文档库 最新最全的文档下载
当前位置:文档库 › 氧化铝氧化锆陶瓷的性能参数

氧化铝氧化锆陶瓷的性能参数

氧化铝氧化锆陶瓷的性能参数

氧化铝氧化锆陶瓷的性能参数

氧化铝陶瓷(AL2O3)氧化锆陶瓷(Zr02)性能单位≥95≥99≥99.5≥99.8ZTA YIZ 体积密度g/cm3 3.7 3.8-3.85 3.85 3.85 3.8-4.66

硬度Mpa≥8688888886-8888-90抗弯强度HRA≥300350400400172-450900最高使用温度℃15001500150015001400-15001500线膨胀系数×10-6/℃7.58.28.28.2

介电常数εr(20℃,1MHz)9.09.29.29.2

介质损耗tanδ×10-4,1MHz3222

体积电阻率Ω?cm(20℃)101310141014101410131014击穿强度KV/mm,DC≥20202020

耐酸性mg/cm2≤0.70.70.70.7

耐碱性mg/cm2≤0.20.10.10.1

耐磨性g/cm2≤0.20.10.10.1

抗压强度Mpa≥25002500250028002300-29002500抗折强度Mpa≥200350350350

弹性模量Gpa300350350350

泊松比(横向变形系数)0.20.220.220.22

导热系数W/m?K(20℃)2025252513-2722

氧化铝陶瓷的制备与应用

论文题目:氧化铝陶瓷的制备与应用 学院:材料科学与工程学院 专业班级:材料化学2班 学号:20090488 姓名:王杰 日期:2011-10-19

氧化铝陶瓷的制备与应用 摘要:氧化铝陶瓷是用途最广泛的陶瓷材料中的一种,它可用作机器及设备制造中的耐腐蚀材料、化工专业中的抗腐蚀材料、电工及电子技术中的绝缘材料、热工技术中的耐高温材料以及航空、国防等领域中的某些特种材料。 Abstract: the alumina ceramics is the most widely use of one of the ceramic material, it can be used as the machine and equipment manufacture of corrosion resistant material, chemical corrosion materials in the professional, electrical and electronic technology of thermal insulation materials, high temperature resistant materials and technologies in the aerospace, defense, etc to some of the special material. 关键词:氧化铝陶瓷耐磨性机械强度耐化学腐蚀 Keywords: alumina ceramics Wear resistance Mechanical strength Chemical corrosion-resistant 氧化铝陶瓷是一种用途广泛的陶瓷。因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。[1] 1.硬度大经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。 2.耐磨性能极好经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。

zro2增韧Al2O3陶瓷

zro2增韧Al2O3陶瓷的制备(ZTA) 摘要: ZrO2/Al2O3复相陶瓷是高温结构陶瓷中最有前途的材料之一,由于其优越的性能和丰富的原料来源,已受到广泛的关注,成为陶瓷材料领域研究的一大热点.本文对氧化锆/氧化铝复相陶瓷的复合机理、最近几年粉体制备常用和最新工艺和ZTA陶瓷应用方面的研究进展进行了综述,并对ZTA复相材料今后的发展进行了展望. 关键词:ZTA;增韧机理;复合粉体制备;研究进展;发展趋势 Abstrac t:Zirconia toughened aluminum (ZTA) hasbeenwidely studied as a new type of toughened ceramic.The aim of this investigation is to review the recent literatures on its synthesismechanisms, new preparation.methods of composite powders and applications. The problems in preparation techniques and developmental trend are discussed aswel.l Key words:ZTA; strengthening and tougheningmechanisms; preparation technology of composite powders;current research situation; development trend Al2O3陶瓷被广泛应用于一些耐高温、强腐蚀环境中,而Al2O3陶瓷断裂韧性较低的致命弱点,限制了它更大范围的使用.采用ZrO2相变增韧、颗粒弥散强化或纤维及晶须补强等方法,可使陶瓷材料的力学性能大大提高,是先进复相结构陶瓷材料的重要发展方向.从ZrO2/Al2O3系统相图[1]可知,即使在很高的温度下ZrO2与Al2O3之间都不会生成固溶体,这就为研究ZrO2/Al2O3复相陶瓷提供了理论依据.由于,ZTA陶瓷是zro2增韧陶瓷中效果最佳者,近年来,不少学者对该系统复相陶瓷进行了大量研究,随着复相陶瓷技术的发展, ZTA 复相陶瓷的研究成为陶瓷材料领域研究的一大热点.本文就近年来国内外文献对ZTA陶瓷的复合机理、制备方法、发展趋势等研究进展做如下综述. 一、ZTA陶瓷的增韧机理 ZTA陶瓷的增韧机理是晶须及纤维增韧,第二相弥散强化增韧, ZrO2相变增韧,以及与金属复合形成金属基复相陶瓷,残余应力增韧等等。以下简单介绍几种研究较热的增韧途径的机理。 1、应力诱导相变增韧 对于ZrO2/Al2O3体系,主要的增韧方式是由ZrO2产生的相变增韧.李世普等人将其解释为[2]:zro2颗粒弥散在Al2O3陶瓷基体中,由于两者具有不同的热膨胀系数,烧结完成后,在冷却过程中,zro2颗粒周围则有不同的受力情况,当它受到基体的抑制,zro2的相转变也将受到抑制。此外,zro2还有另一个特性,是相变温度随着颗粒尺寸的降低而下降,一直可降到室温或室温以下。党基体对zro2有足够的压应力,而zro2的颗粒度有足够小,则其相变温度可降至室温以下,这样在室温时zro2仍可以保持四方相。当材料受到外应力时,基体对zro2的抑制作用得以松弛,zro2颗粒即发生四方相到单斜相的转变,并在基体中引起裂纹,从而吸收了主裂纹扩展的能量,达到增加断裂韧性的效果,这就是zro2的应力诱导相变增韧。 2、微裂纹增韧[3] 毫无疑问,在大多数情况下,陶瓷体内存在有裂纹,包括表面裂纹,工艺缺陷,环境条件下诱发的缺陷,当受外力或存在应力集中时,裂纹会迅速扩展导致陶瓷体破坏。因此,应防止裂纹扩展,消除应力集中,是解决增韧问题的关键。 部分稳定的zro2在发生t-zro2到m-zro2马氏体相变时,相变出现了体积膨胀而导致产

纳米氧化锆汇总

二氧化锆纳米材料 一.用途:纳米氧化锆本身是一种耐高温、耐腐蚀、耐磨损和低热膨胀系数的无机非金属材料,由于其卓越的耐热绝热性能,20世纪20年代初即被应用于耐火材料领域。 自1975年澳大利亚学者K.C.Ganvil首次提出利用ZrO2相变产生的体积效应来达到增韧陶瓷的新概念以来,对氧化锆的研究开始异常活跃。——利用其高硬度、抗磨损、耐刮擦、不燃的特性,极大的提高涂料的耐磨性和耐火效果。由于其导热系数低、并具备特殊光学性能,可用于军事、航天领域的热障涂料及隔热涂料。纳米复合氧化锆具备特殊光学性能,对紫外长波、中波及红外线反射率达85%以上;且其自身导热系数低,可提高其隔热性能。——由于不同晶型纳米氧化锆体积不同,可制备具备自修复功能的功能性涂料。 纳米复合氧化锆行业主要企业产能分布

二.目前的制备方法:化学气相沉积(CVD)法,液相法(包括醉盐水解法,沉淀法,水热法,徽乳液法,溶液姗烧法等),徽波诱导法及超声波法等几大类。 三.具体介绍方法:利用溶胶-凝胶法制备出高度有序的二氧化锆纳米管 简介:溶胶一凝胶法是指金属醉盐或无机盐经水解形成溶胶,然后使溶胶一凝胶化再将凝胶固化脱水,最后得到无机材料.在无机材料的制备中通常应用溶胶—凝胶方法,与传统的合成方法相比,具有高纯度、多重组分均匀以及易对制备材料化学掺杂等优点.该方法要使前驱体化合物水解形成胶体粒子的悬浮液(溶胶)后,成为聚集溶胶粒子组成凝胶,凝胶经过热处理得到所需的物质.溶胶—凝胶沉积法广泛用于在模板的纳米通道中制备纳米管或线.本文主要结合溶胶—凝胶法和模板合成法制备二氧化锆纳米管.由于锆的无机盐价格便宜且对大气环境不敏感[,我们利用锆的无机盐(氯化氧锆)作为前驱体溶液制备稳定的溶胶. 具体过程:

氧化锆或氧化铝陶瓷

Durelon Q:对牙髓的刺激如何? A:Durelon含有的是弱的聚丙烯酸,对牙齿的敏感降到了极低,已被多年的临床使用所证实。 Q:Durelon也具有氟释放能力么? A:经过3M的独特技术,聚羧酸成分的Durelon同样具有长期的氟释放能力。 Q:Durelon的粘接力如何? A:Durelon与牙齿之间是通过羧基和钙离子之间的螯和反应,可以与玻璃离子相媲美。 Ketac Cem Easymix Q:Ketac Cem不小心与水混合了,是否需要去除修复体? A:Ketac Cem的液剂包含了水,酒石酸,以及用安息香酸做的保存剂。其中酒石酸有益于固化特性,并且能提高10%的稳定性。因此,如果修复体已经正确就位,就不需要过多考虑材料固化特性。在没有合并其他情况时,减少10%的稳定性是没有多大影响的。 但是在Ketac Cem的使用守则中,是不允许与水进行混合的。 Q:可以使用Ketac Cem粘接全瓷冠么? A:这就需要取决于瓷性材料的使用。 目前可用到的材料:玻璃陶瓷 氧化锆或氧化铝陶瓷 由于玻璃陶瓷本身的稳定性低,所以基牙和修复体需要粘性粘接以提高稳定性。而此种粘接是不能由Ketac Cem或其他玻璃离子类水门汀形成的,只能使用树脂类水门汀并且运用全酸蚀技术。此外,在瓷冠内面要应用Rocatec系统改善粘接面,建议使用3M ESPE Sil 使其表面硅烷化。氟酸酸蚀以及硅烷化是适当的选择。以上程序将有益于牙体建构、粘接材料以及间接修复体之间的粘接。 像氧化锆或氧化铝陶瓷这种内在强度高的陶瓷,足以使用传统水门汀,如Kecta Cem。在使用时请参考厂家推荐的适应症,以确定是否可以使用这种水门汀进行粘接。 在这种粘接中,不要先使用氟酸进行酸蚀。而有利于间接修复体的操作是使用Rocatec 硅烷化系统使其表面硅烷化。 RelyX Luting Q:每套包装可以使用多少? A:对于RelyX Luting来说,推荐使用3匙粉/3滴液来粘接单冠。基于这个比例,可以粘接大约80个单位。 Q:水门汀的有效期是多久? A:RelyX Luting的有效期是2年。在每次使用完毕后,要注意确保包装瓶药盖好,避免受潮,如果受潮,将会延缓固化。 Q:RelyX Luting可以用来粘接陶瓷修复体么?

二氧化锆陶瓷的加工技术

二 氧 化 锆 材 料 的 加 工 技 术姓名:罗乔 学号:510011593

摘要 陶瓷材料种类很多,它具有熔点高、硬度高,化学稳定性高、耐高温、耐磨损、耐氧化、耐腐蚀,以及弹性模量大、强度高等优良性质。也正是由于陶瓷材料的这些性质能决定了它的加工也是和普通的材料有着截然不同的加工方式。随着现代工业的发展,对于新型材料的需求也越来越多,陶瓷材料在近十几年来得到飞速的发展。随着它的应用领域越来越广,人们对它的研究也越来越深入。本文将介绍二氧化锆这种比较典型的特种陶瓷材料(人工合成材料)并对其加工技术进行叙述和探讨在国内陶瓷材料的加工技术水平和发展程度。 关键词:陶瓷材料二氧化锆激光加工磨料水射流铣削加工金刚石套料钻

ABSTRACT There is so many kinds of Ceramic material.They have the excellent properties.Such as the High melting point,High hardness,High Chemical stability, Heat-resistant,Resistant to wear,Resistance to oxidation,Corrosion resisting,High Elastic modulus,High strength and so on.Because of these properties , its processing is also with ordinary materials a totally different processing methods.With the development of modern industry,The demand for new materials will be more and more.Ceramic materials get rapid development in recent decade.Along with its application field more and more widely, people have studied it also more and more deeply.This paper will introduce alumina and zro2 which is Synthetic material and its processing technology description and explore the domestic ceramic materials processing techniques and development degree. KEY WORD : Ceramic materials zirconium dioxide Laser processing Abrasive Water technology milling Diamond set of material drill

一种氧化锆增韧莫来石陶瓷材料及制备方法

? 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. https://www.wendangku.net/doc/d832583.html, 5所示,磷酸脲的收率随反应活化剂RX -Ⅲ用量的 增加,先增加而后减少,当其用量为0.15%时,磷酸脲的收率达到67.6%。选择反应活化剂用量为0.15%。 图4 反应物物质的量比与收率的关系 图5 反应活化剂用 量与收率的关系 2.5 验证实验 从以上分析可以得到反应温度为75℃,反应时间0.9h,反应活化剂RX -Ⅲ用量0.15%,尿素与湿法磷酸的物质的量比为1.05∶1为比较合适的工艺条件。在上述条件下进行验证实验,所得磷酸脲收率为79.4%。 测定所得产品中的总氮质量分数(以干基计)为17.9%,磷质量分数(以P 2O 5计)为44.4%,氟质量分数为0.012%,铅质量分数为1.8mg/kg,砷质量分数为1.8mg/kg,重金属质量分数1.8mg /kg 。达到了饲料级磷酸脲的各项理化指标 [10] 。 3 结论与建议 1)在以湿法磷酸和工业尿素为原料悬浮净化法合成磷酸脲的工艺中,反应温度为75℃,反应时间0.9h,反应活化剂RX -Ⅲ用量0.15%,尿素与湿法磷酸的物质的量比为1.05∶1。2)分离母液直接用于加工木材阻燃剂或肥料,降低了由于母液循环利用而增加的能耗。又能防止对环境的污染,解决了环保问题。3)湿法磷酸合成磷酸脲生产成本较低;反应活化剂和悬浮剂的加入和工艺条件的改变,加快了湿法磷酸与尿素的反应速率,提高了湿法磷酸的转化率,减免了传统工艺中对湿法磷酸进行 的净化预处理工序,简化了湿法磷酸生产磷酸脲的 工艺流程,降低了磷酸脲晶体中的杂质含量,提高了磷酸脲产品的品位。4)由湿法磷酸和工业尿素生产饲料级的磷酸脲的悬浮净化法工艺流程的研究是一个非常复杂的问题,尚有许多问题有待于进一步研究解决。如反应活化剂和悬浮剂的配方优化;反应条件和结晶条件的进一步优化,使磷酸脲晶体以更加规整、更好的晶形析出;磷酸脲晶体的过滤和干燥等指标的量化等等。 参考文献: [1] Fowler C W.U rea and urea phos phate fertilizers[M ].Park R idge: N.J.Noyes Data Cor porati on,1976. [2] Harry T L,Ewell F D.Pr oducti on of urea phos phate:US,T103206 [P ].1983-07-05. [3] Cecil P H.Granulati on of urea phos ophate fr om urea and merchant -grade phos phoric acid:US,4512793[P ].1985-04-23. [4] 崔小明.磷酸脲的制备和应用[J ].四川化工与腐蚀控制, 1998,1(1):49-51. [5] 李长彪,李荫泉,彭延明.湿法磷酸制备磷酸脲的连续工艺 [J ].化肥工业,1990,17(3):47-50. [6] 杨晓辉,刘利军,李文强,等.湿法磷酸合成磷酸脲的工艺研究 [J ].宁夏工程技术,2006,5(1):48-50. [7] Dahlia Si m eona Greidinger,Benedict Cytter .Pr ocess for the manu 2 facture of crystalline urea phos phate:US,3936501[P ].1976-02-03. [8] Tang Jianwei,Mu Rongzhe,Zhang Baolin,et al .Solubility of urea phos phate in water +phos phoric acid fr om (277.00t o 354.50)K [J ].Journal of Chem ical &Engineering Data,2007,52(4):1179-1181. [9] 张健,叶世超,陈晓东,等.影响磷酸脲生成质量因素的实验研 究[J ].化学研究与应用,2005,17(1):86. [10] NY/T 917—2004中华人民共和国农业行业标准:饲料级磷酸 脲[S]. 收稿日期:2008-01-15 作者简介:解田(1963— ),男,高级工程师,主要从事精细化工以 及磷复肥生产技术的研究和开发工作,已发表论文5篇,申请专利6项,获贵州省优秀技术创新项目一等奖。 联系方式:xietian@public .gz .cn 一种氧化锆增韧莫来石陶瓷材料及制备方法 本发明涉及一种氧化锆增韧莫来石陶瓷材料及制备方法。采用硅酸锆和α相氧化铝为基体,运用现代增韧和增强技术,加入氧化钇、氧化镁、氧化钙和氧化钛为矿化剂,外加莫来石作晶种,改性增强增韧。采用等静压成型技术,使生 坯体具有均匀性和致密性。在烧结工艺中采用常压高温抽屉窑一次性烧成,温度均匀且成本低。本发明与氧化铝陶瓷材料相比,具有高强度、高韧性、高耐磨性能,生产工艺简单,烧成温度大幅度下降,达到节能降耗的目的。CN,101143783 81 无机盐工业 第40卷第5期

氧化锆陶瓷(材料科学概论论文)

氧化锆陶瓷 摘要:本文介绍了氧化锆的基本性质、氧化锆超细粉体的制备方法、高性能氧化锆陶瓷材料的成型工艺以及其在各领域的应用情况。 关键词:氧化锆;高性能陶瓷;制备;应用 材料所处的环境极为复杂,材料损坏引起事故的危险性不断增加,研究与开发对损坏能自行诊断并具有自修复能力的材料是十分重要而急迫的任务,氧化锆就是具有这种功能的智能材料! 一、名称:氧化锆陶瓷,ZrO2陶瓷,Zirconia Ceramic 二、种类及特点 纯ZrO2为白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。世界上已探明的锆资源约为1900万吨,氧化锆通常是由锆矿石提纯制得。在常压下纯ZrO2共有三种晶态:单斜氧化锆(m-ZrO2)、四方氧化锆(t-ZrO2)和立方氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化: 单斜(Monoclinic)氧化锆(m-ZrO2)<950℃ 5.65g/cc 四方(Tetragonal)氧化锆(t-ZrO2)1200-2370℃ 6.10g/cc 立方(Cubic)氧化锆(c-ZrO2)>2370℃ 6.27g/cc 三、增韧原理 氧化锆增韧的方法,主要是利用氧化锆的相变才能达到的!. 部分稳定ZrO2陶瓷在烧结冷却过程中,t-ZrO2晶粒会自发相变成m-ZrO2,引起体积膨胀,在基体中产生微裂纹,相变诱导的微裂纹会使主裂纹扩展时分叉或改变方向而吸收能量,使主裂纹扩展阻力增大,从而使断裂韧性提高。这种机理称微裂纹增韧。主要增韧方法有:应力诱导相变增韧、微裂纹增韧、残余应力增韧、表面增韧以及复合增韧等。 其中t-ZrO2转化为m-ZrO2相变具有马氏体相变的特征,并且相变伴随有3%~5%的体积膨胀。不加稳定剂的ZrO2陶瓷在烧结温度冷却的过程中,就会由于发生相变而严重开裂。解决的办法是添加离子半径比Zr小的Ca、Mg、Y等金属的氧化物。 材料中的t-ZrO2晶粒在烧成后冷却至室温的过程中仍保持四方相形态,当材料受到外应力的作用时,受应力诱导发生相变,由t相转变为m相。由于ZrO2晶粒相变吸收能量而阻碍裂纹的继续扩展,从而提高了材料的强度和韧性。相转变发生之处的材料组成一般不均匀,因结晶结构的变化,导热和导电率等性能随之而变,这种变化就是材料受到外应力的信号,从而实现了材料的自诊断。 对氧化锆材料压裂而产生裂纹,在300℃热处理50h后,因为t相转变为m 相过程中产生的体积膨胀补偿了裂纹空隙,可以再弥合,实现了材料的自修复。 四、氧化锆粉体的制备 ZrO2超细粉体的制备技术 锆英石的主要成分是ZrSiO4,一般均采用各种火法冶金与湿化学法相结合的工艺,即先采用火法冶金工艺将ZrSiO4破坏,然后用湿化学法将锆浸出,其中间

氧化锆陶瓷

氧化锆陶瓷 氧化锆陶瓷第二部分项目第一节特种陶瓷特种陶瓷,又称精细陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大类。在陶瓷坯料中加入特别配方的无机材料,经过 1360 度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能,如:电、磁、光、热、声、化学、生物等功能;以及耦合功能,如压电、热电、电光、声光、磁光等功能。一、分类特种陶瓷是二十世纪发展起来的,在现代化生产和科学技术的推动和培育下,它们quot繁殖quot得非常快,尤其在近二、三十年,新品种层出不穷,令人眼花缭乱。按照化学组成划分有: 氧化物陶瓷氧化物陶瓷:氧化铝、氧化锆、氧化镁、氧化钙、氧化铍、氧化锌、氧化钇、二氧化钛、二氧化钍、三氧化铀等。氮化物陶瓷氮化物陶瓷:氮化硅、氮化铝、氮化硼、氮化铀等。碳化物陶瓷碳化物陶瓷:碳化硅、碳化硼、碳化铀等。硼化物陶瓷硼化物陶瓷:硼化锆、硼化镧等。硅化物陶瓷硅化物陶瓷:二硅化钼等。氟化物陶瓷氟化物陶瓷:氟化镁、氟化钙、三氟化镧等。硫化物陶瓷硫化物陶瓷:硫化锌、硫化铈 还有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。除了主要由一种化合物等。其他 构成的单相陶瓷外,还有由两种或两种以上的化合物构成的复合陶瓷。例如,由氧化铝和氧化镁结合而成的镁铝尖晶石陶瓷,由氮化硅和氧化铝结合而成的氧氮化硅铝陶瓷,由氧化铬、氧化镧和氧化钙结合而成的铬酸镧钙陶瓷,由氧化锆、氧化钛、氧化铅、氧化镧结合而成的锆钛酸铅镧(PLZT)陶瓷等等。此外,有一大类在陶瓷中添加了金属而生成的金属陶瓷,例如氧化物基金属陶瓷,碳化物基金属陶瓷,硼化物基金属陶瓷等,也是现代陶瓷中的重要品种上。近年来,为了改善陶瓷

氧化铝陶瓷增韧

1)应力诱导相变增韧:应力诱导相变增韧是利用应力诱导四方ZrO2马 氏体相变来改变陶瓷材料的韧性,当部分稳定ZrO2增韧陶瓷烧结致密后,四方晶型ZrO2颗粒弥散分布与陶瓷基体中,冷却时亚稳态的四方晶型颗粒受到基体的抑制而处于压应力状态,这时基体中沿颗粒连线方向也处于压应力状态。材料在外力作用下所产生的裂纹尖端附近由于应力集中的作用,存在张应力场,从而减轻了对四方相的束缚,在应力诱发作用下发生四方相(t-ZrO2) 转变成单斜相(m-ZrO2)的马氏体相变,将引起3%~5%的体积膨胀,而相变 颗粒的剪切应力和体积膨胀对基体产生压应变,使裂纹停止延伸,以致需要更大的能量才使主裂纹扩展,即在裂纹尖端应力场的作用下,ZrO2粒子发生马氏体相变而吸收了能量,外力做了功,从而提高了断裂韧性。 2)微裂纹增韧:ZrO2在由四方相向单斜相转变时,因体积膨胀产生的 微裂纹将起到分散基体中主裂纹尖端能量的作用,不论是陶瓷在冷却过程中产生的相变诱发微裂纹,还是裂纹在扩展过程中其尖端区域形成的应力诱发相变导致的微裂纹,都将起到分散主裂纹尖端能量的作用,并导致主裂纹扩展路径发生扭曲和分叉,从而提高断裂能,引起陶瓷断裂韧性的增加; 3)弥散增韧:基体材料中加入ZrO2颗粒,对裂纹起钉扎作用,耗散裂 纹前进的动力。同时,颗粒在基体中受拉伸时阻止横向截面收缩,消耗更多的能量,达到增韧目的。 1)热膨胀失配增韧:热膨胀系数α失配,从而能在第二相颗粒及周 基体内部产生残余应力场,假设第二相颗粒与基体之间不发生化学反应, 果第二相颗粒与基体之间存在热膨胀系数的失配,即?α=αp―αm不等 0(p,m分别表示颗粒和基体),当?α>0时,第二相颗粒处于拉应力状态 而基体径向处于拉伸状态;当?α<0时,第二相颗粒处于压应力状态,切 受到拉应力,这时裂纹倾向于在颗粒处钉扎或穿过颗粒。微裂纹的出现可 吸收能量从而达到增韧的目的。 2)裂纹编转:裂纹编转是一种裂纹尖端效应,是指裂纹扩展过程中 裂纹尖端遇上偏转剂(颗粒、纤维、晶须、界面等)所发生的倾斜和偏转。 3)裂纹桥联:裂纹桥联是一种裂纹尖端尾部效应,是发生在裂纹尖 后方内某显微结构单元(称为桥联剂,例如纤维、晶须、棒状晶、细长晶粒5 等)连接裂纹的两个表面,并提供一个使两个裂纹面相互靠近的应力,即 合力,这样导致应力强度因子随裂纹扩展而增加,如图1-2所示。当裂纹 展遇上桥联剂时,桥联剂有可能穿晶破坏,如图1-2中第一个颗粒;也有 能出现互锁现象,即裂纹绕过桥联剂沿晶界扩展(裂纹偏转)并形成摩擦桥 如图1-2中第二个颗粒;而第3、4颗粒形成弹性桥,即裂纹桥联。 裂纹扩展路径

氧化锆陶瓷

氧化锆陶瓷 一.简介 1.氧化锆的性质: (1)含锆的矿石:斜锆石(ZrO2),锆英石(ZrO2 ·SiO2); (2)颜色:白色(高纯ZrO2);黄色或灰色(含少量杂质的ZrO2),常含二氧化铪杂质;(3)密度:5.65~6.27g/cm3; (4)熔点:2715℃。 (5)氧化锆具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。 2.氧化锆晶型转化和稳定化处理: 在常压下纯ZrO2共有三种晶态:单斜(Monoclinic)氧化锆(m-ZrO2)、四方(Tetragonal)氧化锆(t-ZrO2)和立方(Cubic)氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化,如表1。ZrO2四方相与单斜相之间的转变是马氏体相变,由于四方相转变为单斜相时有3~5%的体积膨胀和7~8%的切应变。因此,纯ZrO2制品往往在生产过程(从高温到室温的冷却过程)中会发生t-ZrO2 转变为m-ZrO2的相变并伴随着体积变化而产生裂纹,甚至碎裂,因此无多大的工程价值。但是,当加入适当的稳定剂(如Y2O3,MgO2,CaO,CeO2等)后,可以降低c-ZrO2 t-ZrO2→m-ZrO2的相变温度,使高温稳定的c-ZrO2 和t-ZrO2相也能在室温下稳定或亚稳定存在。当加入的稳定剂足够多时,高温稳定的c-ZrO2可以一直保持到室温不发生相变。进一步研究发现氧化锆发生马氏体相变时伴随着体积和形状的变化,能吸收能量,减缓裂纹尖端应力集中,阻止裂纹的扩展,提高陶瓷韧性。因此氧化锆相变增韧陶瓷的研究和应用得到迅速发展,氧化锆相变增韧陶瓷有三种类型,分别为部分稳定氧化锆陶瓷;四方氧化锆多晶体陶瓷及氧化锆增韧陶瓷。 晶态温度密度 <950℃ 5.65g/cc 单斜(Monoclinic)氧化锆 (m-ZrO2) 四方(Tetragonal)氧化锆 1200-2370℃ 6.10g/cc (t-ZrO2) 立方(Cubic)氧化锆(c-ZrO2) >2370℃ 6.27g/cc 表1 在常压下纯ZrO2三种晶态 (1)当ZrO2中稳定剂加入量在某一范围时,高温稳定的c-ZrO2通过适当温度下时效处理使c-ZrO2大晶粒(c相)中析出许多细小纺锤状的t-ZrO2(t相)晶粒,形成c相和t 相组成的双相组织结构。其中c相是稳定的而t相是亚稳定的并一直保存到室温。在外力诱导下有可能诱发t相到m相的马氏体相变并伴随体积膨胀,耗散部分能量、抵消了部分外力从而起到增韧作用,称为应力诱导相变增韧。这种陶瓷称之为部分稳定氧化锆,当稳定剂为CaO、MgO、Y2O3时,分别表示为Ca-PSZ、Mg-PSZ、Y-PSZ等。 (2)当ZrO2中稳定剂加入量控制在适当量时可以使t-ZrO2以亚稳状态稳定保存到室温,那么块体氧化锆陶瓷的组织结构是亚稳的t- ZrO2细晶组成的四方氧化锆多晶体称之为四方氧化锆多晶体陶瓷(。在外力作用下可相变t-ZrO2发生相变,增韧不可相变的ZrO2基

氧化铝陶瓷

氧化铝陶瓷 氧化铝陶瓷(alumina ceramics)是一种以α- Al2O3为主晶的陶瓷材料。其Al2O3含量一般在75~99.99%之间。通常习惯以配料中Al2O3的含量来分类。Al2O3含量在75%左右的为“75瓷“,含量在85%左右的为“85瓷“,含量在95%左右的为“95瓷“,含量在99%左右的为“99瓷“。 工业Al2O3是由铝钒土(Al2O3·3H2O)和硬水铝石制备的,对于纯度要求不高的,一般通过化学方法来制备。电熔刚玉即是用上述原料加碳在电弧炉内于2000~2400C熔融制得,也称人造刚玉。 Al2O3有许多同质异晶体。根据研究报道过的变体有十多种,但主要有三种,即γ- Al2O3,β- Al2O3,α- Al2O3。Al2O3的晶体转化关系如下图,其结构不同,因此其性质也不同,在1300度以上的高温几乎完全转变为α- Al2O3。郑州玉发集团是中国最大的白刚玉生产商,和中科院上海硅酸盐研究所成立玉发新材料研究中心研究生产多品种α氧化铝。专注白刚玉和煅烧α氧化铝近30年,因为专注所以专业,联系QQ2596686490,电话156390七七八八一。 γ- Al2O3,属尖晶石型(立方)结构,氧原子形呈立方密堆积,铝原子填充在间隙中。它的密度小。且高温下不稳定,机电性能差,在自然界中不存在。由于是松散结构,因此可利用它来制造多孔特殊用途材料。 β- Al2O3是一种Al2O3含量很高的多铝酸盐矿物。它的化学组成可以近似地用RO·6 Al2O3和R2O·11 Al2O3来表示(RO指碱土

金属氧化物,R2O指碱金属氧化物),其结构由碱金属或碱土金属离子如[NaO]ˉ层和[Al11O12]+类型尖晶石单元交叠堆积而成,氧离子排列成立方密堆积,Na+完全包含在垂直于C轴的松散堆积平面内,在这个平面内可以很快扩散,呈现离子型导电。 α- Al2O3,属三方晶系,单位晶胞是一个尖的菱面体,在自然办只存在α- Al2O3,如天然刚玉、红宝石、蓝宝石等矿物。α- Al2O3结构最紧密、活性低、高温稳定。它是三种形态中最稳定的晶型,电学性质最好,具有优良的机电性能。 Al2O3中的化学键是离子键,离子键也称“电价键”,它是由金属原子失去外层电子形成正离子,非金属原子取得电子形成负离子,互相结合形成的。离子键是依靠正负离子间静电引力所产生的化学键,它没有方向性也没有饱和性。A Al2O3陶瓷属于氧化物晶体结构,氧化物结构的结合键以离子键为主,它的分子式通常以AmXn 表示。A(或者B)表示与氧结合的正离子,n为离子数,x表示氧离子,n表示它的数量。大多数氧化物中的氧离子半径大于正离子的半径。所以它们的结构是以大直径的氧离子密堆排列的骨架,组成六方或面心立方点阵,小直径的正离子嵌入骨架的间隙处。这种陶瓷材料具有高的硬度和熔点。 陶瓷体的相组成中,晶相相对含量波动范围很大,通常特种陶瓷中晶相体相对含量较高。晶相对陶瓷材料性质有很大的影响。表中列出了一般陶瓷到特种陶瓷中的刚玉相(α- Al2O3)含量的变化及表现出的性能差异。

氧化铈增韧氧化锆陶瓷的研究

氧化铈增韧氧化锆陶瓷的研究 摘要:本文叙述了氧化锆陶瓷的增韧机制,以氧化铈为稳定剂,论述不同实验中铈掺杂氧化锆的性能研究。结果表明,氧化铈对四方相氧化锆具有稳定作用。本文采用不同实验方法,研究了反应温度、氧化铈的含量、PH、烧结工艺等对铈掺杂氧化锆陶瓷粉体的影响,并分析了氧化铈氧化锆陶瓷的力学性能,对铈掺杂氧化锆陶瓷的应用前景作了简要概述。 关键词:氧化铈;氧化锆;增韧机制;稳定作用 1 引言 近年来,利用稀土氧化物—氧化铈对氧化锆的稳定作用实现对陶瓷材料的研究渐 趋活跃。 由于ZrO2具有熔点和沸点高、硬度大,常温下为绝缘体,而高温下为导体等优良性质,固此,从20世纪20年代开始就被用做熔化玻璃和冶炼钢铁等的耐火材料。随着人们对ZrO2了解的加深,20世纪70年代开始就被用作结构材料和功能材料。1975年,澳大利亚R.G.Garvie以CaO为稳定剂制得部分稳定的氧化锆陶瓷(Ca—PSZ),并首次利用ZrO2马氏体相变的增韧效应,提高了其韧性和强度,极大的扩展了ZrO2马氏体相变的增韧效应,提高了其韧性和强度,极大的扩展了ZrO2在结构陶瓷领域的研究。 纯ZrO2在不同温度区间具有单斜(Monoclinic )、四方(Tetragonal )、立方(Cubic)三种不同晶型,晶型转化式为: 当氧化锆从高温冷却到室温要经历c—t—m的同质异构转变,其中t—m的相变过程要产生3-5%的体积膨胀,体积膨胀效应可导致材料的开裂,所以未经稳定的ZrO2韧性极差,在一般情况下是无法使用的。要实现相变增韧,必须添加一定的稳定剂,而只有离子半径与Zr4+半径相差不超过40%的氧化物才能作为氧化锆的稳定剂。氧化铈作为氧化锆的稳定剂,有利于在室温保留尽量多的可相变亚稳四方相氧化锆,并能在较宽的成分范围内获得亚稳四方相氧化锆,从而为氧化锆的相变增韧提供优越的条件。 1998年末松下电器公司宣称与大阪大学科学与工业研究所联合开发了一种采用铈做稳定剂的ZrO2-CeO2复合陶瓷,由于热膨胀系数不同,很难制成纳米复合材料。但通过优化烧成温度和混合比,以能批量生产高强度、高硬度复合陶瓷,用于代替由YSZ制造的可转换叶片。与YSZ相比,ZrO2-CeO2陶瓷的断裂韧性为前者的三倍,切割速度为前者的1.5倍。 2氧化锆陶瓷的增韧机制 2.1 应力诱导相变韧化 1975年Garvie R. C 对Ca- PSZ 的研究中首次发现:介稳的四方相氧化锆相变成稳定的单斜相氧化锆,试样强度可明显提高,并提出了相变增韧氧化锆陶瓷的概念。经过Lange 等人的完善,逐步形成了比较完整的应力诱导相变增韧机理。该理论认为:如果四方相氧化锆的晶粒足够细或者机体对其束缚力足够大,冷却过程中四方相向单斜相的相变就可受到抑制,四方相可稳定的保留到室温当裂纹受到外应力作用扩展时,裂纹前端形成较大的张应力,使机体对四方相的约束力得到松弛,四方相相变为单斜相。此时的相变就产生3-5%的体积膨胀和1-7%的剪切应变,并对机体产生压应变,使裂纹扩展受阻、主裂纹延伸需要的能量增加。

相关文档