文档库 最新最全的文档下载
当前位置:文档库 › 用高斯列主消元法解线性方程组

用高斯列主消元法解线性方程组

用高斯列主消元法解线性方程组
用高斯列主消元法解线性方程组

yyyyyyyyyyyy 学院

课程设计任务书

yyyyyyyy 学院 yyyyyyyyy 专业 yyyyyyyy 班 学号yyyyyyyyyyyy

一、课程设计题目:用高斯列主消元法解线性方程组

二、课程设计工作自2008年3月3日起至2008年3月7日止 三、课程设计内容:

用C 语言编写软件完成以下任务:

请用高斯列主消元法解下列线性方程组:

?????=++=++=++5

33674355223

2

1

321321x x x x x x x x x

四、课程设计要求:

程序质量:

1. 贯彻结构化程序设计思想。

2. 用户界面友好,功能明确,操作方便;可以加以其它功能或修饰。

3. 用户界面中的菜单至少应包括“输入数据”、“开始计算”、“退出”3项。

4.

代码应适当缩进,并给出必要的注释,以增强程序的可读性。

课程设计说明书:

课程结束后,上交课程设计说明书(打印稿和电子稿),其内容如下: ● 封面

● 课程设计任务书 ● 目录

● 需求分析(分析题目的要求)

● 程序流程图(总体流程图和主要功能模块流程图) ● 核心技术的实现说明及相应程序段 ● 个人总结 ● 参考资料

● 源程序及适当的注释

指导教师:____________________

学生签名:____________________

目录

一、需求分析 (1)

二、程序流程图 (2)

三、核心技术的实现说明及相应程序段 (5)

四、个人总结 (7)

五、参考文献 (7)

六、源程序 (8)

(a)一、需求分析

整个程序的设计是基于线形代数中的初等行变换理论而设计的。该程序的主函数分别调用了交换行的矩函数、比校系数大小的函数、消元和实现菜单选择的函数,并通过这几部分来解出题中的方程组。

利用两个调用函数------换行函数、选取最大主元的函数来分别解决关键步骤,再利用循环分别进行消元步骤及换行步骤从而解决了利用高斯列主元消元法解线形方程组这一课题。

(b)二、程序流程图图一程序整体结构图

图二程序总体结构图

图三交换行的矩函数及比较系数大小的函数

(c)三、核心技术的实现说明及相应程序段

1、比较系数大小

此过程可判断方程组的性质从而选取最大组元函数,准备把主元最大的那一行换到第一行去。

float max(int k) /*选取最大主元的函数*/

{

int i;

float t=0;

for(i=k;i<=n;i++)

if(fabs(A[i][k])>t)

{

t=fabs(A[i][k]);

f=i;

}

return t;

}

2、交换行的矩函数

通过此模块,可以完成初等行变换这个重要步骤,让第一行的系数变成最大值。

exchange(int r,int k) /*换行函数*/

{

int i;

for(i=1;i<=n+1;i++)

A[0][i]=A[r][i];

for(i=1;i<=n+1;i++)

A[r][i]=A[k][i];

for(i=1;i<=n+1;i++)

A[k][i]=A[0][i];

}

3、进行消元

消元过程是高斯列主消元法的关键环节同时也是线性代数解题的主要方法,用此步骤求出消元后的方程组系数从而求出消元后的方程。

for(i=k+1;i<=n;i++) /*进行消元*/

for(j=k+1;j<=n+1;j++)

A[i][j]=A[i][j]-A[k][j]*A[i][k]/A[k][k];

4、由于x[n]前只有一个系数所以只需要把第n行的结果除以x[n]的系数便可,其他结果用S代入此行中从而求出其他结果。

x[n]=A[n][n+1]/A[n][n]; /*回代求解*/

for( k=n-1;k>=1;k--)

{

float s=0;

for(j=k+1;j<=n;j++)

{

s=s+A[k][j]*x[j];

}

x[k]=(A[k][n+1]-s)/A[k][k];

}

(d)四、个人总结

我在中学阶段,稍微了解几个计算机软件的应用,但都不够全面。通过这次课程设计,我学到了很多,并且对C 语言这门学科有了更新的认识。虽然在这次课程设计中我遇到了各种各样的问题,为了解决每一个问题,自己都要认真思考,仔细推敲,还要查看书籍资料,请教同学老师。在老师和同学的热心帮助下,这些困难逐渐被排除了。

课程设计虽然辛苦但我在学习方面有迈进了一大步,这使我在C语言的学习反面增加了很大的信心。非常感激老师和同学们对我热心的帮助,也希望我努力的结果能同样另老师满意。

(e)五、参考文献

1 谭浩强.C程序设计.北京:清华大学出版社,2005

2 刘成等.C语言程序设计实验指导与习题集.北京:中国铁道出版社,2006

(f)六、源程序

#include

#include

#include

#include

#define N 10

float A[N][N+1] ,R;

int f,n;

exchange(int r,int k);

float max(int k);

main()

{

float x[N];

int r,k,i,j;

printf("************************************************** *****************\n");

printf("欢迎来到线性代数的世界\n");

printf("************************************************** *****************\n");

printf("\n\n请输入方程组的维数:n=");

scanf("%d",&n);

printf(" \n\n请输入方程组系数:\n");

for(i=1;i<=n;i++)

for(j=1;j<=n+1;j++) /*将刚才输入的数存入数组*/

scanf("%f",&A[i][j]);

for(k=1;k<=n-1;k++)

{

R=max(k);

if(R==0)

{

printf("\n\n对不起此方程组不合法!");

}

else if(f!=k)

exchange(f,k);

for(i=k+1;i<=n;i++) /*进行消元*/

for(j=k+1;j<=n+1;j++)

A[i][j]=A[i][j]-A[k][j]*A[i][k]/A[k][k];

}

x[n]=A[n][n+1]/A[n][n]; /*回代求解*/

for( k=n-1;k>=1;k--)

{

float s=0;

for(j=k+1;j<=n;j++)

{

s=s+A[k][j]*x[j];

}

x[k]=(A[k][n+1]-s)/A[k][k];

}

for(i=1;i<=n;i++)

{

printf(" \n\nx[%d]=%f",i,x[i]);

}

}

exchange(int r,int k) /*换行函数*/

{

int i;

for(i=1;i<=n+1;i++)

A[0][i]=A[r][i];

for(i=1;i<=n+1;i++)

A[r][i]=A[k][i];

for(i=1;i<=n+1;i++)

A[k][i]=A[0][i];

}

float max(int k) /*选取最大主元的函数*/ {

int i;

float t=0;

for(i=k;i<=n;i++)

if(fabs(A[i][k])>t)

{

t=fabs(A[i][k]);

f=i;

}

return t;

}

数值分析列主元消去法的实验报告

实验一 列主元消去法 【实验内容】 1.掌握列主元消去法的基本思路和迭代步骤 2.并能够利用列主元的高斯消去法解任意阶数的线性方程组; 3、从课后题中选一题进行验证,得出正确结果,交回实验报告与计算结果。 【实验方法与步骤】 1.列主元消去法基本思路 设有线性方程组Ax b =,设A 是可逆矩阵。列主元消去法的基本思想就是通过列主元的选取将初等行变换作用于方程组的增广矩阵[]|B A b =,将其中的A 变换成一个上三角矩阵,然后求解这个三角形方程组。 2.列主元高斯消去法算法描述 将方程组用增广矩阵[]()(1)|ij n n B A b a ?+==表示。 步骤1:消元过程,对1,2,,1k n =-L (1) 选主元,找{},1,,k i k k n ∈+L 使得 ,max k i k ik k i n a a ≤≤= (2) 如果,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3); (3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ?, ,,1j k n =+L ; (4) 消元,对,,i k n =L ,计算/,ik ik kk l a a =对1,,1j k n =++L ,计算 .ij ij ik kj a a l a =- 步骤 2:回代过程: (1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2); (2) ,1/;n n n nn x a a +=对1,,2,1i n =-L ,计算 ,11/n i i n ij j ii j i x a a x a +=+??=- ??? ∑

[实验程序] #include #include #include #include #define NUMBER 20 #define Esc 0x1b #define Enter 0x0d using namespace std; float A[NUMBER][NUMBER+1] ,ark; int flag,n; void exchange(int r,int k); float max(int k); void message(); void main() { float x[NUMBER]; int r,k,i,j; char celect; void clrscr(); printf("\n\nUse Gauss."); printf("\n\n1.Jie please press Enter."); printf("\n\n2.Exit press Esc."); celect=getch(); if(celect==Esc) exit(0); printf("\n\n input n="); scanf("%d",&n); printf(" \n\nInput matrix A and B:"); for(i=1;i<=n;i++) { printf("\n\nInput a%d1--a%d%d and b%d:",i,i,n,i); for(j=1;j<=n+1;j++) scanf("%f",&A[i][j]); } for(k=1;k<=n-1;k++) { ark=max(k); if(ark==0) { printf("\n\nIt’s wrong!");message();

高斯列主元消元法解线性方程组

高斯列主元消元法解线性方程组 一、题目:用Gauss 列主元消去法解线性方程组Ax b =,其中, A=17.031 -0.615 -2.991 1.007 -1.006 0.000-1.000 34.211 -1.000 -2.100 0.300 -1.7000.000 0.500 13.000 -0.500 1.000 -1.5004.501 3.110 -3.907 -61.705 12.170 8.9990.101 -8.012 -0.017 -0.910 4.918 0.1001.000 2.000 3.000 4.500 5.000 21.803?? ? ? ? ? ? ? ? ??? 0.230 -52.322 54.000 240.236 29.304 -117.818b ?? ? ? ?= ? ? ? ? ??? T X=(0.907099 -1.961798 3.293738 -4.500708 3.029344 -5.255068) 二、原理及步骤分析 设 n n ij R a A ?∈=][)1(,n n R b b b b ∈=],,,[)1()2(2)1(1 。若约化主元素 ),,2,1(0)(n k a k kk =≠,则通过高斯消元法将方程b AX =约化为三角形方程组求解。 如果在消元过程中发现某个约化主元0) (=k kk a , 则第K 次消元就无法进行。此外,即 使所有约化主元全不为零,虽然可以完成方程组的求解,但也无法保证结果的可靠性,因为计算过程中存在舍入误差。 为减少计算过程中的舍入误差对解的影响,在每次消元前,应先选择绝对值尽可能大的元作为约元的主元,如果在子块的第一列中选取主元,则相应方法称为列主元消元法。相应过程为: (1)选主元:在子块的第一列中选择一个元) (k k i k a 使) (max k ik n i k k k i a a k ≤≤= 并将第k 行元与第k i 行元互换。 (2)消元计算:对k=1,2,……n-1依次计算 ()()()?? ?? ?????++=-=++=-=++==++n k k i b m b b n k k j i a m a a n k k i a a m k k ik k i k i k kj ik k ij k ij k kk k ik k ik ,,2,1,,2,1,,,2,1) ()()1() ()()1()() ()( (3)回代求解

利用高斯列主元消去法求如下线性方程组的解

%利用高斯列主元消去法求如下线性方程组的解 clear all; A=[3 -2 1 -1;4 0 -1 2;0 0 2 3;0 0 0 5]; b=[8;-3;11;15]; function [X,XA] = UpGaussFun(A,b) %利用高斯列主元消去法求如下线性方程组的解 %A为一个n阶上三角非奇异矩阵 %b为线性方程组的阐述向量 %X为线性方程组AX=b的解 %XA为消元后的系数矩阵 N=size(A); n=N(1); index=0; for i=1:(n-1) me=max(abs(A(1:n,i)));%选列主元 for k=i:n if(abs(A(k,i))==me) index=k; break; end; end; end; temp=A(i,1:n); A(i,1:n)=A(index,1:n); A(index,1:n)=temp; bb=b(index); b(index)=b(i); b(i)=bb;%交换主行 for j=(i+1):n if(a(i,i)==0) disp('?????a???a0£?'); return; end; l=A(j,i); m=A(i,i); A(j,1:n)=A(j,1:n)-l*A(i,1:n)/m; b(j)=b(j)-l*b(i)/m;

end; X=UpTriangleFun(A,b); XA=A; ----------------------------------------------------------------------------------------------------------------------------- % 函数定义 function [X,XA]= UpGaussFun(A,b) %利用高斯列主元消去法求如下线性方程组的解 %A为一个n阶上三角非奇异矩阵 %b为线性方程组的阐述向量 %X为线性方程组AX=b的解 %XA为消元后的系数矩阵 [N,M]=size(A); %N=sizes(A); n=N; index=0; for i=1:(n-1) me=max(abs(A(1:n,i))); %选列主元 for k=i:n if(abs(A(k,i))==me) index=k; break; end; end; temp=A(i,1:n); A(i,1:n)=A(index,1:n); A(index,1:n)=temp; bb=b(index); b(index)=b(i); b(i)=bb; %交换主行 for j=(i+1):n if(A(i,i)==0) disp('?????a???a0£?'); return; end; l=A(j,i); m=A(i,i); A(j,1:n)=A(j,1:n)-l*A(i,1:n)/m; b(j)=b(j)-l*b(i)/m; end; end;

列主元消去法

实验一 列主元消去法 【实验内容】1. 掌握列主元消去法的基本思路和迭代步骤 2. 并能够利用列主元的高斯消去法解任意阶数的线性方程组; 【实验方法与步骤】列主元消去法编写程序 1.列主元消去法基本思路 设有线性方程组Ax b =,设A 是可逆矩阵。列主元消去法的基本思想就是通过列主元的选取将初等行变换作用于方程组的增广矩阵[]|B A b =,将其中的A 变换成一个上三角矩阵,然后求解这个三角形方程组。 2.列主元高斯消去法算法描述 将方程组用增广矩阵[]()(1)|ij n n B A b a ?+==表示。 步骤1:消元过程,对1,2,,1k n =- (1) 选主元,找{},1,,k i k k n ∈+ 使得 ,max k i k ik k i n a a ≤≤= (2) 如果,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3); (3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ?, ,,1j k n =+ ; (4) 消元,对,,i k n = ,计算/,ik ik kk l a a =对1,,1j k n =++ ,计算 .ij ij ik kj a a l a =- 步骤 2:回代过程: (1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2); (2) ,1/;n n n nn x a a +=对1,,2,1i n =- ,计算 ,11/n i i n ij j ii j i x a a x a +=+??=- ??? ∑ 习题3第一题程序如下

#include #include #define N 3 int I; float max_value(float a[N][N+1],int n,int k) { float max; int i; max=a[k][k]; for(i=k+1;i

实验三高斯列主元消去法

实验三 高斯列主元消去法 一、实验目的: 1、掌握高斯消去法的基本思路和迭代步骤。 2、 培养编程与上机调试能力。 二、高斯列主元消去法的基本思路与计算步骤: 设有方程组Ax b =,设A 是可逆矩阵。高斯消去法的基本思想就是僵局真的初等行变换作用于方程组的增广矩阵[]B A b = ,将其中的A 变换成一个上三角矩阵,然后求解这个三角形方程组。 列主元高斯消去法计算步骤: 将方程组用增广矩阵[]()(1)ij n n B A b a ?+== 表示。 步骤1:消元过程,对1,2,,1k n =- (1) 选主元,找{},1,,k i k k n ∈+ 使得 ,max k i k ik k i n a a ≤≤= (2) 如果 ,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3)。 (3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ?,,,1j k n =+ 。 (4) 消元,对,,i k n = ,计算/,ik ik kk l a a =对1,,1j k n =++ ,计算 . ij ij ik kj a a l a =- 步骤 2:回代过程: (1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2)。 (2) ,1/;n n n nn x a a +=对1,,2,1i n =- ,计算,11/n i i n ij j ii j i x a a x a +=+??=- ???∑ 三:程序流程图

四:程序清单: function X=uptrbk(A,b) % A是一个n阶矩阵。 % b是一个n维向量。 % X是线性方程组AX=b的解。 [N N]=size(A); X=zeros(1,N+1); Aug=[A b]; for p=1:N-1 [Y,j]=max(abs(Aug(p:N,p)));%返回向量的最大值存入y,最大值的序号存入j。 C=Aug(p,:); Aug(p,:)=Aug(j+p-1,:); Aug(j+p-1,:)=C; if Aug(p,p)==0 'A是奇异阵,方程无惟一解' break end for k=p+1:N m=Aug(k,p)/Aug(p,p); Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1); end end % 这里用到程序函数backsub来进行回代。 X=backsub(Aug(1:N,1:N),Aug(1:N,N+1)); function X=backsub(A,b) % A是一个n阶上三角非奇异阵。 % b是一个n维向量。 % X是线性方程组AX=b的解。 n=length(b);%取b向量的个数。 X=zeros(n,1); X(n)=b(n)/A(n,n); for k=n-1:-1:1 X(k)=(b(k)-A(k,k+1:n)*X(k+1:n))/A(k,k); End 五、测试数据与结果: 测试数据:(第8章习题三第2题)求解线性方程组: 解:建立一个主程序gs.m clc clear A=[1,2,3;5,4,10;3,-0.1,1]; b=[1;0;2];

Gauss列主元消去法程序设计

《Gauss列主元消去法》实验报告 实验名称:Gauss列主元消去法程序设计???成绩:_________ 专业班级:数学与应用数学1202班?姓名:王晓阳???学号: 实?验?日?期:?2014?年11月10日 实验报告日期:?2014年?11月10日 一.实验目的 1. 学习Gauss消去法的基本思路和迭代步骤. 2. 学会运用matlab编写高斯消去法和列主元消去法程序,求解线性方程组. 3. 当绝对值较小时,采用高斯列主元消去法? 4. 培养编程与上机调试能力. 二、实验内容 用消去法解线性方程组的基本思想是用逐次消去未知数的方法把原线性方程组Ax二b 化为与其等价的三角形线性方程组,而求解三角形线性方程组可用回代的方法求解 1. 求解一般线性方程组的高斯消去法? (1) 消元过程: 设a kk k-0 ,第i个方程减去第k个方程的m ik Tk k倍,("k 1^1, n),得到 A k1x=b k1.

经过n-1次消元,可把方程组A1^b1化为上三角方程组A n x=b n. ⑵回代过程: 以解如下线性方程组为例测试结果 2. 列主元消去法 由高斯消去法可知,在消元过程中可能出现a kk k =0的情况,这是消去法将无法进行, 即使主元素a kk k-0但很小时,用其作除数,会导致其他元素数量级的严重增长和舍入误差的扩散,最后也使得计算解不可靠.这时就需要选取主元素,假定线性方程组的系数矩阵A是菲奇异的. (1)消元过程: 对于k =1,2,川,n -1,进行如下步骤: 1) 按列选主元,记 2) 交换增广阵A的p,k两行的元素 A(k,j)=A(p,j) ( j=k,…,n +1) 3) 交换常数项b的p,k两行的元素。 b(k)=b(p) 4) 计算消元 (2) 回代过程 (3) 以解如下线性方程组为例测试结果 三、实验环境 MATLAB R2014a 四、实验步骤

高斯法和列主元高斯消去法解线性方程组(MATLAB版)

clear;clc; %Gauss消去法解线性方程组 A=[3 -5 6 4 -2 -3 8; 1 1 -9 15 1 -9 2; 2 -1 7 5 -1 6 11; -1 1 3 2 7 -1 -2; 4 3 1 -7 2 1 1; 2 9 -8 11 -1 -4 -1; 7 2 -1 2 7 -1 9];%系数矩阵 b=[11 2 29 9 5 8 25]';%n维向量 y=inv(A)*b %matlab的计算结果 n=length(b);%方程个数n x=zeros(n,1);%未知向量 %-------------消去----------- for k=1:n-1 % if A(k,k)==0; % error('Error'); % end for i=k+1:n % A(i,k)=A(i,k)/A(k,k); Aik=A(i,k)/A(k,k) for j=k:n A(i,j)=A(i,j)-Aik*A(k,j); end A b(i)=b(i)-Aik*b(k) end end %-------------回代----------- x(n)=b(n)/A(n,n) for k=n-1:-1:1 S=b(k); for j=k+1:n S=S-A(k,j)*x(j); end x(k)=S/A(k,k) end x %程序的计算结果 error=abs(x-ones(n,1))%误差 clear;clc;

%列主元Gauss校区法解线性方程组 A=[3 -5 6 4 -2 -3 8; 1 1 -9 15 1 -9 2; 2 -1 7 5 -1 6 11; -1 1 3 2 7 -1 -2; 4 3 1 -7 2 1 1; 2 9 -8 11 -1 -4 -1; 7 2 -1 2 7 -1 9];%系数矩阵 b=[11 2 29 9 5 8 25]';%n维向量 y=inv(A)*b %matlab的计算结果 n=length(b);%方程个数n x=zeros(n,1);%未知向量 %-------------消去----------- for k=1:n-1 Auk=A(k:n,k); [m,u]=max(abs(Auk)); u=u+k-1 %u为最大元所在的列 %------交换最大的行和当前行的值------- for j=k:n temp=A(u,j);A(u,j)=A(k,j);A(k,j)=temp; end temp=b(k);b(k)=b(u);b(u)=temp; % if A(k,k)==0; % error('Error'); % end for i=k+1:n % A(i,k)=A(i,k)/A(k,k); Aik=A(i,k)/A(k,k) for j=k:n A(i,j)=A(i,j)-Aik*A(k,j); end A b(i)=b(i)-Aik*b(k) end end %-------------回代----------- x(n)=b(n)/A(n,n) for k=n-1:-1:1 S=b(k); for j=k+1:n S=S-A(k,j)*x(j);

列主元高斯消去法和列主元三角分解法解线性方程

计算方法实验报告1 【课题名称】 用列主元高斯消去法和列主元三角分解法解线性方程 【目的和意义】 高斯消去法是一个古老的求解线性方程组的方法,但由它改进得到的选主元的高斯消去法则是目前计算机上常用的解低阶稠密矩阵方程组的有效方法。 用高斯消去法解线性方程组的基本思想时用矩阵行的初等变换将系数矩阵A 约化为具有简单形式的矩阵(上三角矩阵、单位矩阵等),而三角形方程组则可以直接回带求解 用高斯消去法解线性方程组b Ax =(其中A ∈Rn ×n )的计算量为:乘除法运算步骤为 32(1)(1)(21)(1)(1)262233n n n n n n n n n n n MD n ----+= +++=+-,加减运算步骤为 (1)(21)(1)(1)(1)(25) 6226n n n n n n n n n n AS -----+= ++= 。相比之下,传统的克莱姆 法则则较为繁琐,如求解20阶线性方程组,克莱姆法则大约要19 510?次乘法,而用高斯消去法只需要3060次乘除法。 在高斯消去法运算的过程中,如果出现abs(A(i,i))等于零或过小的情况,则会导致矩阵元素数量级严重增长和舍入误差的扩散,使得最后的计算结果不可靠,所以目前计算机上常用的解低阶稠密矩阵方程的快速有效的方法时列主元高斯消去法,从而使计算结果更加精确。 2、列主元三角分解法 高斯消去法的消去过程,实质上是将A 分解为两个三角矩阵的乘积A=LU ,并求解Ly=b 的过程。回带过程就是求解上三角方程组Ux=y 。所以在实际的运算中,矩阵L 和U 可以直接计算出,而不需要任何中间步骤,从而在计算过程中将高斯消去法的步骤进行了进一步的简略,大大提高了运算速度,这就是三角分解法 采用选主元的方式与列主元高斯消去法一样,也是为了避免除数过小,从而保证了计算的精确度 【计算公式】 1、 列主元高斯消去法 设有线性方程组Ax=b ,其中设A 为非奇异矩阵。方程组的增广矩阵为 第1步(k=1):首先在A 的第一列中选取绝对值最大的元素 1 l a ,作为第一步的主元素: 111211212222112[,]n n n l n nn n a a a a b a a a b a a a b ?????? ?? =?????? ?? ????a b

消元法解线性方程组

消元法解线性方程组 学校:青海师范大学 院系:数学系 专业:数学与应用数学 班级:10B 指导教师:邓红梅 学号:20101611218 姓名:梅增旺

摘要:线性方程组在数学的各个分支,在自然科学,工程技术,生产实际中经常遇到,而且未知元的个数及方程的个数可达成百上千,因此它的理论是很重要的,其应用也很广泛。本篇将就解线性方程组在此做一浅谈,以消元法为主要方法。消元法是解一般线性方程组行之有效的方法,早在中学大家都已经有接触,消元法的基本思想是通消元变形把方程组化成容易求解的同解方程组进行求解。 关键字:线性方程组消元法求解 Abstract: linear equations in various branches of mathematics, natural science,engineering technology, often encountered in actual production, and the unknown element number and the number of equations can be hundreds, so itis important in the theory, its application is very extensive. This article on thesolution of linear equations based on a discussion, mainly by means ofelimination method. Elimination method is the general linear equations ofeffective early in high school, everyone has a contact, the basic idea ofelimination method is through the elimination of the equations of deformationinto easy to solve with the solution of equations. Keywords:elimination method for solving linear equations

MATLAB之GAUSS消元法解线性方程组

Matlab之Gauss消元法解线性方程组 1.Gauss消元法 function x=DelGauss(a,b) %Gauss消去法 [n,m]=size(a); nb=length(b); det=1;%存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k);%计算行列式 end det=det*a(n,n); for k=n:-1:1%回代求解 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k);

end Example: >>A=[1.0170-0.00920.0095;-0.00920.99030.0136;0.00950.0136 0.9898]; >>b=[101]'; >>x=DelGauss(A,b) x= 0.9739 -0.0047 1.0010 2.列主元Gauss消去法: function x=detGauss(a,b) %Gauss列主元消去法 [n,m]=size(a); nb=length(b); det=1;%存储行列式值 x=zeros(n,1); for k=1:n-1 amax=0;%选主元 for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k));r=i; end end if amax<1e-10 return;

高斯消元法 主元消去法

实验内容 1.编写用高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证. (1) 123 123 123 0.101 2.304 3.555 1.183 1.347 3.712 4.623 2.137 2.835 1.072 5.643 3.035 x x x x x x x x x ++= ? ? -++= ? ?-++= ? (2) 123 123 123 528 28321 361 x x x x x x x x x ++= ? ? +-= ? ?--= ? MATLAB计算源程序 1. 用高斯消元法解线性方程组b AX=的MATLAB程序 输入的量:系数矩阵A和常系数向量b; 输出的量:系数矩阵A和增广矩阵B的秩RA,RB, 方程组中未知量的个数n 和有关方程组解X及其解的信息. function [RA,RB,n,X]=gaus(A,b) B=[A b]; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n,所以此方程组有唯一解.') X=zeros(n,1); C=zeros(1,n+1); for p= 1:n-1 for k=p+1:n m= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1); end end b=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n); for q=n-1:-1:1 X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q); end else disp('请注意:因为RA=RB

列主元高斯消去法求逆矩阵

列主元高斯消去法求逆矩阵程序代码: #include #include #define Max 10 int n; double M[Max][Max]; double E[Max][Max]; bool FindMax(int t) //列主元素 { int i, j, k=t; double max = fabs(M[t][t]), temp; for (i = t+1 ;i < n; i++) if (max

M[i][j] = M[i][j] - M[t][j]*m; E[i][j] = E[i][j] - E[t][j]*m; } } } void HuiDai(int t) { int i,j; double max; max=M[t][t]; for(i=t;i=0;i--) { max=M[i][t]; M[i][t]=0; for(j=0;j

数值分析计算实习题列主元高斯消去法解线性方程组

数值分析计算实习题 第5章解线性方程组的直接方法 【选题 列主元高斯消去法解线性方程组。 书上的计算实习题1、2、3都要求用列主元高斯消去法解线性方程组,所以考虑写一个普适的程序来实现。 对于线性方程组Ax二b,程序允许用户从文件读入矩阵数据或直接在屏幕输入数据。 文件输入格式要求: (1)第一行为一个整数n (2<=n<=100),表示矩阵阶数。 (2)第2~n+l行为矩阵A各行列的值。 (3)第n+2~n+n+2行为矩阵b各行的值。 屏幕输入:按提示输入各个数据。 输出:A. b、det(A).列主元高斯消去计算过程、解向量X。

【算法说明】 设有线性方程组Ax=b,其中设A为非奇异矩阵。方程组的增广矩阵为 ?12 ?21 [Nb] = 第1步(k=l ):首先在A的第一列中选取绝对值最大的元素?I,作为第一步的主元素: ?|| H0 然后交换(A, b)的第1行与第I行元素,再进行消元计算。 设列主元素消去法已经完成第1步到第k?l步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组 A(k)x=b(k) 4? …4;) …唸) ? 忒 ? ? 輕 ■ [A.b]T[A ⑹,b")] = ??■ 咲■ ■ ■ ■ ■ * *■ 〃伏) ?? - % ■ 第k步计算如下: 对于 k=l, 2, ?…,0-1 (1)按列选主元:即确定t使 (2)如果tHk,则交换[A, b]第t行与第k行元素。(3)消元计算

5 4* J 叫=一鱼(=^ + 1,…,H) % 吗 <-?y + 〃如伽 (fJ = R + l,…/) b- <-勺+加汝仇, (i = /c + l,…,《) 消元乘数mik 满足: n (%-D 内) X1 < ------ -- ---- 9(j = ? 一 1,?一2■…J)tk M 1,(,=斤 +1, ???,?) fet e (4)回代求解

Gauss列主元消去法

贵州师范大学数学与计算机科学学院学生实验报告 课程名称: 数值分析 班级: 数本(一)班 实验日期: 年 月 日 学 号: 090704020098(81) 姓名: 吴胜 指导教师: 杨一都 实验成绩: 一、实验名称 实验五:线性方程组的数值解法 二、实验目的及要求 1. 让学生掌握用列主元gauss 消去法、超松弛迭代法求解线性方程组. 2. 培养Matlab 编程与上机调试能力. 三、实验环境 每人一台计算机,要求安装Windows XP 操作系统,Microsoft office2003、MATLAB6.5(或7.0). 四、实验内容 1. 编制逐次超松弛迭代(SOR 迭代)函数(子程序),并用于求解方程组 ????? ??=-++=+-+=++-=+++-1 4141 4144321 432143214321x x x x x x x x x x x x x x x x 取初始向量T x )1,1,1,1()0(=,迭代控制条件为 5 )1()(10 2 1||||--?≤ -k k x x 请绘制出迭代次数与松弛因子关系的函数曲线,给出最佳松弛因子.SOR 迭代 的收敛速度是否一定比Gauss-Seidel 迭代快? 2. 编制列主元 Gauss 消去法函数(子程序),并用于解 ??? ??=++-=-+-=+-6 15318153312321 321321x x x x x x x x x 要求输出方程组的解和消元后的增广矩阵. 注:题2必须写实验报告 五、算法描述及实验步骤 Gauss 消去法: 功能 解方程组b Ax = . 输入 n ,n n ij a A ?=)(,T n b b b b ),,,(21 =. 输出 方程组的解T n x x x x ),,,(21 =或失败信息.

Gauss列主元消去法、QR(MATLAB)

例:用Gauss 列主元消去法、QR 方法求解如下方程组: 12342212141 312.4201123230x x x x ?????? ? ? ?- ? ? ?= ? ? ?-- ? ? ??????? 1. 1)Gauss 列主元法源程序: function x=Gauss(A,b) [m,n]=size(A); if m~=n error('矩阵不是方阵') return end B=[A,b]; n=length(A); for j=1:n-1 q=[zeros(j-1,1);B(j:n,j)]; [c,r]=max(abs(q)); %c 为列主元,r 为所在行 if r~=j temp=B(j,:); %交换两行 B(j,:)=B(r,:); B(r,:)=temp; end for i=j+1:n B(i,:)=B(i,:)-B(j,:)*(B(i,j)/c); end end x(n)=B(n,n+1)/B(n,n); for i=n-1:-1:1 for j=i:n-1 B(i,n+1)=B(i,n+1)-B(i,j+1)*x(j+1); end x(i)=B(i,n+1)/B(i,i); end 2)在命令窗口输入A ,b,得到x 的近似解: >> A=[2,2,1,2;4,1,3,-1;-4,-2,0,1;2,3,2,3]; >> b=[1;2;1;0]; >> x=Gauss(A,b)

x = 1.5417 -2.7500 0.0833 1.6667 2. 1)QR方法源程序: function [Q,R,X]=qrfj(A,b) [m,n]=size(A); if m> A=[2,2,1,2;4,1,3,-1;-4,-2,0,1;2,3,2,3]; >> b=[1;2;1;0]; >> [Q,R,X]=qrfj(A,b) Q = 0.3162 0.3705 -0.0284 -0.8729 0.6325 -0.4940 0.5966 -0.0000

高斯列主元消去法

数值分析大作业 --――(高斯列主元消去法求解线性方程组) 课程名称:数值分析 授课老师:宋国乡 指导导师:丁振国 学生:王伟伟 学号:0425121523 日期:2004/11/20

高斯列主元消去法解线性方程组 一:问题的提出 我们都知道,高斯列主元素消去法是计算机上常用来求解线性方程组的一种直接的方法。就是在不考虑舍入误差的情况下,经过有限步的四则运算可以得到线性方程组的准确解的一类方法。实际运算的时候因为只能有限小数去计算,因此只能得到近似值。在实际运算的时候,我们很多时候也常用高斯消去法。但是高斯消去法在计算机中运算的时候常会碰到两个问题。 1.一旦遇到某个主元等于0,消元过程便无法进行下去。 2.在长期使用中还发现,即使消元过程能进行下去,但是当某个主元的绝对值很小时,求解出的结果与真实结果相差甚远。 为了避免高斯消去法消元过程中出现的上述两个问题,一般采用所谓的选择主元法。其中又可以分为列选主元和全面选主元两种方法。目前计算机上常用的按列选主元的方法。因此我在这里做的也是列选主元高斯消去法。 二、算法的基本思想 大家知道,如果一个线性方程组的系数矩阵是上三角矩阵时,即这种方程组我们称之为上三角方程组,它是很容易求解的。我们只要把方程组的最下面的一个方程求解出来,在把求得的解带入倒数第二个方程,求出第二个解,依次往上回代求解。然而,现实中大多数线性方程组都不是上面所说的上三角方程组,所以我们有可以把不是上三角的方程通过一定的算法化成上三角方程组,由此我们可以很方便地求出方程组的解。高斯消元法的目的就是把一般线性方程组简化成上三角方程组。于是高斯消元法的基本思想是:通过逐次消元将所给的线性方程

(完整版)解线性方程组的消元法及其应用

解线性方程组的消元法及其应用 (朱立平 曲小刚) ● 教学目标与要求 通过本节的学习,使学生熟练掌握一种求解方程组的比较简便且实用的方法—高斯消元法,并能够熟练应用消元法将矩阵化为阶梯形矩阵和求矩阵的逆矩阵. ● 教学重点与难点 教学重点:解线性方程组的高斯消元法,利用消元法求逆矩阵. 教学难点:高斯消元法,利用消元法求逆矩阵. ● 教学方法与建议 先向学生说明由于运算量的庞大,克莱姆法则在实际应用中是很麻烦的,然后通过解具体的方程组,让学生自己归纳出在解方程组的时候需要做的三种变换,从而引出解高阶方程组比较简便的一种方法—高斯消元法,其三种变换的实质就是对增广矩阵的初等行变换,最后介绍利用消元法可以将矩阵化为阶梯形矩阵以及求矩阵的逆。 ● 教学过程设计 1.问题的提出 由前面第二章的知识,我们知道当方程组的解唯一的时候,可以利用克莱姆法则求出方程组的解,但随着方程组阶数的增高,需要计算的行列式的阶数和个数也增多,从而运算量也越来越大,因此在实际求解中该方法是很麻烦的. 引例 解线性方程组 ??? ??=+-=+=++132724524321 21321x x x x x x x x )3()2()1( 解 (1)???→??)2()1(?????=+-=++=+13245247 232132121x x x x x x x x )3()2()1(????→?+-?+-?) 3()2()1()2()4()1(?????-=+-=+=+133524567232 3221x x x x x x )3()2()1(

????→?+-?)3()65 ()2(??????? =--=+=+76 724567233221x x x x x )3()2()1( 用回代的方法求出解即可. 问题:观察解此方程组的过程,我们总共作了三种变换:(1)交换方程次序,(2)以不等于零的数乘某个方程,(3)一个方程加上另一个方程的k 倍.那么对于高阶方程组来说,是否也可以考虑用此方法. 2.矩阵的初等变换 定义1 阶梯形矩阵是指每一非零行第一个非零元素前的零元素个数随行序数的增加而增加的矩阵. 定义2 下面的三种变换统称为矩阵的初等行变换: i. 互换矩阵的两行(例如第i 行与第j 行,记作j i r r ?), ii. 用数0≠k 乘矩阵的某行的所有元素(例如第i 行乘k ,记作i kr ), iii. 把矩阵某行的所有元素的k 倍加到另一行的对应元素上去(例如第j 行的k 倍加到第i 行上,记作j i kr r +). 同理可以定义矩阵的初等列变换. 定义 3 如果矩阵A 经过有限次初等变换变为矩阵B ,则称矩阵A 与B 等价,记作 A ~ B . 注:任意一个矩阵总可以经过初等变换化为阶梯形矩阵. 3. 高斯消元法 对于一般的n 阶线性方程组 ?????? ?=++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112 22221211 1212111 )()2()1(n (3.1) 若系数行列式0det ≠A ,即方程组有唯一解,则其消元过程如下: 第一步,设方程(1)中1x 的系数01≠l a 将方程)(l 与(1)对调,使对调后的第一个方程1x 的系数不为零.作)1(11 1 a a i i - ),3,2(n i Λ=,得到同解方程组 ?? ? ????=++=++=+++)1()1(2)1(2) 1(2 )1(22)1(22)0(1)0(12)0(121)0(11n n nn n n n n n b x a x a b x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛ (3.2) 第二步,设0) 1(22≠a ,保留第二个方程,消去它以下方程中的含2x 的项,得

相关文档
相关文档 最新文档