文档库 最新最全的文档下载
当前位置:文档库 › 建筑物理热工实验报告(带数据及心得)

建筑物理热工实验报告(带数据及心得)

建筑物理热工实验报告(带数据及心得)
建筑物理热工实验报告(带数据及心得)

建筑物理实验报告

班级:

姓名:

学号:

指导教师:

建筑物理实验室

2013年10月

实验日期:

小组成员:

学生成绩:

实验题目:建筑热工参数测定实验

实验目的:

1、了解热工参数测试仪器的工作原理;

2、掌握温度、湿度、风速的测试方法,达到独立操作水平;

3、利用仪器测量建筑墙体内外表面温度场分布,检验保温设计效果;

4、测定建筑室内外地面温度场分布;

实验内容:

1.测定建筑室内外热工参数

2.测定建筑墙体内外表面温度,检验保温效果。

3.测定建筑室内外地面温度场分布。

实验步骤:

1. 运用电子微风仪,将电子微风仪放置在室外阳面开阔地迎风测量并读数,将电子微风仪放置在

室外阴面开阔地迎风测量并读数;在走廊选择四个点,确定无其它干扰后读数;将电子微风仪

分别放置在室内阴阳面教室内测量并读数。

2. 运用温湿度计,将温湿度计分别放置在室内阴阳面教室,室外阴阳面空地以及走廊的四个测量点

进行测量,待其稳定后读数。

3. 运用数字温度仪,分别在室内阴阳面教室内距离墙脚0m、0.5m、1m、1.5m处测量,待其稳定后

读数;分别在室内阴阳面教室内与墙脚有0m、0.5m、1m、1.5m高差处测量,待其稳定后读数。

分别在室外阴阳面距离墙脚0m、0.5m、1m、1.5m处测量,待其稳定后读数;分别在室外阴阳面教室内与墙脚有0m、0.5m、1m、1.5m高差处测量,待其稳定后读数。

实验测试表格及简单说明:

表一

空气温湿度及风速数据表

表二

表三

表面温度数据表

实验结果分析及结论:

结果分析:

1.温度:

室内温度明显高于室外,室外阳面温度高于室外阴面温度,阳面教室温度高于阴面教室温度层数越高,温度越高,阳面教室温度最高。

建筑物室内外阳面与阴面的表面温度相比,无论是墙面还是地面的表面温度,阳面的表面温度都要远高于阴面的表面温度。

室外地面表面温度随距墙距离的变化而变化;墙面温度随距地距离的变化而变化。

由于受到天气与地面材质的不同影响,室外墙面和地面温度随距离不同而产生不同变化

室内外墙面表面温度随高度的增高普遍呈增高趋势。外墙面受其他因素影响有轻微波动。

2.湿度

室内外湿度变化较大,室内湿度明显高于室外湿度,而室内不同地点的湿度变化则不大,在一定的范围内浮动。室内外湿度变化受到多方面因素影响,例如阴阳面、周边的绿化情况等不同,在不同地点测出的湿度数据统计结果处于上下波动的状态。大体上室内外各地方的湿度变化不明显,在一定的范围内浮动,阳面的湿度相对于阴面较小

3.风速

室外风速远大于室内,阳面的风速达到1.6m/s,远大于阴面。

由室内外风速表中数据的变化可知,室外风速远大于室内风速。建筑物内部由于通风条件的不同风速也有明显变化。

结论:

通过实验以及分析,我们可以得出土木教学馆的墙地面保温效果较为一般,室内外温差相差1℃左右,墙体保温效果不太明显,不及地面保温效果,阴阳面温差较大,阴面教室比较阴冷,但湿度相对室外仍然比较可观舒适。

实验对我的启发:

这次热工实验对于我来说收获良多具体如下

1.动手能力对于需要精确数据的实验、作业、甚至工作生活都是极其重要的,只有不断锻炼,

提高自己的动手能力,才能保质保量的完成任务

2.团队的力量是不容忽视的。有些事情与个人能力的高与低没有太大关系,只要团队中的每

个人员能够了解自己的定位,各司其职,各自发挥自己的特长,才能为整个团队奉献出完美的一块拼图,最后完善整项工作。

3.前期的准备对于实验的完成非常重要。做实验前,了解课题,掌握基础知识,充分认识器

材,理解实验目的。在做实验时做到心有成竹,懂得每一步过程的方法,目的以及意义。

4.善始善终是做好每一实验乃至做好每一件事的不可缺因素。无论实验做得多么完美,没有

最后精炼的总结以及数据分析,都是无用功

热工计算

一、窗节能设计分析 按《民用建筑热工设计规范》(GB50176-93)设计计算,设计依据: R o =R i +R+R e ……附2.4[GB50176-93] 在上面的公式中: R o :围护结构的传热阻(m2·K/W); R i :围护结构内表面换热阻,按规范取0.11m2·K/W; R e :围护结构外表面换热阻,按规范取0.04m2·K/W; R:围护结构热阻(m2·K/W); R=R 面板+R 中空层 =δ 面板/λ 面板 +R 中空层 =0.01/0.76+0.12 =0.133m2·K/W 在上面的公式中: δ 面板 :面板材料(玻璃)的总厚度(m); λ 面板 :面板材料的导热系数(W/m·K),按规范取0.76;

R 中空层 :中空玻璃中空空气层热阻值(m2·K/W),按规范取0.12; 故窗玻璃部分热阻 R o玻=R i +R+R e =0.11+0.133+0.04 =0.283m2·K/W 玻璃部分传热系数K 玻=1/ R o玻 =1/0.283 =3.5W/m2·K 常用普通铝型材传热系数K 铝 约=6.0 W/m2·K 整窗传热系数为玻璃和铝框传热系数按面积的加权平均值本工程铝框所占窗洞面积百分比=0.19 本工程玻璃所占窗洞面积百分比=0.71 故整窗传热系数K 窗=K 铝 X0.19 + K 玻 X0.71 =6.0X0.19+3.5X0.71 =3.6 W/m2·K 根据《公共建筑节能设计标准》GB50189-2005相关规定,本工程属于夏热冬冷地区。则外围护结构传热系数和遮阳系数应符合下表规定:

夏热冬冷地区围护结构传热系数和遮阳系数限值 本工程两主要立面窗墙比为0.47,故要求建筑外窗传热系数≤2.8. 根据上面计算,采用普通中空玻璃窗无法满足节能要求. 若采用6+9A+6LOW-E中空玻璃,非断热型材,外窗传热系数计算如下: 6+9A+6LOW-E中空玻璃传热系数约为1.5—2.1 W/m2·K,此处按最不利情况取为2.1 W/m2·K。 常用普通铝型材传热系数K 铝 约=6.0 W/m2·K 整窗传热系数为玻璃和铝框传热系数按面积的加权平均值 本工程铝框所占窗洞面积百分比=0.19 本工程玻璃所占窗洞面积百分比=0.71 故整窗传热系数K 窗=K 铝 X0.19 + K 玻 X0.71 =6.0X0.19+2.1X0.71 =2.6 W/m2·K<2.8 W/m2·K

热工测试课后练习答案

热工测试作业 第一章 1-1、测量方法有哪几类,直接测量与间接测量的主要区别是什么?(P1-2) 答:测量的方法有:1、直接测量;2、间接测量;3、组合测量。 直接测量与间接测量的主要区别是直接测量中被测量的数值可以直接从测量仪器上读得,而间接测量种被测量的数值不能直接从测量仪器上读得,需要通过直接测得与被测量有一定函数关系的量,然后经过运算得到被测量的数值。 1-2、简述测量仪器的组成与各组成部分的作用。(P3-4) 答:测量仪器由感受器、中间器和效用件三个部分组成。 1、感受器或传感器:直接与被测对象发生联系(但不一定直接接触),感知被测参数的变化,同时对外界发出相应的信号; 2、中间器或传递件:最简单的中间件是单纯起“传递”作用的元件,它将传感器的输出信号原封不动地传递给效用件; 3、效用件或显示元件:把被测量信号显示出来,按显示原理与方法的不同,又可分模拟显示和数字显示两种。 1-3、测量仪器的主要性能指标及各项指标的含义是什么?(P5-6) 答:测量仪器的主要性能指标有:精确度、恒定度、灵敏度、灵敏度阻滞、指示滞后时间等。 1、精确度:表示测量结果与真值一致的程度,它是系统误差与随机误差的综合反映; 2、恒定度:仪器多次重复测试时,其指示值的稳定程度,通常以读数的变差来表示; 3、灵敏度:以仪器指针的线位移或角位移与引起这些位移的被测量的变化值之间的比例来表示。 4、灵敏度阻滞:又称感量,是以引起仪器指针从静止到作极微小移动的被测量的变化值。 5、指示滞后时间:从被测参数发生变化到仪器指示出该变化值所需的时间。 1-4、说明计算机测控系统基本组成部分及其功能。(P6-7) 答:计算机测控系统基本组成部分有:传感器、信号调理器、多路转换开关、模/数(A/D)和数/模(D/A)转换及微机。 1、信号调理器:完成由传感器输出信号的放大、整形、滤波等,以保证传感器输出信号成为A/D转换器能接受的信号; 2、实现多路信号测量,并由它完成轮流切换被测量与模/数转换器的连接; 3、采样保持器:保证采样信号在A/D转换过程中不发生变化以提高测量精度; 4、A/D转换器:将输入的模拟信号换成计算机能接受的数字信号; 5、D/A转换器:将输入的数字信号换成计算机能接受的模拟信号。 1-5、试述现代测试技术及仪器的发展方向。(P6、P9) 答:计算机、微电子等技术迅速发展,推动了测试技术的进步,相继出现了智能测试仪、总线仪器、PC仪器、虚拟仪器、网络化仪器等微机化仪器及自动化测试系统。随着计算机网络技术、多媒体技术、分布式技术等手段的迅速发展,测试技术与计算机相结合已成为当前测试技术的主流,测试技术的虚拟化和网络化的时代已经不远了。 第二章 2-1、试述测量仪器的动态特性的含意和主要研究内容,它在瞬变参数测量中的重要意义。(P11、P16) 答:测量仪器或测量系统的动态特性的分析就是研究动态测量时所产生的动态误差,它主要用以描述在动态测量过程中输入量与输出量之间的关系,或是反映系统对于随机时间变化的输入量响应特性。从而能够选择合适的测量系统并于所测参数相匹配,使测量的动态误差限制在试验要求的允许范围内,这便是动态测量技术中的重要研究课题。在瞬变参数动态测量中,要求通过测量系统所获得的输出信号能准确地重现输入信号的全部信息,而测量系统的动态响应正是用来评价系统正确传递和显示输入信号的重要指标。

热工实验报告剖析

目录 常功率平面热源法同时测定绝热 (1) 数据处理: (1) [1]原始数据整理:(原始数据表格见附录) (1) [2]关于高斯误差补函数的方程编写 (2) 高斯误差补函数的一次积分 (2) 高斯误差补函数的一次积分的反函数 (2) [3]数据处理脚本 (2) [4]结果表格 (3) 曲线绘制 (3) [1]热源温度t1和距热源x1处温度t2随时间τ的变化关系 (3) [2]导热系数lamda随时间的变化 (4) [3]导热系数a随时间的变化 (4) 理解分析 (5) [1]改变导热系数lamda对温升曲线的影响 (5) [2]改变导温系数a对温升曲线的影响 (6) 空气横掠单圆管时强迫对流换热实验 (6) 数据处理 (6) [1]原始数据整理:(原始数据表格见附录) (6) [2]结果表格 (7) [3]曲线拟合 (7) 总结讨论 (9) [1]实验偏差讨论 (9) [2]为什么忽略Pr (9) [3]截面小的地方流速大,测量相对误差值小。 (9) 常功率平面热源法同时测定绝热 材料的导热系数λ和导温系数a 数据处理:

高斯误差补函数的一次积分 高斯误差补函数的一次积分的反函数 [3]数据处理脚本

[4] [1]热源温度t1和距热源x1处温度t2随时间τ的变化关系

[2]导热系数lamda随时间的变化 [3]导热系数a随时间的变化

可以看出λ和a均随时间先降低后升高。因为导热初期,温差小,恒定热流,所以传热快,随着时间的增加,导热变慢。当温度增加到一定 程度,温差缩小,导热又逐渐变快。 理解分析 [1]改变导热系数lamda对温升曲线的影响

建筑物理复习(建筑热工学)

第一篇 建筑热工学 第1章 建筑热工学基础知识 1.室内热环境构成要素: 室内空气温度、空气湿度、气流速度和环境辐射温度构成。 2.人体的热舒适 ①热舒适的必要条件:人体内产生的热量=向环境散发的热量。 m q ——人体新陈代谢产热量 e q ——人体蒸发散热量 r q ——人体与环境辐射换热量 c q ——人体与环境对流换热量 ②充分条件:所谓按正常比例散热,指的是对流换热约占总散热量的25-30% ,辐射散热约为45-50%,呼吸和无感觉蒸发散热约占 25-30%。处于舒适状况的热平衡,可称之为“正常热平衡”。 (注意与“负热平衡区分”) ③影响人体热舒适感觉的因素: 1.温度;2.湿度;3.速度;4.平均辐射温度;5.人体新陈代谢产热率;6.人体衣着状况。 3.湿空气的物理性质 ①湿空气组成:干空气+水蒸气=湿空气 ②水蒸气分压力:指一定温度下湿空气中水蒸气部分所产生的压力。 ⑴未饱和湿空气的总压力: w P ——湿空气的总压力(Pa ) d P ——干空气的分压力(Pa) P ——水蒸气的分压力(Pa) ⑵饱和状态湿空气中水蒸气分压力:s P ——饱和水蒸气分压力 注:标准大气压下,s P 随着温度的升高而变大(见本篇附录2)。表明在一定的大气压下,湿空气温度越高,其一定容积中所能容纳的水蒸气越少,因而水蒸气呈现出的压力越大。 ③空气湿度:表明空气的干湿程度,有绝对湿度和相对湿度两种不同的表示方法。 ⑴绝对湿度:单位体积空气所含水蒸气的重量,用f 表示(g/m 3 )。 饱和状态下的绝对湿度则用饱和水蒸气量max f (g/m 3 )表示。 ⑵相对湿度:一定温度,一定大气压力下,湿空气的绝对湿度 f ,与同温同压下饱和水蒸气量max f 的百分比: ⑶同一温度(T)下,, 因此,相对湿度又可表示为空气中水 : P ——空气的实际水蒸气分压力 (Ps P ——同温下的饱和水蒸气分压力 (Pa)。 (注:研究表明,对室内热湿环境而言,正常湿度范围大概在30%~60%。)

工热热力学实验报告1

工程热力学实验报告 学院 年级专业 学生姓名 学号 2016年12月21日

实验一:气体定压比热的测定 一、实验目的和要求 1. 了解气体比热测定装置的基本原理和构思。 2. 熟悉本实验中的测温、测压、测热、测流量的方法。 3. 掌握由基本数据计算出比热值和求得比热公式的方法。 4. 分析本实验产生误差的原因及减小误差的可能途径。 二、实验内容 通过测定空气的温度、压力流量,掌握计算热量的方法,从而求得比热值和求得比热公式的方法。 三、数据记录 四、实验方法、步骤及测试数据处理 1.接通电源及测量仪表,选择所需的出口温度计插入混流网的凹槽中。 2.摘下流量计上的温度计,开动风机,调节节流阀,使流量保持在额定值附 近。测出流量计出口空气的干球温度(t0)。 3.将温度计插回流量计,调节流量,使它保持在额定值附近。逐渐提高电热 器功率,使出口温度升高至预计温度。 可以根据下式预先估计所需电功率: τt W ?≈12 式中:W为电热器输入电功率(瓦);

Δt 为进出口温度差(℃); τ为每流过10升空气所需的时间(秒)。 估算过程:W=m ×Cp ×(T2-T1)=ρ×V ×Cp ×(T2-T1) =ρ×(10/1000τ) ×Cp ×Δt=1.169×(10/1000τ) ×1.004×Δt =11.7/1000×Δt/τ(kW)=11.7Δt/τ(w) 式中ρ—kg/m3; Cp—kJ/kg ·k; 4. 待出口温度稳定后(出口温度在10分钟之内无变化或有微小起伏,即可视为稳定),读出下列数据,每10升空气通过流量计所需时间(τ,秒);比热仪进口温度——即流量计的出口温度(t 1,℃)和出口温度(t 2℃);当时相应的大气压力(B ,毫米汞柱)和流量计出口处的表压(Δh ,毫米水柱);电热器的输入功率(W ,瓦)。 5. 根据流量计出口空气的干球温度和湿球温度,从湿空气的干湿图查出含湿量(d,克/公斤干空气),并根据下式计算出水蒸气的容积成分: 622 /1622 /d d r w += 推导:对于理想气体混合物,摩尔比等于体积比,由分压力定律可知,理想气体摩尔比等于压力比,因此体积比等于压力比。根据含湿量定义d=m v /m a =n v M v /n a M a =0.622 (v v /v a )。因此:r w =v a /v=v v /(v v +v a )=1/(1+0.622/d)=d/0.622/(1+ d/0.622) 6. 根据电热器消耗的电功率,可算出电热器单位时间放出的热量: 3 10 1868.4?=W Q & (kcal/s )[1w=1J/s=1/1000kJ/s=1/4186.6kcal/s] 7. 干空气流量(质量流量)为: ) 15.273(2871000/103.133)6.13/)(1(00+???+-== t h B r T R V P G w g g g τ&& ) 15.273()6.13/)(1(106447.403+?+-?= -t h B t w τ (kg/s ) 8. 水蒸气流量为: ) 15.273(5.4611000/103.133)6.13/(00+???+== t h B r T R V P G w w w w τ&&

连云港公共建筑热工分析

江苏省连云港市矿物纤维喷涂节能设计江苏省连云港市矿物纤维喷涂节能设计连云港位于中国沿海中部,江苏省东北部,处于北纬33°59′~35°07′、东经118°24′~119°48′之间。东濒黄海,北与山东日照市接壤,西与山东临沂市和江苏徐州市毗邻,南连江苏淮安市和盐城市。根据《公共建筑节能设计标准》DGJ32/J 96—2010,对气候分区,连云港市在建筑热工分区中属于寒冷地区。 《公共建筑节能设计标准》DGJ32/J 96—2010规定了江苏省范围内公共建筑室内热环境标准,节能设计原则和要求,适用于江苏省新建、扩建及改建的公共建筑节能设计,按照建筑物能耗情况和围护结构能耗占全年建筑总能耗的比例特征,江苏省公共建筑应划分为下列二类:1、甲类建筑——单幢建筑面积大于等于20000m2,且全面设置中央空气调节系统的公共建筑,或单幢建筑面积小于20000m2,大于5000m2,且采用中央空调的重要公共建筑。2、乙类建筑——单幢建筑面积小于20000m2,或大于等于20000m2 但不设置或仅部分设置中央空气调节系统的公共建筑。 连云港市甲类建筑维护结构的传热系数K【w/(㎡.k)】 维护结构体形系数≤0.30 0.030≤体形系数≤0.40 外墙K≤0.50 K≤0.45 非采暖空调房间与空调房间之间的隔 K≤1.2 K≤1.2 墙或楼板 连云港市乙类建筑维护结构的传热系数K【w/(㎡.k)】 维护结构体形系数≤0.30 0.030≤体形系数≤0.40 外墙K≤0.60 K≤0.50 非采暖空调房间与空调房间之间的隔 K≤1.5 K≤1.5 墙或楼板 以矿物纤维喷涂层导热系数λ≤0.038w/m.k,修正系数1.1为例,根据《矿物纤维喷涂保温、吸声构造》11CJ30国家标准图集计算,连云港市甲类公共建筑矿物纤维喷涂外墙宜喷涂70mm,乙类公共建筑矿物纤维喷涂外墙宜喷涂60mm,非采暖空调房间与空调房间之间的隔墙或楼板甲类建筑宜喷涂30mm厚,乙类建筑宜喷涂20mm厚。

建筑热工计算的补充说明

建筑热工计算的补充说明一、热工计算方法补充说明

3 朝向窗墙面积比M 1 1) 地下室为非采暖空间时,±0.00以下的建筑物垂直外立面不参与计算。 2) 地下室为采暖空间时,±0.00以下与室外空气接触的建筑物垂直外立面参与计算(包括:±0.00至室外地平、至窗井底部、至下沉庭院地平的外墙和门 窗)。 4 建筑物体形系数S 1) 没有地下室,或有地下室但地下室为非采暖空间时,建筑物外表面积及其所包围的空间从首层地面(±0.00)算起,±0.00以下不参与计算。 2) 有地下室且地下室为采暖空间时 (1)参与计算的建筑物外表面积F Σ,为地上和地下所有与大气接触的围护结构外表面积的总和(其中凸窗和封闭式阳台计算方法见上述1、2)。 (2)参与计算的建筑物体积0V ,为±0.00以上体积上V 和±0.00以下计算体积’ 下V 两部分之和。 (3)±0.00以下计算体积’下V 按下式确定: 下 下 ’ 下 ’下 V f f V 式中:’ 下f ——±0.00以下与室外空气接触的垂直外立面面积(包括:±0.00至室外地平、至窗井底部、至下沉庭院地平的外立面); 下 f ——±0.00以下垂直外立面总面积(包括与室外空气接触和与土壤接触的外立面); 下 V ——±0.00以下 下 f 包围的总体积。 5 当建筑物各部分层数不统一(阶梯式错层)时,该建筑热工参数限值可按面积所占比例最大部分的层数统一确定取值。 6 采用附录权衡判断表B.1.3.-2进行温差传热量计算时, 楼梯间和封闭外走廊的屋面、地面(或楼板)不单独计算,简化为与户内部分统一计算,即室内外温差均为17.9℃。

最新 热工学与流体力学试卷答案

《热工学与流体力学》课程第 1 页 共 4 页 课程考试试卷 课程名称:热工学与流体力学 考核方式: 一、填空题:(每空格1分,共20分) 1.水蒸汽在T-S 图和P-V 图上可分为三个区,即___________区,___________ 区和 ___________ 区。 2.一般情况下,液体的对流放热系数比气体的___________,同一种液体,强迫流动放热比自由流动放热___________。 3.水蒸汽凝结放热时,其温度___________,主要是通过蒸汽凝结放出___________而传递热量的。 4.管道外部加保温层使管道对外界的热阻___________,传递的热量__________。 5.炉受热面外表面积灰或结渣,会使管内介质与烟气热交换时的热量___________,因为灰渣的___________小。 6.根据传热方程式,减小___________,增大___________,增大___________,均可以增强传热。 7.相同参数下,回热循环与朗肯循环相比,汽耗率__________________,给水温度___________,循环热效率___________,蒸汽在汽轮机内作功___________。 8. ___________压力小于___________大气压力的那部分数值称为真空。 二、选择题(每小题3分,共30分) 1、同一种流体强迫对流换热比自由流动换热( )。 A 、不强烈; B 、相等; C 、强烈; D 、小。 2、热导率大的物体,导热能力( ) A.大; B.小; C.不发生变化。 3.流体流动时引起能量损失的主要原因是( ) A 、流体的压缩性 B 、流体的膨胀性 C 、流体的粘滞性 4.朗肯循环是由( )组成的。 A 、两个等温过程,两个绝热过程 B 、两个等压过程,两个绝热过程 C 、两个等压过程,两个等温过程 D 、两个等容过程,两个等温过程。 5.省煤器管外是( )。 A.沸腾换热; B.凝结换热; C.水强制流动对流换热; D.烟气强制流动对流换热 6.下列几种对流换热系数的大小顺序排列正确的是:( )。 A.α水强制>α空气强制>α空气自然>α水沸腾; B.α水沸腾>α空气强制>α水强制>α空气自然; C.α水沸腾>α水强制>α空气强制>α空气自然。 7.当物体的热力学温度升高一倍时,其辐射能力将增大到原来的( )倍: A.四倍; B.八倍; C.十六倍。 8.在锅炉中,烟气以对流换热为主的部位是( )。 A.炉膛; B.水平烟道; C.垂直烟道 9.稳定流动时,A 断面直径是B 断面的2 倍,B 断面的流速是A 断面流速( )倍。 A.1; B.2; C.3; D.4。 10.当管排数相同时,下列哪种管束排列方式的凝结换热系数最大:( ) A 、叉排; B 、顺排; C 、辐向排列; D 、无法判断 考生注意: 1.学号、姓名、专业班级等应填写准确。 2.考试作弊者,责令停考,考生签名,成绩作废

建筑热工必背知识点

建筑热工 一、名词解释 围护结构的传热过程:室内空气通过围护结构与室外空气进行热量传递的过程。 传热:传热是包括各种方式热能传递现象的总称,传热的三种基本方式为导热、对流和热辐射。 温度场:一般情况下,构造与两侧空间上各点的温度是不同的,它是时间和空间的函数,某一时刻所有各点的温度分布叫做温度场。温度场也是时间和空间的函数。 稳定温度场:如果温度场不随时间和空间变化,则称为稳定温度场。在稳定温度场中发生的传热过程称为稳定传热过程。 不稳定温度场:温度场随时间变化时,称为不稳定温度场,在不稳定温度场中发生的传热过程称为不稳定传热过程。 导热:当物体各部分之间不发生相对位移或不同的物体直接接触时,依靠物质的分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为导热(或热传导),所以理论上讲导热可以在固体、液体和气体中发生。 热阻:热流通过平壁是所受到的阻力,即平壁抵抗热流通过的能力。 R=d/λ(㎡·K/W) 对流:对流是指流体个部分之间发生相对位移,依靠冷热流体互相掺混和移动所引起的热量传递方式。对流换热的强弱主要取决于:层流边界层内的换热与流体运动发生的原因、流体运动状况、流体与固体壁面温度差、流体的物性、固体壁面的形状、大小及位置等因素。 对流换热:壁面和流体之间在对流和导热同时作用下进行的热量传递。 自然对流:自然对流是由于流体冷、热各部分的密度不同而引起的。 强制对流:如果流体的流动是再水泵或风机等的驱动下造成的。对流速度取决于外力的大小。外力愈大,对流愈强。 边界层(区):由于壁面摩擦力和流体粘滞力的作用,在壁面上会形成一个流态平稳、体积很薄的流动层,称之为层流区或层流边界层。层流区以外,则是一个液态紊乱、体积较薄的流动层,称之为紊流层或紊流边界层,层流边界层和紊流边界层就构成了壁面与流体对流换热的边界层或边界层区。 对流换热热阻:它是热流通过避免边界层是所受到的阻力,即边界层抵抗热流通过的能力。

流体静力学+热工1003+14+

中国石油大学(华东)工程流体力学实验报告 实验日期:2012年3月14日成绩: 班级:热工10-3班学号:10123314 姓名:张有福教师:王连英 同组者:毛欢、白申杰 实验一、流体静力学实验 一、实验目的:填空 1.掌握用液式测压计测量流体静压强的技能; 2.验证不可压缩流体静力学基本方程,加深对位置水头、压力水头和测压管水头的理解; 3. 观察真空度(负压)的产生过程,进一步加深对真空度的理解; 4.测定油的相对密度; 5.通过对诸多流体静力学现象的实验分析,进一步提高解决解决静力学实际问题的能力。 二、实验装置 1、在图1-1-1下方的横线上正确填写实验装置各部分的名称 本实验的装置如图所示。 1.测压管; 2.带标尺的测压管; 3.连通管; 4.通气阀; 5.加压打气球; 6.真空测压管; 7.截止阀;8. U形测压管;9.油柱; 10. 水柱;11.减压放水阀 图1-1-1 流体静力学实验装置图

2、说明 1.所有测管液面标高均以标尺(测压管2) 零读数为基准; 2.仪器铭牌所注B ?、C ?、D ?系测点B 、C 、D 标高;若同时取标尺零点作为静力 学基本方程的基准,则B ?、C ?、D ?亦为B z 、C z 、D z ; 3.本仪器中所有阀门旋柄均顺 管轴线为开。 三、实验原理 在横线上正确写出以下公式 1.在重力作用下不可压缩流体静力学基本方程 形式之一: const p z =+ γ (1-1-1a ) 形式之二: h p p γ+=0 (1-1b ) 式中 z ——被测点在基准面以上的位置高度; p ——被测点的静水压强,用相对压强表示,以下同; 0p ——水箱中液面的表面压强; γ——液体重度; h ——被测点的液体深度。 2. 油密度测量原理 当U 型管中水面与油水界面齐平(图1-1-2),取其顶面为等压面,有 01w 1o p h H γγ== (1-1-2) 另当U 型管中水面和油面齐平(图1-1-3),取其油水界面为等压面,则有 02w o p H H γγ+= 即 02w 2o w p h H H γγγ=-=- (1-1-3)

热工学实践实验报告

2016年热工学实践实验内容 实验3 二氧化碳气体P-V-T 关系的测定 一、实验目的 1. 了解CO 2临界状态的观测方法,增强对临界状态概念的感性认识。 2. 巩固课堂讲授的实际气体状态变化规律的理论知识,加深对饱和状态、临界状态等基本概念的理解。 3. 掌握CO 2的P-V-T 间关系测定方法。观察二氧化碳气体的液化过程的状态变化,及经过临界状态时的气液突变现象,测定等温线和临界状态的参数。 二、实验任务 1.测定CO 2气体基本状态参数P-V-T 之间的关系,在P —V 图上绘制出t 为20℃、31.1 ℃、40℃三条等温曲线。 2.观察饱和状态,找出t 为20℃时,饱和液体的比容与饱和压力的对应关系。 3.观察临界状态,在临界点附近出现气液分界模糊的现象,测定临界状态参数。 4.根据实验数据结果,画出实际气体P-V-t 的关系图。 三、实验原理 1. 理想气体状态方程:PV = RT 实际气体:因为气体分子体积和分子之间存在相互的作用力,状态参数(压力、温度、比容)之间的关系不再遵循理想气体方程式了。考虑上述两方面的影响,1873年范德瓦尔对理想气体状态方程式进行了修正,提出如下修正方程: ()RT b v v a p =-??? ? ?+2 (3-1) 式中: a / v 2 是分子力的修正项; b 是分子体积的修正项。修正方程也可写成 : 0)(23 =-++-ab av v RT bp pv (3-2) 它是V 的三次方程。随着P 和T 的不同,V 可以有三种解:三个不等的实根;三个相等的实 根;一个实根、两个虚根。 1869年安德鲁用CO 2做试验说明了这个现象,他在各种温度下定温压缩CO 2并测定p 与v ,得到了P —V 图上一些等温线,如图2—1所示。从图中可见,当t >31.1℃时,对应每一个p ,可有一个v 值,相应于(1)方程具有一个实根、两个虚根;当t =31.1℃时,而p = p c 时,使曲线出现一个转折点C 即临界点,相应于方程解的三个相等的实根;当t <31.1℃时,实验测得的等温线中间有一段是水平线(气体凝结过程),这段曲线与按方程式描出的曲线不能完全吻合。这表明范德瓦尔方程不够完善之处,但是它反映了物质汽液两相的性质和两相转变的连续性。 2.简单可压缩系统工质处于平衡状态时,状态参数压力、温度和比容之间有确定的关系,可表示为: F (P ,V ,T )= 0

建筑外墙热工性能和节能设计分析

[提要]本文介绍福建省常用外墙材料的隔热保温构造形式和热工性能试验分析结果,并对我省建筑外墙的墙体节能提出看法和建议。 [关键词]外墙构造;保温隔热;热工效果;传热系数 Abstract:ThispaperintroducestheheatpreservationandinsulationstructuretypesofroutinewallmaterialsinFujianprovince,andtheirthermalperformancetestresult.canedalsoputforwardsomeviepointsandadvicesonwallbodyenergyefficiencyofbuildingoutsidewall. Keywords:outsidewall'sstructure,heatpreservationandinsulation,thermaleffect,heattransfercoefficient 建筑外墙热工性能和节能设计分析 黄夏东(福建省建筑科学研究院350025) 收稿日期:2005-10-181概述一般建筑的外墙在外围护结构中占的比例最大,由它传热造成的负荷占整幢建筑热负荷的比例相当大,因此外墙的保温隔热性能是建筑节能的一个重要部份。从全国外墙材料发展情况来看,由于气候的差异和经济水平发展不一,以及各地的自身特点,全国没有统一的模式,各地使用的外墙材料也是多种多样,但相当数量的墙体材料自身的热工性能不能满足节能要求。由于南方地区建筑节能工作刚刚开展,其配套材料和技术相应缺乏。因此,开发和研究新型墙体材料,加强外墙外保温技术措施的研究是福建省目前建筑节能工作的重点。2福建省建筑外墙基本情况由于我国南方地区建筑节能工作启动的较晚,相应研究工作也较北方地区来的慢,特别是在建筑外墙上,墙改工作进展缓慢,以福建省为例,从近两年调查资料发现全省九个主要城市中,粘土制品的外墙材料占绝大多数(90!以上),其它如粉煤灰砌块、加气混凝土、钢筋混凝土、灰沙砖等仅有少量使用。原因是多方面的,其中价格、施工工艺、材料自身缺陷或本地资源等特点是主要原因。较有代表性的是我省地形号称“八山一水一分田”的布局,大部分是丘陵地貌,特别是内陆地区,黄土资源丰富,在不破坏良田资源的前提下(但大量挖山造成毁山和破坏自然生态的现象较严重),生产粘土制品的原料是有保证的,并且成本极低,短时间内找出价格相当的替代墙材,是较困难的。因此,目前根据各地的特点,在研究新型墙体材料的同时,研究在原有热工性能较差的墙体上,进行隔热保温技术措施,研究如何通过构造的改变来达到节能目标,就更显得迫切起来。3常见外墙的热工性能实测我们在2004年对福建省常见的墙体材料如粘土多孔砖、粉煤灰砌块、灰沙砖以及钢筋混凝土、混凝土砌块等外墙材料的传热系数等热工性能进行摸底检测,全面了解和掌握几种外墙材自身的热工性能,以及与节能指标要求的差距。通过改变墙体的构造(增加各种保温层)等,使墙体的传热系数达到节能标准的要求,用控制保温层厚度来达到不同传热系数的要求。这是在目前外墙材缺乏的情况下,利用原有墙体达标的最为简便的方法之一。 在实测中我们选用了福建建筑市场上用量最多的外墙材料:粘土空心砖、粉煤灰砌块、加气砼砌块和钢筋砼剪力墙等作为试验墙体,结合不同的外保温措施如:外刷聚苯颗粒保温砂浆、外贴挤塑聚苯乙烯泡沫板和外喷无溶剂聚氨酯硬泡等外保温方案,对其热工性能进行实测值理论值和标准值(福建省实施细则)的比较,比较数据详见表1。 表1构造传热系数实测值(理论计算值)与设计标准值表序号外墙名称容重(kg/m3)各层构造厚度及名称传热系数w/(m2?K)实测值(理论值)设计标准值1粘土空心砖(13孔承重)(容重847) ※20mm水泥沙浆"190mm 空心砖"20mm水泥沙浆1.822.0或1.5 20mm水泥沙浆"190mm空心 砖"15mmZL胶粉聚苯颗粒"5mm抗裂砂浆 1.211.520mm水泥沙浆"190mm空心 砖"10mm水泥沙浆"20mm 挤塑聚苯乙烯板 "6mm聚合物砂浆 (0.83)1.0 2粉煤灰空心 砌块(容重1030)※20mm水泥沙浆"190mm 粉媒灰空心砌块"20mm水泥沙浆 2.452.0 20mm水泥沙浆"190mm粉媒 灰空心砌块"20mmZL胶粉聚 苯颗粒"5mm抗裂砂浆 1.241.520mm水泥沙浆"190mm粉媒 灰空心砌块"20mm水泥沙 浆"25mm挤塑聚苯乙烯板"6mm聚合物砂浆 (0.80)1.0※200mm钢筋混凝土(C25,双层双向φ10@200) 4.102.020mm水泥沙浆+200mm钢筋 混凝土+30mmZL胶粉聚苯颗粒"5mm抗裂砂浆 1.461.520mm水泥沙浆+200mm钢筋 混凝土+25mm挤塑聚苯乙烯板"6mm聚合物砂浆 0.951.0 3钢筋混凝土 (容重2400)建筑物理与设备 福建建设科技2006.No.158

建筑热工设计计算公式及参数

附录一建筑热工设计计算公式及参数 (一)热阻的计算 1.单一材料层的热阻应按下式计算: 式中R——材料层的热阻,㎡·K/W; δ——材料层的厚度,m; λc——材料的计算导热系数,W/(m·K),按附录三附表3.1及表注的规定采用。 2.多层围护结构的热阻应按下列公式计算: R=R1+R2+……+Rn(1.2) 式中R1、R2……Rn——各材料层的热阻,㎡·K/W。 3.由两种以上材料组成的、两向非均质围护结构(包括各种形式的空心砌块,以及填充保温材料的墙体等,但不包括多孔粘土空心砖), 其平均热阻应按下式计算: (1.3) 式中——平均热阻,㎡·K/W; Fo——与热流方向垂直的总传热面积,㎡; Fi——按平行于热流方向划分的各个传热面积,㎡;(参见图3.1); Roi——各个传热面上的总热阻,㎡·K/W Ri——内表面换热阻,通常取0.11㎡·K/W; Re——外表面换热阻,通常取0.04㎡·K/W; φ——修正系数,按本附录附表1.1采用。

图3.1 计算图式 修正系数φ值附 表1.1 /λ1 注:(1)当围护结构由两种材料组成时,λ2应取较小值,λ1应取较大值,然后求得两者的比值。 (2)当围护结构由三种材料组成,或有两种厚度不同的空气间层时,φ值可按比值 /λ1确定。 (3)当围护结构中存在圆孔时,应先将圆孔折算成同面积的方孔,然后再按上述规定计算。 4.围护结构总热阻应按下式计算: Ro=Ri+R+Re(1.4) 式中Ro——围护结构总热阻,㎡·K/W; Ri——内表面换热阻,㎡·K/W;按本附录附表1.2采用; Re——外表面换热阻,㎡·K/W,按本附录附表1.3采用; r——围护结构热阻,㎡·K/W。 内表面换热系数αi及内表面换热阻Ri值附表1.2

对流传热实验实验报告

实验三 对流传热实验 一、实验目的 1.掌握套管对流传热系数i α的测定方法,加深对其概念和影响因素的理解,应用线性回归法,确定关联式4.0Pr Re m A Nu =中常数A 、m 的值; 2.掌握对流传热系数i α随雷诺准数的变化规律; 3.掌握列管传热系数Ko 的测定方法。 二、实验原理 ㈠ 套管换热器传热系数及其准数关联式的测定 ⒈ 对流传热系数i α的测定 在该传热实验中,冷水走内管,热水走外管。 对流传热系数i α可以根据牛顿冷却定律,用实验来测定 i i i S t Q ??= α (1) 式中:i α—管内流体对流传热系数,W/(m 2?℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2; t ?—内壁面与流体间的温差,℃。 t ?由下式确定: 2 2 1t t T t w +- =? (2) 式中:t 1,t 2 —冷流体的入口、出口温度,℃; T w —壁面平均温度,℃; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。 管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ; L i —传热管测量段的实际长度,m 。

由热量衡算式: )(12t t Cp W Q m m i -= (4) 其中质量流量由下式求得: 3600 m m m V W ρ= (5) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃); m ρ—冷流体的密度,kg /m 3。 m Cp 和m ρ可根据定性温度t m 查得,2 2 1t t t m +=为冷流体进出口平均温度。t 1,t 2, T w , m V 可采取一定的测量手段得到。 ⒉ 对流传热系数准数关联式的实验确定 流体在管内作强制湍流,被加热状态,准数关联式的形式为 n m A Nu Pr Re =. (6) 其中: i i i d Nu λα= , m m i m d u μρ=Re , m m m Cp λμ=Pr 物性数据m λ、m Cp 、m ρ、m μ可根据定性温度t m 查得。经过计算可知,对于管内被加热的空气,普兰特准数Pr 变化不大,可以认为是常数,则关联式的形式简化为: 4.0Pr Re m A Nu = (7) 这样通过实验确定不同流量下的Re 与Nu ,然后用线性回归方法确定A 和m 的值。 ㈡ 列管换热器传热系数的测定 管壳式换热器又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。壳体多为圆筒形,

散热器热工性能实验报告 (1)

实验二 散热器性能实验 班级: 姓名: 学号: 一、实验目的 1、通过实验了解散热器热工性能测定方法及低温水散热器热工实验装置的结构。 2、测定散热器的散热量Q ,计算分析散热器的散热量与热媒流量G 和温差T 的关系。 二、 实验装置 1.水位指示管 2.左散热器 3. 左转子流量计 4. 水泵开关及加热开关组 5. 温度压差巡检仪 6.温度控制仪表 7. 右转子流量计 8. 上水调节阀 9.右散热器 10. 压差传感器 11.温度测点T1、T2、T3、T4 图1散热器性能实验装置示意图 三、实验原理 本实验的实验原理是在稳定的条件下测定出散热器的散热量: Q=GC P (t g -t h ) [kJ/h] 式中:G ——热媒流量, kg/h ; C P ——水的比热, kJ/Kg.℃; t g 、t h ——供回水温度, ℃。 散热片共两组:一组散热面积为:1m 2 二组散热面积为:0.975 m 2 上式计算所得散热量除以3.6即可换算成[W]。 低位水箱内的水由循环水泵打入高位水箱,被电加热器加热,并由温控器控制其温度在某一固定温度波动范围,由管道通过转子流量计流入散热器中,经其传热将一部分热量散入房间,降低温度后的回水流入低位水箱。流量计计量出流经每个散热器在温度为t g 时的体积流量。循环泵打入高位水箱的水量大于散热器回路所需的流量时,多余的水量经溢流管流回低位水箱。

四、实验步骤 1、测量散热器面积。 2、系统充水,注意充水的同时要排除系统内的空气。 3、打开总开关,启动循环水泵,使水正常循环。 4、将温控器调到所需温度(热媒温度)。打开电加热器开关,加热系统循环水。 5、根据散热量的大小调节每个流量计入口处的阀门,使之流量、温差达到一个相对稳定的值,如不稳定则须找出原因,系统内有气应及时排除,否则实验结果不准确。 6、系统稳定后进行记录并开始测定: 当确认散热器供、回水温度和流量基本稳定后,即可进行测定。散热器供回水温度 t g 与t h 及室内温度t均采用pt100.1热电阻作传感器,配数显巡检测试仪直接测量, 流量用转子流量计测量。温度和流量均为每10分钟测读一次。 G t =L/1000=L·10-3 m3/h 式中:L——转子流量计读值; l/h; G t ——温度为t g 时水的体积流量;m3/h G=G t ·ρ t (kg/h) 式中:G——热媒流量,(kg/h); ρt——温度为t g时的水的密度,(kg/ m3)。 7、改变工况进行实验: a、改变供回水温度,保持水量不变。 b、改变流量,保持散热器平均温度不变。 即保持 2h g p t t t + =恒定8、求散热器的传热系数K 根据Q=KA(t p -t ) 其中:Q——为散热器的散热量,W K——散热器的传热系数,W/m2.℃ A ——散热器的面积,一种为0.975 m2,另一种为1 m2 t p ——供回水平均温度,℃ t ——室内温度,℃ 9、实验测定完毕: a、关闭电加热器; b、停止运行循环水泵; c、检查水、电等有无异常现象,整理测试仪器。 五、注意事项 1、测温点应加入少量机油,以保持温度稳定; 2、上水箱内的电热管应淹没在水面下时,才能打开,本实验台有自控装置;但亦应经常检查。

热工计算汇总

11.热工计算 11.1.计算引用的规范、标准及资料 《建筑幕墙》 GB/T21086-2007 《民用建筑热工设计规范》 GB50176-93 《公共建筑节能设计标准》 GB50189-2005 《民用建筑节能设计标准(采暖居住建筑部分)》 JGJ26-95 《夏热冬暖地区居住建筑节能设计标准》 JGJ75-20031 《居住建筑节能设计标准意见稿》 [建标2006-46号] 《建筑门窗玻璃幕墙热工计算规程意见稿》 [建标2004-66号] 《建筑玻璃应用技术规程》 JGJ113-2003 《玻璃幕墙光学性能》 GB/T18091-2000 《建筑玻璃可见光、透射比等以及有关窗玻璃参数的测定》 GB/T2680-94 11.2.计算中采用的部分条件参数及规定 11.2.1.计算所采纳的部分参数 按《建筑门窗玻璃幕墙热工计算规程意见稿》采用 11.2.1.1.各种情况下都应选用下列光谱: S(λ):标准太阳辐射光谱函数(ISO 9845-1); D(λ):标准光源光谱函数(CIE D65,ISO 10526); R(λ):视见函数(ISO/CIE 10527); 11.2.1.2.冬季计算标准条件应为: 室内环境计算温度:T in =20℃; 室外环境计算温度:T out =0℃; 内表面对流换热系数:h c =3.6W/(m2·K); 外表面对流换热系数:h e =23W/(m2·K); 室外平均辐射温度:T rm =T out 太阳辐射照度:I s =300W/m2;

11.2.1.3.夏季计算标准条件应为: 室内环境温度:T in =25℃; 室外环境温度:T out =30℃; 内表面对流换热系数:h c =2.5W/(m2·K); 外表面对流换热系数:h e =19W/(m2·K); 室外平均辐射温度:T rm =T out ; 太阳辐射照度:I s =500W/m2; 11.2.1.4.计算传热系数应采用冬季计算标准条件,并取I s =0W/m2; 11.2.1.5.计算遮阳系数、太阳能总透射比应采用夏季计算标准条件,并取T out =25℃; 11.2.1.6.抗结露性能计算的标准边界条件应为: 室内环境温度:T in =20℃; 室外环境温度:T out =-10℃或T out =-20℃ 室内相对湿度:RH=30%或RH=50%或RH=70%; 室外风速:V=4m/s; 11.2.1.7.计算框的太阳能总透射比g f 应使用下列边界条件: q in =α·I s q in :通过框传向室内的净热流(W/m2); α:框表面太阳辐射吸收系数; I s :太阳辐射照度=500W/m2; 11.2.2.最新规范《公共建筑节能设计标准》的部分规定11.2.2.1.结构所在的建筑气候分区应该按下面表格取用:

2016热工过程控制实验报告——姜栽沙

热工过程控制工程 实验报告 专业班级:新能源1402班 学生姓名:姜栽沙 学号:1004140220 中南大学能源学院 2017年1月

实验一热工过程控制系统认识与MCGS应用 组号______ 同组成员李博、许克伟、成绩__________ 实验时间__________ 指导教师(签名)___________ 一、实验目的 通过实验了解几种控制系统(基于智能仪表、基于计算机)的组成、工作原理、控制过程特点;了解计算机与智能仪表的通讯方式。了解组态软件的功能和特点,熟悉MCGS组态软件实现自动控制系统的整个过程。掌握MCGS组态软件提供的一些基本功能,如基本画面图素的绘制、动画连接的使用、控制程序的编写、构造实时数据库。 二、实验装置 1、计算机一台 2、MCGS组态软件一套 3、对象:SK-1-9型管状电阻炉一台;测温热电偶一支(K型)。 4、AI818/宇电519/LU-906K智能调节仪组成的温控器一台。 5、THKGK-1型过程控制实验装置(含智能仪表、PLC、变频器、控制阀)一套 6、CST4001-6H电阻炉检定炉(含电阻炉、温度控制器、测温元件、接口)一套 7、电阻炉温度控制系统接线图和方框图如图1-1、1-2所示。 三、实验内容 1、电阻炉温度控制系统(液位、流量、压力) 被控过程: 电阻炉被控变量: 电阻炉温度 操纵变量: 电阻炉的功率主要扰动:环境温度变化,电压值,电流值2、带检测控制点的流程图 3、控制系统方框图

4、控制系统中所用的仪表名称、型号(检测仪表、控制器、执行器、显示仪表)。 检测仪表:CST4001-6H电阻炉检定炉 控制器:AI818/宇电519/LU-906K智能调节仪组成的温控器 执行器:THKGK-1型过程控制实验装置(含智能仪表、PLC、变频器、控制阀) 显示仪表:计算机 5、智能仪表与计算机是怎样进行通讯?有哪几种方式? 智能仪表与计算机通讯一般有三种方式,分别为USB接口,485接口,232接口,通过这些接口进行信号传输,计算机得以对仪表进行温控。 6、什么是组态软件? 组态软件是指对系统的各种资源进行配置,达到系统按照预定设置,自动执行特定任务,满足使用者要求的目的的应用软件。 四、MCGS组态界面 提供电阻炉温度控制系统一套完整组态界面图(共6个图),包括主界面、运行界面、设备工况、存盘数据、实时曲线、历史数据。

相关文档
相关文档 最新文档