文档库 最新最全的文档下载
当前位置:文档库 › 第一讲 电磁感应中的电路与电荷量问题

第一讲 电磁感应中的电路与电荷量问题

第一讲电磁感应中的电路与电荷量问题

电磁感应往往与电路问题联系在一起,解决电磁感应中的电路问题只需要三步:

第一步:确定电源。切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,则该导体或回路就相

当于电源,利用求感应电动势的大小,利用右手定则或楞次定律判断电流方向。

如果在一个电路中切割磁感线的有几个部分但又相互联系,可等效成电源的串、并联。

第二步:分析电路结构(内、外电路及外电路的串并联关系),画等效电路图。

第三步:利用电路规律求解。主要应用欧姆定律及串并联电路的基本性质等列方程求解。

感应电动势大小的计算——法拉第电磁感应定律的应用。

1、折线或曲线导体在匀强磁场中垂直磁场切割磁感线平动,产生的感应电动势:E=BLvsinθ;

2、直导体在匀强磁场中绕固定轴垂直磁场转动时的感应电动势:;

3、圆盘在匀强磁场中转动时产生的感应电动势:;

4、线圈在磁场中转动时产生的感应电动势:(θ为S与B之间的夹角)。

2、电磁感应现象中的力学问题

(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:

①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向;

②求回路中电流强度;

③分析研究导体受力情况(包含安培力,用左手定则确定其方向);

④列动力学方程或平衡方程求解。

(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。

3、电磁感应中能量转化问题

导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:

①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;

②画出等效电路,求出回路中电阻消耗电功率表达式;

③分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。

4、电磁感应中图像问题

电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定。用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围。

另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断。

题型一等效电源、电路问题

例1:把总电阻为2R的均匀电阻丝焊接成一半径为a的圆环,水平固定在竖直向下,磁感应强度为B 的匀强磁场中,如图所示,一长度为2a,电阻等于R,粗细均匀的金属棒MN放在圆环上,它与圆环始终

保持良好的接触。当金属棒以恒定速度v向右移动经过环心O时,求:

(1)流过棒的电流的大小、方向及棒两端的电压U MN。

(2)在圆环和金属棒上消耗的总热功率。

变式练习:

1、如图所示,半径为r的金属圆盘在垂直于盘面的匀强磁场B中绕O轴以角速度ω沿逆时针方向匀速转

动,则通过电阻R的电流的大小和方向是(金属圆盘的电阻不计)()

A.由c到d,I=Br2ω/R B.由d到c,I=Br2ω/R

C.由c到d,I=Br2ω/(2R)D.由d到c,I=Br2ω/ (2R)

2、用均匀导线做成的正方形线框边长为0.2m,正方形的一半放在垂直纸面向里的匀强磁场中,如图所示。

当磁场以10 T/s的变化率增强时,线框中a、b两点间的电势差是是多少?

3、如图所示,在绝缘光滑水平面上,有一个边长为L的单砸正方形线框abcd,在外力的作用下以恒定的

速率v向右运动进入磁感应强度为B的有界匀强磁场区域.线框被全部拉入磁场的过程中线框平面保持与磁场方向垂直,线框的ab边始终平行于磁场的边界.已知线框的四个边的电阻值相等,均为R.求:

(1)在ab边刚进入磁场区域时,线框内的电流大小;

(2)在ab边刚进入磁场区域时,ab边两端的电压;

(3)在线框被拉入磁场的整个过程中,线框中电流产生的热量.

题型二电容器所带电荷量的计算

例2:如图所示,两个电阻的阻值分别为R和2R,其余电阻不计,电容器的电容为C,匀强磁场的磁感应强度为B,方向垂直纸面向里,金属棒ab、cd的长度均为l,当棒ab以速度v向左做切割磁感线运动,棒cd以速度2v向右做切割磁感线运动时,电容器所带的电荷量为多少?哪一个极板带正电?

变式练习:

1、两根光滑的长直金属导轨MN、M′N′平行置于同一水平面内,导轨间距为l,电阻不计,M、M′处接有

如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C.长度也为l、阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中。ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab动距离为s的过程中,整个回路中产生的焦耳热为Q.求

(1)ab运动速度v的大小;

(2)电容器所带的电荷量q.

2、如图所示,足够长的光滑平行金属导轨MN、PQ固定在一水平面上,两导轨间距L=0.2m,电阻R=0.4

Ω,电容C=2 mF,导轨电阻不计,整个装置处于磁感应强度B=0.5T的匀强磁场中,磁场方向竖直向下.现用一在导轨平面内,且垂直于金属杆CD的外力F,沿水平方向拉杆,使之由静止开始向右运动。求:

(1)若开关S闭合,力F恒为0.5N,CD运动的最大速度;

(2)若开关S闭合,使CD以(1)问中的最大速度匀速运动,现使其突然停止并保持静止不动,当CD 停止下来后,通过导体棒CD的总电量;

(3)若开关S断开,在力F作用下,CD由静止开始作加速度a=5m/s2的匀加速直线运动,请写出电压表的读数U随时间t变化的表达式.

题型三流过导体电荷量的计算

例3:如图所示,空间存在垂直于纸面的均匀磁场,在半径为a的圆形区域内部及外部,磁场方向相反,磁感应强度为B。一半径为b、电阻为R的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合。当内、外磁场同时由B均匀减小到零的过程中,通过导线截面的电荷量q=____________。

变式练习:

1、如图所示,矩形裸导线框abcd的长边长度为2L,短边长度为L,在两端变上均接有电阻R,其余部

分电阻不计。导线框一长边与x轴重合,左边的坐标x=0,线框内有一垂直于线框平面的匀强磁场,磁场的磁感应强度为B.一质量为m、电阻也为R的光滑导体棒MN与短边平行且与长边接触良好.开始时导体棒静止于x=0处,从t=0时刻起,导体棒MN在沿x轴正方向的一拉力作用下,从x=0处匀加速运动到x=2L处.则导体棒MN从x=0处运动到x=2L处的过程中通过导体棒的电量为()A.8BL2//3R B. 4BL2//3R C. 2BL2//3R D. 2BL2/R

2、如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出运强磁场。若第一次用

0.3s时间拉出,外力所做功为W1,通过导线截面的电量为q1;第二次用0.9s时间拉出,外力所做的

功为W2,通过导线截面的电量为q2,则:()

A.W1<W2,q1<q2 B.W1<W2,q1=q2C.W1>W2,q1=q2 D.W1>W2,q1>q2

3、一个电阻为R的长方形线圈abcd沿顺时针所指的南北方向平放在北半球的水平桌面上,ab=L1,bc=L2,

如图所示,现突然将线圈翻转180°,使ab与dc互换位置用冲击电流计测得导线中流过的电量为Q1,然后维持ad边不动,将线圈绕ad边转动至东西方向,使之突然竖直,这次测得导线中流过的电量为Q2,试求该处地磁场的磁感应强度的大小。

第二讲 电磁感应的能量转化与守恒

(3)利用电路特征求解;通过电路中所消耗的电能来计算。 二、反电动势

(1)定义:电动机转动时,线圈中也会产生感应电动势,这个感应电动势总要削弱电源电动势的作用,我们把这个电动势称为反电动势。 (2)方向:与电源电动势方向相反。

(3)作用:抵消电源电动势的一部分作用,使电路中的电流减小,从而阻碍线圈的转动。

一天,一对情侣坐公交,太阳比较大,车转弯了。 女的被太阳照到了要跟男友换,换了。 车又转弯,女的又被晒了,要求再换。 来来回回几次后,男的终于怒了: 90%中国人无法正常读出来的句子:

NO.01 妹妹你坐船头哦,哥哥我岸上走。

NO.02 大王叫我来巡山哦!

例题1.如图所示,在平行金属导轨与水平面间的倾角为θ,导轨电阻不计,与阻值为R的定值电阻相连匀强磁场垂直穿过导轨平面,磁感应强度为B。有一质量为m、长为l的导体棒从ab位置以平行于斜面的大小为v的初速度向上运动,最远到达a′b′的位置。已知ab与a′b′之间的距离为s;导体棒电阻的阻值也为R,与导轨之间的动摩擦因数为μ。则()

A.上滑过程中导体棒受到的最大安培力为 B2L2v/R

B.上滑到a′b′过程中电流做功发出的热量1

2

mv2?mgs(sinθ?μcosθ)

C.上滑到a′b′过程中安培力、滑动摩擦力和重力对导体棒做的总功为?1

2

mv2

D.上滑到a′b′过程中导体棒机械能减小量为1

2

mv2?mgs sinθ

变式练习:

1、如图所示,足够长的U形光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN与PQ平行且间距为L,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计。金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab棒接入电路的电阻为R,当流过ab棒某一横截面的电量为q时,棒的速度大小为v,则金属棒ab在这一过程中()

A.运动的平均速度大小为1

2

v B.下滑位移大小为qR/BL

C.产生的焦耳热为qBLνD.受到的最大安培力大小为B2L2v sinθ/R

2、如图所示,两根足够长的光滑金属导轨MN与PQ间距为l=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°夹角。完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止。取g=10m/s2,问:

(1)通过cd棒的电流I是多少,方向如何?

(2)棒ab受到的力F多大?

(3)棒cd每产生Q=0.1J的热量,力F做的功W是多少?

3、如图所示,两根竖直固定放置的无限长光滑金属导轨,电阻不计,宽慰L,上端接有定值电阻R0,导轨上接触良好地紧贴一质量为m、有效电阻为R的金属棒MN,R=2R0。整个装置处于垂直于导轨平面的匀强磁场中,金属杆MN由静止开始下落,下落距离为h时重力的功率刚好达到最大,设重力的最大功率为P。求:

(1)磁感应强度B的大小。

(2)金属杆从开始下落到重力的功率刚好达到最大的过程中,电阻产生的热量。

4、如图(a)所示,间距为l、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度为Bt的大小随时间t变化规律如图(b)所示。t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上由静止释放.在ab棒运动到区域Ⅱ的下边界EF处之前,cd棒始终静止不动,两棒均与导轨接触良好.

已知cd棒的质量为m、电阻为R,ab棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l,在t=tx时刻(tx 未知)ab棒恰进入区域Ⅱ,重力加速度为g.

求:(1)通过cd棒电流的方向和区域I内磁场的方向;

(2)当ab棒在区域Ⅱ内运动时cd棒消耗的电功率;

(3)ab棒开始下滑的位置离EF的距离;

(4)ab棒开始下滑至EF的过程中回路中产生的热量.

例题3.如图所示,两根足够长的光滑导轨竖直放置,间距为L,底端接阻值为R的电阻。将质量为m的金属棒悬挂在固定的轻弹簧下端,金属棒和导轨接触良好,除电阻R外其余电阻不计,导轨所在平面与一匀强磁场垂直,静止时金属棒位于A处,此时弹簧的伸长量为△l.现将金属棒从弹簧原长位置由静止释放,

则()

A.释放瞬间金属棒的加速度为g

B.电阻R中电流最大时,金属棒在A处上方的某个位置

C.金属棒在最低处时弹簧的拉力一定小于2mg

D

1、

(1

(2

例题

求:

(1

(2

1、如图所示,两根足够长的平行光滑的金属导轨MN、PQ相距为L=1m,导轨平面与水平面夹角为α=30°,

导轨电阻不计。磁感应强度为B1=2T的匀强磁场垂直导轨平面向上,长为L=1m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m1=2kg、电阻为R1=1。两金属

导轨的上端连接右侧电路,电路中通过导线接一对水平放置的平行金属板,两板间的距离和板长均为d=0.5m,定值电阻为R2=3,现闭合开关S并将金属棒由静止释放,重力加速度为g=10m/s2,试求:

(1)金属棒下滑的最大速度为多大?

例题

A、C

ab棒的最大速度。(已知金属棒ab和导轨间的动摩擦因数为μ,导轨和金属棒的电阻不计)

如图所示,两条相互平行的光滑金属导轨位于水平面内,距离为l=0.2m,在导轨的一端接有阻值为R=0.5Ω的电阻,在x≥0处有一与水平面垂直的均匀磁场,磁感强度B= 0.5T。一质量为m = 0. lkg的金属直杆垂直放置在导轨上,并以v0 = 2m/s的初速度进入磁场,在安培力和一垂直于杆的水平外力F的共同作用下作匀变速直线运动,加速度大小为a=2m/s2、方向与初速度方向相反。设导轨和金属杆的电阻都可以忽略,且接触良好。求:

(1)电流为零时金属杆所处的位置

(2)电流为最大值的一半时施加在金属杆上外力F的大小和方向

(3)保持其他条件不变,而初速度v0取不同值,求开始时F的方向与初速度v0取值的关系

电磁感应电荷量问题

CD、EF是水平放置的电阻可忽略的光滑水平金属导轨,两导轨距离水平地面高度为H,导轨间距为L,在水平导轨区域存在磁感应强度大小为B,方向垂直导轨平面向上的矩形有界匀强磁场(磁场区域为CPQE),如图所示,导轨左端与一弯曲的光滑轨道平滑连接,弯曲的光滑轨道的上端接有一电阻R,将一阻值也为R的导体棒从弯曲轨道上距离水平金属导轨高度h处由静止释放,导体棒最终通过磁场区域落在水平地面上距离水平导轨最右端x处. 已知导体棒与导轨始终接触良好,重力加速度为g,求 (1)电阻R中的最大电流的大小与方向; (2)整个过程中,导体棒中产生的焦耳热; (3)若磁场区域的长度为d,求全程流过导体棒的电量.

如图所示,在倾角α=30°的光滑固定斜面上,相距为d的两平行虚线MN、PQ间分布有大小为B、方向垂直斜面向下的匀强磁场.在PQ上方有一质量m、边长L(L

离MN的高度为h.现将线框由静止释放,线框下落过程中ab边始终保持水平,且ab边离开磁场前已做匀速直线运动,求线框从静止释放到完全离开磁场的过程中 ⑴ab边离开磁场时的速度v;⑵通过导线横截面的电荷量q;⑶导线框中产生的热量Q. 如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m, 上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ =30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接

(含答案解析)电磁感应中的电路问题

电磁感应中的电路问题 一、基础知识 1、内电路和外电路 (1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源. (2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路. 2、电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦ Δt . (2)路端电压:U =IR =E -Ir . 3、对电磁感应中电源的理解 (1)电源的正负极、感应电流的方向、电势的高低、电容器极板带电问题,可用右手定则或楞次定律判定. (2)电源的电动势的大小可由E =Blv 或E =n ΔΦ Δt 求解. 4、对电磁感应电路的理解 (1)在电磁感应电路中,相当于电源的部分把其他形式的能通过电流做功转化为电能. (2)“电源”两端的电压为路端电压,而不是感应电动势. 5、解决电磁感应中的电路问题三步曲 (1)确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,利用E =n ΔΦ Δt 或E =Blv sin θ求感应电动势的大小,利用右手定则 或楞次定律判断电流方向. (2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图. (3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 二、练习 1、[对电磁感应中等效电源的理解]粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场 中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是 ( )

答案 B 解析 线框各边电阻相等,切割磁感线的那个边为电源,电动势相同均为Blv .在A 、C 、D 中,U ab =14Blv ,B 中,U ab =3 4 Blv ,选项B 正确. 2、如图所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直 时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环 的最高点A 铰链连接的长度为2a 、电阻为R 2 的导体棒AB 由水平 位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两 端的电压大小为 ( ) A. Bav 3 B. Bav 6 C.2Bav 3 D .Bav

电磁感应电路和图像问题

学案46 电磁感应中的电路与图象问题 一、概念规律题组 图1 1.用均匀导线做成的正方形线框边长为0.2 m,正方形的一半放在垂直纸面向里的匀强磁场中,如图1所示.当磁场以10 T/s的变化率增强时,线框中a、b两点间的电势差是() A.U ab=V B.U ab=-V C.U ab=V # D.U ab=-V 图2 2.如图2所示,导体AB在做切割磁感线运动时,将产生一个感应电动势,设导体AB 的电阻为r,导轨左端接有阻值为R的电阻,磁场磁感应强度为B,导轨宽为d,导体AB匀速运动,速度为v.下列说法正确的是() A.在本题中分析电路时,导体AB相当于电源,且A端为电源正极 B.U CD=Bdv C.C、D两点电势关系为:φC<φD D.在AB中电流从B流向A,所以φB>φA 3.穿过闭合回路的磁通量Φ随时间t变化的图象分别如图3所示,下列关于回路中产生的感应电动势的论述,正确的是() !

图3 A.图①中,回路产生的感应电动势恒定不变 B.图②中,回路产生的感应电动势一直在变大 C.图③中,回路在0~t1时间内产生的感应电动势小于在t1~t2时间内产生的感应电动势 D.图④中,回路产生的感应电动势先变小再变大 二、思想方法题组 4.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如下图所示,则在移出过程中线框的一边a、b两点间电势差绝对值最大的是() 5.如图4甲所示,光滑导轨水平放置在斜向下且与水平方向夹角为60°的匀强磁场中,匀强磁场的磁感应强度B随时间t的变化规律如图乙所示(规定斜向下为正方向),导体棒ab 垂直导轨放置,除电阻R的阻值外,其余电阻不计,导体棒ab在水平外力作用下始终处于静止状态.规定a→b的方向为电流的正方向,水平向右的方向为外力的正方向,则在0~t 时间内,能正确反映流过导体棒ab的电流i和导体棒ab所受水平外力F随时间t变化的图象是() > 图4 一、电磁感应中的电路问题 1.内电路和外电路

电磁感应现象中电量和热量专题

电磁感应专题 ——电量和热量的求解 学习目标: 能熟练应用法拉第电磁感应定律分析求解电磁感应中的电量和热量;【例1】如图所示,匀强磁场中有一矩形闭合线圈abcd,线圈平面与磁场垂直。已知线圈的匝数N=100,边长ab =1.0m、bc=0.5m,电阻r=2。磁感应强度B在0~1s内从零均匀变化到0.2T。在1~5s内从0.2T均匀变化到-0. 2T,取垂直纸面向里为磁场的正方向。求: (1)0.5s时线圈内感应电动势的大小E和感应电流的方向; (2)在1~5s内通过线圈的电荷量q; (3)在0~5s内线圈产生的焦耳热Q。 【例2】如图所示,两根相距为L的平行光滑金属长导轨固定在同一水平面上,并处于竖直向上的匀强磁场中,磁场的磁感应强度为B,ab和cd 两根金属细杆静止在导轨的上面,与导轨一起构成矩形闭合电路,两根

细杆的质量都等于m,电阻都等于r,导轨的电阻忽略不计。从t=0时刻开始,两根细杆分别受到平行于导轨方向、大小均为F的拉力的作用,分别向相反方向滑动,经过时间T,各自运动的距离为L0,两杆同时达到最大速度,以后都做匀速直线运动。求: (1)在0—T时间内,经过细杆横截面的电量; (2)导体棒的最大速度; a c F b d F (3)在0—T时间内,回路产生的热量 【例3】如图10所示,匀强磁场的磁感应强度B=0.5 T,边长L=10 cm 的正方形线圈共100匝,线圈 总电阻r=1 Ω,线圈绕垂直于磁感线的对称轴OO′匀速转动,角速度ω=2π rad/s,外电路中的电阻R =4 Ω,求:

(1)感应电动势的最大值; (2)线圈转动一周产生的总热量; (3)从图示位置开始的周期内通过R的电荷量.

电磁感应中的电路问题含答案解析

电磁感应中的电路问题 一、基础知识 1、电路和外电路 (1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源. (2)该部分导体的电阻或线圈的电阻相当于电源的阻,其余部分是外电路. 2、电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦ Δt . (2)路端电压:U =IR =E -Ir . 3、对电磁感应中电源的理解 (1)电源的正负极、感应电流的方向、电势的高低、电容器极板带电问题,可用右手定则或楞次定律判定. (2)电源的电动势的大小可由E =Blv 或E =n ΔΦ Δt 求解. 4、对电磁感应电路的理解 (1)在电磁感应电路中,相当于电源的部分把其他形式的能通过电流做功转化为电能. (2)“电源”两端的电压为路端电压,而不是感应电动势. 5、解决电磁感应中的电路问题三步曲 (1)确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,利用E =n ΔΦ Δt 或E =Blv sin θ求感应电动势的大小,利用右手定则 或楞次定律判断电流方向. (2)分析电路结构(、外电路及外电路的串、并联关系),画出等效电路图. (3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 二、练习 1、[对电磁感应中等效电源的理解]粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场 中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是 ( )

答案 B 解析 线框各边电阻相等,切割磁感线的那个边为电源,电动势相同均为Blv .在A 、C 、D 中,U ab =14Blv ,B 中,U ab =3 4Blv ,选项B 正确. 2、如图所示,竖直平面有一金属环,半径为a ,总电阻为R (指拉直 时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环 的最高点A 铰链连接的长度为2a 、电阻为R 2 的导体棒AB 由水平 位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两 端的电压大小为 ( ) A.Bav 3 B.Bav 6 C.2Bav 3 D .Bav 答案 A 解析 摆到竖直位置时,AB 切割磁感线的瞬时感应电动势E =B ·2a ·(1 2v )=Bav .由闭合电路欧姆定律得,U AB =E R 2+R 4 ·R 4=1 3Bav ,故选A. 3、如图所示,两根足够长的光滑金属导轨水平平行放置,间距为l =1 m ,cd 间、de 间、 cf 间分别接阻值为R =10 Ω的电阻.一阻值为R =10 Ω的导体棒ab 以速度v =4 m/s 匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小为B =0.5 T 、方向竖直向下的匀强磁场.下列说法中正确的是 ( ) A .导体棒ab 中电流的流向为由b 到a B .cd 两端的电压为1 V

第一讲电磁感应中的电路与电荷量问题

第一讲电磁感应中的电路与电荷量问题 电磁感应往往与电路问题联系在一起,解决电磁感应中的电路问题只需要三步:第一步:确定电源。切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,则该导体或回路就相当于电源,利用求感应电动势的大小,利用右手定则或楞次定律判断电流方向。如果在一个电路中切割磁感线的有几个部分但又相互联系,可等效成电源的串、并联。 第二步:分析电路结构(内、外电路及外电路的串并联关系),画等效电路图。第三步:利用电路规律求解。主要应用欧姆定律及串并联电路的基本性质等列方程求解。 感应电动势大小的计算——法拉第电磁感应定律的应用。? 1、折线或曲线导体在匀强磁场中垂直磁场切割磁感线平动,产生的感应电动势:E=BLvsinθ; 2、直导体在匀强磁场中绕固定轴垂直磁场转动时的感应电动势:; 3、圆盘在匀强磁场中转动时产生的感应电动势:; 4、线圈在磁场中转动时产生的感应电动势:(θ为S与B之间的夹角)。 2、电磁感应现象中的力学问题?

(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:? ①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向; ②求回路中电流强度; ③分析研究导体受力情况(包含安培力,用左手定则确定其方向);? ④列动力学方程或平衡方程求解。 (2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。 3、电磁感应中能量转化问题? 导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是: ①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;? ②画出等效电路,求出回路中电阻消耗电功率表达式;?

电磁感应中的感应电量

电磁感应中感应电量 的计算方法及其应用 在电磁感应中,对通过导体横截面的感应电荷量的求解问题,我们往往只注重于对电荷量求解方法的研究。教学中,若能将这一计算方法适当变形,我们会发现,其在实际问题中对相关物理量的求解过程往往会令人耳目一新、豁然开朗。 一、感应电荷量求解方法的变形与应用 令在水平面上垂直切割磁感线的导体棒长L ,质量为m ,切割磁感线的始速度为V 0,末速度为V t ,匀强磁场的磁感应强度为B ,闭合回路总电阻为R,求在时间△t 内通过导体棒电荷量q 的大小。 1. 利用动量定理求解:(对动生电动势适用) 由动量定理有: —B I L ·t ?=?P=t mV —0mV ① 由电流的定义式有: I =t q ? ② 由①②有q= BL P ?=BL m V m V t 0 - 2. 利用法拉第电磁感应定律求解:(对动生、感生电动势均适用) 由法拉第电磁感应定律有: E =t n ??φ =t S B n ?? ① 由闭合电路欧姆定律有: I = R E ② 由电流的定义式有: I =t q ? ③ 由①②③有q=R n φ? =R S B n ? 通过上述两种不同方法所求出的感应电荷量结果一致。由于求解过程中的I 、 E 、 F = B I L 均为相应物理量对时间的平均值,为加深印象,引起重视,我们可以 将这一求解感应电荷量的方法叫为“平均值观点”。 二、感应电荷量求解方法的变形与应用

由于两种不同计算方法能得到相同的结论不同的表达形式,而动量定理中包含时间?t 与速度V ,面积?S 中间接包含位移s ,通过变形,将两种不同感应电荷量的表达形式建立等式,可求出对应段落内的时间、速度、位移、功与能量。 1.变形求时间 【例1】如图1所示,两根平行金属导轨MN,PQ 相距为d ,导轨平面与水平面夹角为θ,导轨上端跨接一定值电阻R ,导轨电阻不计,整个装置处于方向垂直导轨平面向上,磁感应强度大小为B 的匀强磁场中,金属棒ab 垂直于MN,PQ 静止放置,且与导轨保持良好接触,其长度刚好也为d ,质量为m ,电阻为r ,现给金属棒一沿斜面向上的始速度V 0,金属棒沿导轨上滑距离s 后再次静止,已知金属棒与导轨间的动摩擦因数为μ,求金属棒在导轨上运动的时间。 解析:对金属棒进行受力分析由动量定理有 —m gSin θ.t —μmg.Cos θ.t —B I dt=— 运动过程电流的平均值 I = t q =r R E + ② 金属棒切割磁感线产生的平均电动势 E =t ??φ =t BdS ③ 由②③有q=I t=r R BdS + ④ 由①④有t= ) cos )(()(2 20θμθmg mgSin r R S d B r R mV ++-+ 2.变形求速度 【例2】如图2所示,电阻为R ,质量为m ,变长为L 的正方形导线圈abcd ,从距匀强磁场上边界h 高处自由下落,测得自线圈的下边cd 进入磁场至线圈的上边ab 进入磁场历时为t ,单边有界匀强磁场的磁感应强度为B ,试求线圈的上边界ab 刚进入磁场时线圈的速度。 解析:令线圈刚进入磁场的速度为V 0,则 mgh=202 1 mV ① 令ab 进入磁场时的速度为V 1,对线圈进入磁场 过程进行受力分析由动量定理有 m gt —B I Lt= m V 1—m V 0 ② 切割磁感线过程电流的平均值 I = t q =R E ③

电磁感应中的能量转化及电荷量问题例题

电磁感应中的能量转化及电荷量问题 一、电磁感应电路中电荷量的求解 回路中磁通量发生变化时,电荷发生定向移动而形成感应电流,在Δt内迁移的电荷量(感应电荷量)为q=I·Δt =E R·Δt=n ΔΦ Δt· 1 R·Δt= nΔΦ R.其中n为匝数,R为总电阻. 从上式可知,线圈匝数一定时,感应电荷量仅由回路电阻和磁通量的变化量决定,与时间无关. 例1如图X31所示,导线全部为裸导线,半径为r的圆内有垂直于纸面的匀强磁场,磁感应强度为B,一根长度大于2r的导线MN以速度v在圆环上无摩擦地自左向右匀速滑动,电路的固定电阻为R,其余电阻忽略不计.试求MN从圆环的左端滑到右端的过程中电阻R上的电流的平均值及通过的电荷量. πBrv 2R Bπr2 R [解析]由于ΔΦ=B·ΔS=B·πr2,完成这一变化所用的时间Δt= 2r v,故E= ΔΦ Δt= πBrv 2,所以电阻R上的电流的平均值为I= E R= πBrv 2R, 通过R的电荷量为q=I·Δt= Bπr2 R. 二、电磁感应中的能量转化问题 1.电磁感应中能量的转化 电磁感应过程实质是不同形式的能量相互转化的过程,电磁感应过程中产生感应电流,在磁场中必定 受到安培力作用,因此要维持感应电流,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能.可以简化为下列形式: 同理,电流做功的过程,是电能转化为其他形式的能的过程,电流做了多少功就有多少电能转化为其他形式的能. 2.解决电磁感应能量转化问题的基本方法 (1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向; (2)画出等效电路,求出回路中电阻消耗电能的表达式; (3)分析导体机械能的变化,用能量守恒关系得到机械能的改变与回路中电能的改变所满足的方程. 例2如图X32所示,固定的水平光滑金属导轨间距为L,左端接有阻值为R的电阻,处在方向竖直向下、磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻可

电磁感应电荷量问题

CD EF是水平放置的电阻可忽略的光滑水平金属导轨,两导轨距离水平地面高度为H,导轨 间距为L,在水平导轨区域存在磁感应强度大小为B,方向垂直导轨平面向上的矩形有界匀 强磁场(磁场区域为CPQE,如图所示,导轨左端与一弯曲的光滑轨道平滑连接,弯曲的光滑轨道的上端接有一电阻R将一阻值也为R的导体棒从弯曲轨道上距离水平金属导轨高度h处由静止释放,导体棒最终通过磁场区域落在水平地面上距离水平导轨最右端x处. 已知导体棒与导轨始终接触良好,重力加速度为g,求 (1)电阻R中的最大电流的大小与方向; (2)整个过程中,导体棒中产生的焦耳热; (3)若磁场区域的长度为d,求全程流过导体棒的电量 (1)曲置常町知』导蔣悻刚进入瞬旳瞩闫建度屋大>产生的熾冋电动卿摄天,魁应龟说摄x >由机犠能寺1醍霍有用即"I呦"髒潯叫= 曲法4潇电珀駆淀崔潯必=昨 /=_£ 曰闵合电將欧囲走律粤-2尺 L BL^h 联瓷解-凍”才向由碩H J (2J曲平側运动规律'■「匚円~25'解得 H能量寺直走律可知登'-电跖屮产生的焦耳熬討 叭阴产押頼助—扣今g 警 (3 >设邑燼隹倉粧磁场区威时整个回賂的平均电貶为7 >用时乂 J11B1过弓体毎苗电昼扌=7山其中?山 _ BLd q ■ 综上2R

如图所示,在倾角a = 30°的光滑固定斜面上,相距为d的两平行虚线MN PQ间分布有大小为B 方向垂直斜面向下的匀强磁场.在PQ上方有一质量m边长L (L

§9.3互感和自感电磁感应中的电路问题

§9.3 互感和自感电磁感应中的电路问题 1.互感现象 当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,此现象称为互感。 2. 自感 (1)自感现象:由于导体自身电流发生变化而产生的电磁感应现象。自感现象是电磁感应的特例.一般的电磁感应现象中变化的原磁场是外界提供的,而自感现象中是靠流过线圈自身变化的电流提供一个变化的磁场.它们同属电磁感应,所以自感现象遵循所有的电磁感应规律. (2)自感电动势:自感现象中产生的电动势叫做自感电动势。自感电动势和电流的变化率(△I/△t)及自感系数L成正比。自感系数由导体本身的特性决定,线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大;线圈中加入铁芯,自感系数也会增大。 自感电动势仅仅是减缓了原电流的变化,不会阻止原电流的变化或逆转原电流的变化.原电流最终还是要增加到稳定值或减小到零. (3)通电自感:通电时电流增大,阻碍电流增大,自感电动势和原来电流方向相反。 (4)断电自感:断电时电流减小,阻碍电流减小,自感电动势与原来电流方向相同。 自感现象只有在通过电路的电流发生变化时才会产生.在判断电路性质时,一般分析方法是:当流过线圈L的电流突然增大瞬间,我们可以把L 看成一个阻值很大的电阻;电路电流稳定时,看成导线;当流经L的电流突然减小的瞬间,我们可以把L看作一个电源,它提供一个跟原电流同向的电流. 当电路中的电流发生变化时,电路中每一个组成部分,甚至连导线,都会产生自感电动势去阻碍电流的变化,只不过是线圈中产生的自感电动势比较大,其它部分产生的自感电动势非常小而已.3.涡流 当线圈中的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内且形成旋涡,很象水中的旋涡,简称涡流。 (1)把块状金属放在变化的磁场中,或者让它在磁场中运动时,金属块内将产生感应电流,这种电流在金属块内自成闭合电路,很像水里的漩涡,称涡电流,涡流常常很强。 (2)涡流的减小:在各种电机和变压器中,为了减少涡流的损失,在电机和变压器上通常用涂有绝缘漆的薄硅钢片叠压制成的铁芯。 (3)涡流的利用:冶炼金属的高频感应炉就是利用强大的涡流使金属尽快熔化,电学测量仪表的指针快速停止摆动也是利用铝框在磁场中转动产生的涡流。 4. 电磁感应中电路问题 在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路充当电源.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是: ①确定电源,用电磁感应的规律确定感应电动势的大小和方向; ②分析电路结构,明确内、外电路,必要时画等效电路; ③运用闭合电路欧姆定律、串并联电路性质,电功率等公式联立求解. 【典型例题】 [例1]在如图(a)(b)所示电路中,电阻R和自感线圈L的电阻值都很小,且小于灯D 的电阻, 接通开关S,使电路达到稳定,灯泡D发光,则() (a)(b) A.在电路(a)中,断开S,D将逐渐变暗 B.在电路(a)中,断开S,D将先变得更亮,然后才变暗 C.在电路(b)中,断开S,D将逐渐变暗 D.在电路(b)中,断开S,D将先变得更亮,然后渐暗 [例2]如图甲所示,空间存在着一个范围足够大的竖直向下的匀强磁场区 域,磁场的磁感应强度大小 为B 。边长为L的正方形 金属abcd(下简称方框)放 在光滑的水平面上,其外侧 套着一个与方框边长相同 的U型金属框架MNPQ(下 c a b M d N B Q P

电磁感应中的电路问题专题练习(含答案)

电磁感应中的电路问题专题练习 1.用均匀导线做成的正方形线圈边长为l,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以的变化率增强时,则下列说法正确的是( ) A.线圈中感应电流方向为adbca B.线圈中产生的电动势E=· C.线圈中a点电势高于b点电势 D.线圈中a,b两点间的电势差为· 2.如图所示,用粗细相同的铜丝做成边长分别为L和2L的两只闭合线框a和b,以相同的速度从磁感应强度为B的匀强磁场区域中匀速地拉到磁场外,不考虑线框的重力,若闭合线框的电流分别为I a,I b,则I a∶I b为( ) A.1∶4 B.1∶2 C.1∶1 D.不能确定 3.在图中,EF,GH为平行的金属导轨,其电阻不计,R为电阻,C为电容器,AB为可在EF和GH上滑动的导体棒,有匀强磁场垂直于导轨平面.若用I1和I2分别表示图中该处导线中的电流,则当AB棒( D )

A.匀速滑动时,I1=0,I2=0 B.匀速滑动时,I1≠0,I2≠0 C.加速滑动时,I1=0,I2=0 D.加速滑动时,I1≠0,I2≠0 4.如图所示,导体棒在金属框架上向右做匀加速运动,在此过程中( ) A.电容器上电荷量越来越多 B.电容器上电荷量越来越少 C.电容器上电荷量保持不变 D.电阻R上电流越来越大 5.用相同导线绕制的边长为L或2L的四个闭合导体线框,以相同的速度进入右侧匀强磁场,如图所示.在每个线框进入磁场的过程中,M,N 两点间的电压分别为U a,U b,U c和U d.下列判断正确的是( ) A.U a

专题 电磁感应中的电路问题

电磁感应中的综合问题 1 电磁感应中的电路问题 1、解决电磁感应中的电路问题三步曲 (1)确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,首先应该确定其电阻,就是内阻!再利用法拉第电磁感应定理或者导体棒平动,转动切割磁感线的公式(这三个公式你会写吗?)求解感应电动势的大小,最后再利用右手拇因食果或楞次定律判断感应电动势的方向. (2)分析电路结构(内、外电路及外电路的串、并联关系),必须画出等效电路图. (3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 注:“电源”两端的电压为路端电压,而不是感应电动势.常见的路端电压的三个公式:U= = = .

例题 1.用一根横截面积为S、电阻率为ρ的硬质导线做成一个半径为r的圆环,ab为圆环的一条直径。如图所示,在ab的左侧存在一个均匀变化的匀强磁场,磁场垂直圆环所在平面,方向如图,磁感应强度大小随时间的变化率 ?(k<0)。则( ) ? k t B= A.圆环中产生(填“逆时针”或者“顺时针”)方向的感应电 流 B.圆环具有(填“扩张”或“收缩”)的趋势 C.圆环中感应电流的大小为 D.图中a、b两点间的电势差的大小U= 例题 2.如图所示,MN、PQ为光滑金属导轨(金属导轨电阻忽略不计),MN、PQ 相距L=50cm,导体棒AB在两轨道间的电阻为r=1Ω,且可以在MN、PQ上滑动,定值电阻R1=3Ω,R2=6Ω,整个装置放在磁感应强度为B=1.0T的匀强磁场中,磁场方向垂直于整个导轨平面,现用外力F拉着AB棒向右以v=6m/s速度做匀 速运动.求: (1)导体棒AB产生的感应电动势E和AB棒上的感应电流方向. (2)导体棒AB两端的电压UAB.(如果AB的顺序颠倒会怎么样?) (3)导体棒AB受到的安培力多大. 例题 3.(多选)如图所示,三角形金属导轨EOF上放一金属杆AB,在外力作用下使AB保持与OF垂直,以速度v从O点开始右移,设导轨和金属棒均为粗细相同的同种金属制成,则下列说法正确的是() A. 电路中的感应电动势大小不变 B. 电路中的感应电动势逐渐增大 C. 电路中的感应电流大小不变 D. 电路中的感应电流逐渐减小 例题 4.如图所示,垂直纸面向里的匀强磁场的区域宽度为2a, 磁感应强度的大小为B.一边长为a、电阻为4R的正方形均匀导 线框ABCD从图示位置沿水平向右方向以速度v匀速穿过磁场区 域,在下图中线框A、B两端电压UAB与线框移动距离x的关系图 象正确的是()A.B.C.

电磁感应电荷量和热量问题

1 法拉第电磁感应“电荷量和热量”问题(必做题) 姓名: 1.如图所示,长L 1=1.0m ,宽L 2=0.50m 的矩形导线框,质量为m=0.20kg ,电阻R = 2.0Ω.其正下方有宽为H (H >L 2),磁感应强度为B =1.0T ,垂直于纸面向里的匀强磁场.现在,让导线框从cd 边距磁场上边界h =0.70m 处开始自由下落,当cd 边进入磁场中,而ab 尚未进入磁场,导线框达到匀速运动。(不计空气阻力,且g=10m/s 2) 求⑴线框进入磁场过程中安培力做的功是多少? ⑵线框穿出磁场过程中通过线框任一截面的电荷量q 是多少? 2.如图所示,足够长的光滑导轨ab 、cd 固定在竖直平面内,导轨间距为l ,b 、c 两点间接一阻值为R 的电阻。ef 是一水平放置的导体杆,其质量为m 、有效电阻值为R ,杆与ab 、cd 保持良好接触。整个装置放在磁感应强度大小为B 的匀强磁场中,磁场方向与导轨平面垂直。现用一竖直向上的力拉导体杆,使导体杆从静止开始做加速度为0.5g 的匀加速运动,上升了h 高度,这一过程中b 、c 间电阻R 产生的焦耳热为Q ,g 为重力加速度,不计导轨电阻及感应电流间的相互作用。求: (1)导体杆上升h 高度过程中通过杆的电荷量; (2)导体杆上升h 高度时所受拉力F 的大小; (3)导体杆上升h 高度过程中拉力做的功。 3.如图所示,一平面框架与水平面成θ=37°角,宽L=0.4 m,上、下两端各有一个电阻R 0=1Ω,框架的其他部分电阻不计,框架足够长。垂直于框架平面的方向存在向上的匀强磁场,磁感应强度B=2 T 。ab 为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r=0.5 Ω,金属杆与框架的动摩擦因数μ=0.5。金属杆由静止开始下滑,直到速度达到最大的过程中,金属杆克服磁场力所做的功为W=1.5 J 。已知sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2。求: (1)ab 杆达到的最大速度v ; (2)ab 杆从开始到速度最大的过程中沿斜面下滑的距离; (3)在该过程中通过ab 的电荷量。 4.如图所示,宽度为L =0.20 m 的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R =1.0Ω的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B =0.50 T 。一根质量为m=10g 的导体棒MN 放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计。现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v =10 m/s ,在运动过程中保持导体棒与导轨垂直。求:(1)在闭合回路中产生的感应电流的大小;(2)作用在导体棒上的拉力的大小;(3)当导体棒移动30cm 时撤去拉力,求整个过程中电阻R 上产生的热量。 5.两根足够长的光滑金属导轨MN 和PQ 平行固定在水平面上,一端接有阻值为R 的电阻,处于方向向下的匀强磁场中。在导轨上垂直导轨跨放质量为m 的金属直杆,金属杆的电阻不计。金属杆在垂直杆的水平恒力F 作用下向右匀速运动,电阻R 上消耗的电功率是P .从某一时刻开始撤去水平力求撤去F 后。求撤去F 后 (1)通过电阻R 的电流方问,(2)简述金属杆的速度.加速度如何变化? (3)电阻R 上还能产生多少热量? (4)当电阻R 上消牦的功率力为P/4时,金属杆加速度的大小与方向; 6.两根光滑金属导轨平行放置在倾角为θ=300的斜面上,导轨左端接有电阻R =10Ω,导轨自身电阻忽略不计. 匀强磁场垂直于斜面向上,磁感强度B =0.5T. 质量为m =0.1kg ,电阻不计的金属棒ab 由静止释放,沿导轨下滑. 如图所示,设导轨足够长,导轨宽度L =2m ,金属棒ab 下滑过程中始终与导轨接触良好,当金属棒下滑高度h =3m 时,速度恰好达到最大速度2m/s. 求这一程中, (1)金属棒受到的最大安培力; (2)电路中产生的电热. B

一电磁感应中的电路问题要点

电磁感应中的电路问题 ▲知识梳理 1.求解电磁感应中电路问题的关键是分析清楚内电路和外电路。 “切割”磁感线的导体和磁通量变化的线圈都相当于“电源”,该部分导体的电阻相当于内电阻,而其余部分的电路则是外电路。 2.几个概念 (1)电源电动势或。 (2)电源内电路电压降,r是发生电磁感应现象导体上的电阻。(r是内电路的电阻) (3)电源的路端电压U,(R是外电路的电阻)。 3.解决此类问题的基本步骤 (1)用法拉第电磁感应定律和楞次定律或右手定则确定感应电动势的大小和方向。(2)画等效电路:感应电流方向是电源内部电流的方向。 (3)运用闭合电路欧姆定律结合串、并联电路规律以及电功率计算公式等各关系式联立求解。 特别提醒:路端电压、电动势和某电阻两端的电压三者的区别: (1)某段导体作为外电路时,它两端的电压就是电流与其电阻的乘积。 (2)某段导体作为电源时,它两端的电压就是路端电压,等于电流与外电阻的乘积,或等于电动势减去内电压,当其内阻不计时路端电压等于电源电动势。 (3)某段导体作为电源时,电路断路时导体两端的电压等于电源电动势 1:图中EF、GH为平行的金属导轨,其电阻可不计,R为电阻器,C为电容器,AB为可在EF和GH上滑动的导体横杆。有均匀磁场垂直于导轨平面。若用和分别表示图中该处导线中的电流,则当横杆AB() A.匀速滑动时,=0,=0 B.匀速滑动时,≠0,≠0 C.加速滑动时,=0,=0 D.加速滑动时,≠0,≠0

2、两根光滑的长直金属导轨、平行置于同一水平面内,导轨间距为l,电阻不计,M、处接有如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C。 长度也为l、阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中。ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为s的过程中,整个回路中产生的焦耳热为Q。求: (1)ab运动速度v的大小; (2)电容器所带的电荷量q。 3、如图所示,两条平行的光滑水平导轨上,用套环连着一质量为0.2kg、电阻为2Ω的导体杆ab,导轨间匀强磁场的方向垂直纸面向里。已知=3Ω,= 6Ω,电压表的量 程为0~10 V,电流表的量程为0~3 A(导轨的电阻不计)。求: (1)将R调到30Ω时,用垂直于杆ab的力F=40 N,使杆ab沿着导轨向右移动且达到最大速度时,两表中有一表的示数恰好满量程,另一表又能安全使用,则杆ab的速度多大?(2)将R调到3Ω时,欲使杆ab运动达到稳定状态时,两表中有一表的示数恰好满量程,另一表又能安全使用,则拉力应为多大? (3)在第(1)小题的条件下,当杆ab运动达到最大速度时突然撤去拉力,则电阻上还能产生多少热量?

(含答案解析)电磁感应中的电路问题

电磁感应中的电路问题 一、基础知识 1、内电路和外电路 (1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源. (2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路. 2、电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦΔt . (2)路端电压:U =IR =E -Ir . 3、对电磁感应中电源的理解 (1)电源的正负极、感应电流的方向、电势的高低、电容器极板带电问题,可用右手定则或楞次定律判定. (2)电源的电动势的大小可由E =Blv 或E =n ΔΦΔt 求解. 4、对电磁感应电路的理解 (1)在电磁感应电路中,相当于电源的部分把其他形式的能通过电流做功转化为电能. (2)“电源”两端的电压为路端电压,而不是感应电动势. 5、解决电磁感应中的电路问题三步曲 (1)确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导 体或回路就相当于电源,利用E =n ΔΦΔt 或E =Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向. (2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图. (3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 二、练习 1、[对电磁感应中等效电源的理解]粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场 中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是 ( )

答案 B 解析 线框各边电阻相等,切割磁感线的那个边为电源,电动势相同均为Blv .在A 、C 、 D 中,U ab =14Blv ,B 中,U ab =34 Blv ,选项B 正确. 2、如图所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直 时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环 的最高点A 铰链连接的长度为2a 、电阻为R 2 的导体棒AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两 端的电压大小为 ( ) A.Bav 3 B.Bav 6 C.2Bav 3 D .Bav 答案 A

浙江专版2020学年高中物理第四章电磁感应习题课:电磁感应中的电路电荷量及图象问题教学案新

习题课:电磁感应中的电路、电荷量及图象问题 课时要求 1.掌握电磁感应现象中电路问题的分析方法和解题基本思路. 2.掌握电磁感应电路中感应电荷量求解的基本思路和方法. 3.综合应用楞次定律和法拉第电磁感应定律解决电磁感应的图象问题. 一、电磁感应中的电路问题 电磁感应问题常与电路知识综合考查,解决此类问题的基本方法是: (1)明确哪部分电路或导体产生感应电动势,该电路或导体就相当于电源,其他部分是外电路. (2)画等效电路图,分清内、外电路. (3)用法拉第电磁感应定律E =n ΔΦ Δt 或E =Blv 确定感应电动势的大小,用楞次定律或右手定 则确定感应电流的方向.在等效电源内部,电流方向从负极指向正极. (4)运用闭合电路欧姆定律、串并联电路特点、电功率、电热等公式联立求解. 例1 固定在匀强磁场中的正方形导线框abcd 边长为L ,其中ab 是一段电阻为R 的均匀电阻丝,其余三边均为电阻可以忽略的铜线.磁感应强度为B ,方向垂直纸面向里.现有一段与ab 段的材料、粗细、长度均相同的电阻丝PQ 架在导线框上(如图1所示).若PQ 以恒定的速度v 从ad 滑向bc ,当其滑过L 3的距离时,通过aP 段的电流是多大?方向如何? 图1 答案 6BvL 11R 方向由 P 到a 解析 PQ 在磁场中做切割磁感线运动产生感应电动势,由于是闭合回路,故电路中有感应电

流,可将电阻丝PQ 视为有内阻的电源,电阻丝aP 与bP 并联,且R aP =13R 、R bP =23 R ,于是可画出如图所示的等效电路图. 电源电动势为E =BvL , 外电阻为R 外=R aP R bP R aP +R bP =29 R . 总电阻为R 总=R 外+r =29 R +R , 即R 总=119R .电路中的电流为:I =E R 总=9BvL 11R . 通过aP 段的电流为:I aP = R bP R aP +R bP I =6BvL 11R , 方向由P 到a . 1.“电源”的确定方法:“切割”磁感线的导体(或磁通量发生变化的线圈)相当于“电源”,该部分导体(或线圈)的电阻相当于“内电阻”. 2.电流的流向:在“电源”内部电流从负极流向正极,在“电源”外部电流从正极流向负极. 二、电磁感应中的电荷量问题 例2 面积S =0.2 m 2、n =100匝的圆形线圈,处在如图2所示的磁场内,磁感应强度B 随时间t 变化的规律是B =0.02t T ,R =3 Ω,C =30 μF ,线圈电阻r =1 Ω,求: 图2 (1)通过R 的电流方向和4 s 内通过导线横截面的电荷量; (2)电容器的电荷量. 答案 (1)方向由b →a 0.4 C (2)9×10-6 C 解析 (1)由楞次定律可求得电流的方向为逆时针,通过R 的电流方向为b →a , q =I Δt =E R +r Δt =n ΔBS Δt (R +r )Δt =n ΔBS R +r =0.4 C. (2)由E =n ΔΦΔt =nS ΔB Δt =100×0.2×0.02 V=0.4 V , I =E R +r =0.43+1 A =0.1 A , U C =U R =IR =0.1×3 V=0.3 V , Q =CU C =30×10-6×0.3 C=9×10-6 C. (1)求解电路中通过的电荷量时,一定要用平均感应电动势和平均感应电流计算. (2)设感应电动势的平均值为E ,则在Δt 时间内:E =n ΔΦΔt ,I =E R ,又q =I Δt ,所

电磁感应中的动力学和能量问题(教师版)

专题 电磁感应中的动力学和能量问题 一、电磁感应中的动力学问题 1.电磁感应与动力学、运动学结合的动态分析,分析方法是: 导体受力运动产生感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至达到稳定状态. 2.分析动力学问题的步骤 (1)用电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向. (2)应用闭合电路欧姆定律求出电路中感应电流的大小. (3)分析研究导体受力情况,特别要注意安培力方向的确定. (4)列出动力学方程或平衡方程求解. 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态. 处理方法:根据平衡条件——合外力等于零,列式分析. (2)导体处于非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 二、电磁感应中的能量问题 1.电磁感应过程的实质是不同形式的能量转化的过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力作用,因此要维持感应电流存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能,“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;当感应电流通过用电器时,电能又转化为其他形式的能.可以简化为下列形式: 其他形式的能 如:机械能 ――→安培力做负功电能 ――→电流做功其他形式的能 如:内能 同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能. 2.电能求解的思路主要有三种 (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功; (2)利用能量守恒求解:机械能的减少量等于产生的电能; (3)利用电路特征求解:通过电路中所产生的电能来计算. 例1 如图所示,MN 、PQ 为足够长的平行金属导轨,间距L =0.50 m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R =5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B =1.0 T .将一根质量为m =0.050 kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离s =2.0 m .已知g =10 m/s 2,sin 37°=0.60,cos 37°=0.80.求: (1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒到达cd 处的速度大小; (3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量. 解析 (1)设金属棒开始下滑时的加速度大小为a ,则 mg sin θ-μmg cos θ=ma a =2.0 m/s 2 (2)设金属棒到达cd 位置时速度大小为v 、电流为I ,金属棒受力平衡,有mg sin θ=BIL + μmg cos θ I =BL v R 解得v =2.0 m/s (3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒, 有mgs sin θ=12 m v 2+μmgs cos θ+Q 解得Q =0.10 J 突破训练1 如图所示,相距为L 的两条足够长的平行金属导轨,与水平面的夹角为θ,导轨上固定有质量为m 、电阻为R 的两根相同的导体棒,导体棒MN 上方轨道粗糙、下方轨

相关文档
相关文档 最新文档