分方程。 看放电的电路图,设电容上的电压为v C ,则电路中电流 dt dv C i C =, 依据KVL 定律,建立电路方程: 0=+dt dv RC v C C 初值条件是 ()V v C =0 像上面电路方程这样右边等于零的微分方程称为齐次方程。 设其解是一个指数函数: ()t C e t v S K = K 和S 是待定常数。 代入齐次方程得 0=KS +K S S t t e RC e 约去相同部分得 0=S +1RC 于是 RC 1-=S 齐次方程通解 ()RC t C e t v -K = 还有一个待定常数K 要由初值条件来定: ()V K Ke v C ===00 最后得到: () t RC t C Ve Ve t v --==

在上式中,引入记号RC =τ,这是一个由电路元件参数决定的参数,称为时间常数。它有什么物理意义呢? 在时间t = τ 处, ()V V Ve v 0.368=e ==-1-C τττ 时间常数 τ是电容上电压下降到初始值的1/e =36.8% 经历的时间。 当t = 4 τ 时,()V v 0183.0=4C τ,已经很小,一般认为电路进入稳态。 数学上描述上述物理过程可用分段描述的方式,如图9.1 中表示的由V 到0的“阶跃波”的输入信号,取开始突变的时间作为时间的0点,可以描述为: ()()0=S ≤t V t v 对 ;()()00=S ≥t t v 对。 [练习.9.1]在仿真平台上打开本专题电路图,按图中提示作出“零输入响应”的波形图。观察电容、电阻上输出波形与输入波形的关系,由图上读出电路的时间常数值,与用电路元件值计算结果比较。 仿真分析本专题电路 得到波形图如图9.2 所示。 在0到1m 这时间内,电压源值为V ,在时刻1m 时电压源值突然变到0。仿真平台在对电路做瞬态分析之前,对电路作了直流分析,因此图中1m 以前一段波形只是表明电路已经接在电压源值为V “很长时间”后的持续状态。上面理论分析只适用于1m 以后的时间过程。时刻1m 是理论分析的时间“零”点。图上看到,电容上的电压随时间在下降,曲线的样子是指数下降曲线的典型模样。由v C 曲线找到电压值为0.368V 的地方,读出它的时刻值(=2m ),即可求到电路的时间常数是1m (1毫秒)。 图中也画出电阻上电压变化曲线。观察,发现在1m 以前,电阻电压为0,在时刻1m ,电阻电压突变到 -V ,然后逐渐升到0。怎样理解这个过程呢? 2.电阻上电压的过渡过程 虽然专题电路图中取电阻的电压时是由电阻直接落地的电路得到的,但电路元件参数是相同的,该电阻上的电压应和电容落地电路中的电阻是一样的。按照这种想法,看图9.1 ,注意电阻的电压的参考方向应是由S 点向右,即应是v(S 点)-v C ,在电源电压为V 的时间内,电容已被充电到v C =V ,那么v R = v(S 点)-v C =V -V =0。在理论分析时间0处,电压源的电压值突变到0,即v(S 点)=0,但电容上的电压不能突变(回顾电容的特性:电压有连续性)。为了区分突变时刻的前和后的状态,用0- 表示突变前,0+ 表示突变后。 即是说, v C (0+)= v C (0-)=V 那么, v R (0+)= 0-v C (0+)= -V 在随后的时间内,按KVL 定律, 电阻上的电压应为: ()()τt RC t C R Ve Ve t v t v ---=-=-=

实验七灵敏电流计特性的研究

实验七灵敏电流计特性的研究 实验七灵敏电流计特性的研究 一、实验目的 1.了解灵敏电流计的基本结构和基本原理,学习其使用方法。 2.测定灵敏电流计的电流常量、内阻和外临界电阻,掌握控制其工作状态的方法。 二、实验原理 1、灵敏电流计的基本结构 灵敏电流计是一种高灵敏度的测量仪表,它的基本结构如图30-1所示。在永久磁铁、极之间,安置一个柱形软铁芯,使磁极与软磁芯之间产生均匀的径向磁场,矩形线圈用一根金属悬丝悬挂起来,该金属悬丝不仅作为线圈电流的进出引线,还作为线圈旋转的转轴。当线圈通有电流时,线圈在磁场中受到磁力矩而发生偏转,同时悬丝被扭转而产生反方向的弹性扭力矩。在偏转角为时,磁力矩和弹性扭力矩相等,线圈就达到平衡。 在悬丝上粘附一面小圆镜,它把光源射来的光反射到一个弧形标尺上,并形成一光标,如图30-2所示。设当没有电流通过线圈时,反射光的光标位于弧形标尺的“0”点上。当有电流通过线圈时,光标指在标尺刻度上。可以证明,电流的大小与光标偏转的长度 成正比,即 (30-1)

式中比例常量称为灵敏电流计的电流常量,它在 数值上等于光标移动一个单位长度时所通过的电 流。在国际单位中,其单位为安[培]每毫米,记为。 电流常量的倒数称为灵敏电流计的灵敏度,记为。显然灵敏度 愈大,灵敏电流计就愈灵敏。 2、线圈运动的阻尼特性 在使用灵敏电流计时,我们常会看到,当通过灵敏电流计的电流发生变化时,光标会摆动很久才逐渐地停在新的平衡位置上,这时读数很费时间。一般指针式电表由于内部装有磁阻尼线圈,通电后指针很快摆到平衡位置上,而不来回摆动。灵敏电流计却不可以用这种方法,它的阻尼问题需要借助于外电路来解决,因此需要研究灵敏电流计线圈运动的阻尼问题。 根据电磁感应定律,线圈在磁场中运动,由于切割磁力线而产生感应电动势,相应的感应电流与磁场相互作用而产生阻止线圈运动的电磁阻尼力矩,它的大小与回路的总电阻(电流计内阻与外电阻之和)成反比,即 (30-2) 由上式可见,通过调节外电路电阻的大小,就可控制阻尼力矩的大小,从而控制线圈的运动状态。 ⑴.当较大时,较小,线圈作来回减幅振动,需要经过较长 时

电路实验电路频率特性的研究

电路频率特性的研究 一、 实验目的 1. 掌握低通、带通电路的频率特性; 2. 应用Multisim 软件测试低通、带通电路频率特性及有关参数; 3. 应用Multisim 软件中的波特仪测试电路的频率特性。 二、 实验原理 1. 网络频率特性的定义 在正弦稳态情况下,网络的响应向量与激励向量之比称为网络函数。它可以写为 )(. . |)(|)(H ω?ωωj e j H X Y == 激励向量 响应向量 由上式可知,网络函数是频率的函数,其中网络函数的模|)(|ωj H 与频率的关系称为幅频特性,网络函数的相角)(ω?与频率的关系称为相频特性,后者表示了响应与激励的相位差与频率的关系。一个完整的网络频率特性应包括上述两个方面即它的幅频特性和相频特性。 2. 二阶RLC 带通电路 由幅频特性曲线可知,二阶RLC 带通电路具有选频特性,即选择所需要的信号频率(f0),抑制其他信号。选频特性的质量与电路的品质因数Q 有关。品质因数 C L R RC 11R L Q 00= = = ωω,或220|U U U U Q C L ==ω。可见,当L 、C 一定时,改变R 值就能影响电路的选频特性,即R 越小,Q 越大,选频特性越好。习惯上把幅频特性曲线的 707.02 ≥C U U 所包含的频率范围定义为电路的通频带,用B W 表示,即)'''(2B f f W -=π。Q 值与B W 关系为Q f B W 0 2π= 。当电路的通频带大于信号的频带宽度时,对于信号不产生失

真有利,即传送信号时的保真度高,但电路的选频性变差。总之,品质因数越高的电路,其通频带越窄,选频特性越好。 3. 实验内容 1. 测试一阶RC 低通电路的频率特性 建立如图所示电路。 测试电路的截止频率f 0。 取nF C 22,50R =Ω=。电压设置为1V ,频率设置为1kHz 。 启动模拟程序,点击波特仪读数游标移动按钮,使游标与曲线交点处垂直坐标的读数非常接近0.707,即-20dB/十倍频点对应的网络函数的模值|)(|ωj H ,此时交 点处的水平坐标的读数即为f0的数值。为了提高读数的精度,将水平轴的起始值(I )、终止值(F )即频率范围设置为接近初步测试的f 0的kHz 5±范围,展开测试段的显示曲线,重新启动模拟程序,读出f 0的精确值。

灵敏电流计特性研究

167 实验5-24 灵敏电流计特性研究 灵敏电流计是一种测量微小电流的直读式磁电式仪表,由于它变革了机械指针式电流计的机械结构和偏转显示系统(用悬丝代替了普通电表的转轴和轴承,避免了机械摩擦,同时采用一套光学放大系统来测量偏转角),因而具有很高的灵敏度,可以检测610-~10 10 -A 的微小电流,或检测3 10-~6 10-V 的微小电压,常用于光电流、生物电流、温差电动势的测量或用做精密电桥、精密电位差计的平衡指示器。 【实验目的】 1.了解灵敏电流计的结构,掌握控制灵敏电流计运动状态的方法。 2.测定灵敏电流计的特性参量─外临界电阻、电流常数及内阻。 3.学会用最小二乘法处理数据。 【实验器材】 AC15型直流复射式检流计、直流稳压电源、直流电压表、电阻箱、滑线变阻器、双刀双掷开关、单刀开关等。 【实验原理】 一、灵敏电流计的工作原理 灵敏电流计的结构见图5-24-1,主要由三部分组成: 1.磁场部分 永久磁铁N 、S 产生磁场,圆柱形软铁芯J 使磁场呈均匀辐射状。 2.偏转部分 线圈C 可以在磁场内转动,上下两端用金属悬丝绷紧,金属丝同时作为线圈的电流引线。 3.读数部分(小镜m 和弧形标尺) 小镜m 固定在线圈上,它把光源射来的光反射到弧形标尺上并成一光标,见图5-24-1b 。当没有电流通过线圈时,反射光标位于弧形标尺的零点上,当某一稳定电流I 流过线圈时,线圈受到的磁力矩为 NBSI M B = 式中,N 为线圈匝数,B 为磁感应强度,S 为线圈面积。 线圈在磁力矩的作用下而产生转动,悬丝随线圈转动而产生的反向扭转力矩为 θD M D -= 图5-24-1 灵敏电流计的结构原理图 a)线圈偏转系统 b)读数系统

灵敏电流计特性的研

灵敏电流计特性的研究 郭蒙蒙 王成园 太春慧 李静 中国石油大学(华东) 理学院 应用物理学09-1班 摘要:灵敏电流计存在三种运动状态,欠阻尼状态、过阻尼状态和临界阻尼状态。根据临界阻尼状态来确定临界外阻,再根据可变电阻和电压的关系求出内阻。 关键词;灵敏电流计,阻尼运动,内阻,临界外阻,电流常数 灵敏电流计也叫检流计,是磁电式仪表。它和其它磁电式仪表一样都是根据载流线圈在磁场中受力矩作用而偏转的原理制成的,只是在结构上有些不同。灵敏电流计的铭牌上一般都会标有临界外阻和内阻值,但是随着仪表的使用,会是阻值有些变化,运用实验所式的方法将临界外阻和内阻测出。 一、实验仪器 AC15/3型直流复射式检流计、电源、电压表、滑线电阻器、标准电阻、电阻箱二个,单刀开关二个、导线等。 二、实验原理 1. 灵敏电流计的结构[1] 灵敏电流计主要由三部分组成,如图3-5-1和3-5-2所示。 ⑴ 磁场部分:在永久磁铁的N 和S 极之间安装一个柱形软铁,使磁极与软铁柱缝隙里的磁场分布呈均匀辐射状。 ⑵ 偏转部分:一个用细导线绕制的矩形线圈悬挂于磁隙间,并能以悬丝为轴转动。悬丝是能导电的青铜薄带,具有良好的扭转弹性,悬丝的扭力矩很小(普通电表采用宝石轴承加游丝式结构,轴承存在摩擦力矩)。上下悬丝各与线圈的导线两端接通。 ⑶ 读数部分:一个小反射镜固定在悬丝线圈骨架下面,用它把光源射来的光反射到标尺上,形成一个光标进行读数,其等效指针长度达1米以上。 由于用扭力矩很小的悬丝代替了普通电表的一般游丝,减少了轴承摩擦,用光学指示替代了机械指针,使得电流计的灵敏度提高了几个数量级。 2. 灵敏电流计的工作原理[2] 如图3-5-1所示,当有电流Ig 流过线圈时,根据电磁学原理,线圈所受的磁力矩为 g B NSBI M = (3-5-1) 式中N 和S 为线圈匝数和截面积,B 为磁极与铁芯间 隙中的磁感应强度。同时,线圈偏转过程中受到悬丝产生的扭力矩(恢复力矩)的作用,其大小为 θ θD M -= (3-5-2) 式中D 为悬丝的弹性扭转系数,负号表示线圈偏转角θ转向与M θ相反。当线圈最后静

灵敏电流计特性研究

灵敏电流计特性研究 【实验目的】 1、 了解灵敏电流计的原理和构造; 2、 测定灵敏电流计的阻和电流计常数; 3、 观察灵敏电流计的运动状态与外电阻的关系。 【实验原理】 一、灵敏电流计的构造: 灵敏电流计的构造如下图所示: 在极细并富有弹性的金属丝上面悬挂着小镜子血和线圈C,当线 圈通有电流时,线圈所受到的磁力矩匾和金属丝的扭力矩匾平衡时, 线圈将偏转一个角度,有以下关系: M\=N\BSJ& (1) M.-DO (2) M,+M 2=O (3) 由以上三式可知: 人= ---- 0 (4) * MBS 】 对于小镜子Mo 在这个结构中发挥的作用: 做工时可以把a 角做得很小,此时小镜子到读数尺的距离为L,可以 有如下的近似关系: tan(2& + a) = tan 20 ^20 = — L 由(5)式和(4)式消去角度可得如下结论: 上式中的K 就是灵敏电流计的电流计常数,K 的倒数◎称为电流计的 灵敏度。而K 和Si 仅仅取决于电流计的各个结构参数。 (5) 2N 、BsJ = Kd (6)

并且注意到,当入射光线到达读数尺之前经过了多次反射,可以进一

步提高电流计的灵敏度,这个时候的灵敏电流计称之为复射式灵敏电流 计。它的灵敏度比通常的灵敏电流计更大。 二、灵敏电流计的阻尼特性: 灵敏电流计由于采用的是悬挂式的线圈结构,所以摩擦阻尼变得特别小,在读书的过程中,有时候会需要很长的时间停下来,所以需要注意灵敏电流计的阻尼特性。 在线圈运动的过程中,竖直的两边切割磁感线,产生感应电动势,这将会 在回路情况下产生电磁阻尼。通过线圈的电流大小为: .s NBS de”、 R &+心八〃 所受到的电磁阻尼矩为: EH诜右警(8) 由上式可见,电磁阻尼矩总是可外电阻有关的,因此,可以利用这一点在 实际实验中让灵敏电流计指针迅速停下来。 可以发现,当外电阻为某个临界电阻值的时候,电磁阻尼矩在某个适当 值,会使得指针迅速停下来(曲线III)。如果阻尼矩稍大,线圈将缓慢 的趋于平衡(曲线1【);如果阻尼矩稍小,线圈将在平衡位置附近来回震荡(曲线I )。如右图所示: HI

灵敏电流计的研究

《灵敏电流计的研究》预习报告模版 注:阴影部分不在报告上呈现,只向学生提出书写内容和具体要求。非阴影部分可直接照抄或自答 实验目的:(按照书上提示抄写) 1, 2, 3, 实验原理:(按次序回答以下问题) 灵敏电流计是一种高灵敏度的电表,分为和两种,灵敏电流计也叫。 一,灵敏电流计的结构 灵敏电流计的结构原理和普通磁电式仪表相同,都是载流线圈在磁场中受力矩作用而偏转。光点反射式灵敏电流计的读数装置是利用反射原理来实现的。它以“光标指针”指示读数。电表的指针越长,针尖指示刻度的分辨力就越高。而一般电表的金属指针太长就会遇到转动惯量过大,测量电流的响应时间增长等困难。“光标指针”解决了这些问题。 问题1:“光标指针”如何提高电流计灵敏度的? 二,电流常数与电流计灵敏度 问题2:电流常数与电流灵敏度之间数学关系式? 三,灵敏电流计线圈的运动特性 灵敏电流计的线圈转动可以分为三种运动状态。 问题3:按照以下四个要点总结三种运动。引起三种运动状态

的因素(R外、R C之间关系);阻尼力矩怎样;运动的具体形式;运动状态的名称。 实验仪器: 实验步骤: 1,观察电流计线圈(光标)的三种运动状态,测定R C值。 (1)(按照书上内容抄写)。 (2)(按照书上内容抄写)。 (3)(按照书上内容抄写)。 (4)(按照书上内容抄写)。 2,用半偏法测量电流计内阻。(按照书上操作内容,完整抄写)3,测量电流常数Ki。 问题1:电流常数Ki的计算公式是?(公式14-12) 问题2:(按照书上内容,抄写公式14-12以下文字,直至此步骤结束)。 问题3:操作步骤第三步真正测量的是什么物理量?(因为电流常数Ki是按照公式14-12计算出来的) 数据记录:(书上无数据表格,不画)

TL431电路原理及频率特特性的研究

TL431电路原理及频率特特性的研究 许剑伟2008-1-1 莆田十中 TL431是一种高精度、低温漂电压基准器件,目前已得到广泛应用。TL431具有很高的电压增益,实际应用中易发生自激等问题,造成许多困惑,本文系统分析TL431的内部电路,并给出利用计算机分析计算的方法,使设计人员对关于TL431电路的稳定性有准确的整体把屋。 一、基本参数估计 (1)静态电流分配: TL431的最小工作电流为0.4mA,此时V10基本上没有电流(取0.03mA,be压降0.6)。 V9射极电流为0.6V/10k=0.06mA。 设V3的be压降为0.67V ,V1、V2的集电极电压均为0.67V,所计算时把R1、R2看作并联,,则算得V3射极电流为(2.5-0.67*2)/(3.28+2.4//7.2)=0.228mA。 剩余电流0.4-0.228-0.06-0.03=0.52mA,提供给V7、V8电流镜,V7、V8各获得0.04mA。 V4、V5、V6、V7、V8工作电流均为0.04mA。 (2)假内部三极管的fT值为100—200MHz,当工作电流小的时候fT为10—100MHz,由此间接估计三极管内部的等效电容。cb结电容均假设为1—2pF。V4、V7 、V8、V9等三极管工作电流小,所以fT要小很多(结电容为主,扩散电容较小)。 (3)V4、V5工作电流较小,通常小电流时电流放大倍数也较小。设V4的放大倍数为50倍左右。 (4)为方便计算,设V9、与V10的电流放大系数相同,V9、V10与电流增益直接相关,它们的放大倍数可由TL431数据表间接计算出来。 注1:晶体管的低频放大倍数与直流放大倍数是不相同的,静态工作电流小时二者相差不大,静态电流大时二者可能相差很大,具体与该晶体管的特性有关。 二、TL431带隙基准电压产生原理 带隙基准产生的原理不是本文要阐述的主要问题,但TL431内部的基准电路与增益和关,所以有必要对其分析。 1、Vbe压降在室温下有负温度系数约C=-1.9至-2.5mV/K,通常取-2mV/K,而热电压UT=DT在室温下有正温度系数D=0.0863 mV/K,将UT乘以适当倍率并与Vbe相加可大大消除温度影响。 注:UT=KT/q,式中K为波尔兹曼常数,T为绝对温标中的温度,q为单位电荷,常温下UT=26mV。

相关文档
相关文档 最新文档