文档库 最新最全的文档下载
当前位置:文档库 › 四种常见快速成型技术 (2)

四种常见快速成型技术 (2)

四种常见快速成型技术 (2)
四种常见快速成型技术 (2)

四种常见快速成型技术

FDM

丝状材料选择性熔覆(Fus ed Dep osi tion Mod eling)快速原型工艺是一种不依*激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。

??丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。热塑性丝状材料(如直径为1.78m m的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。

??这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。但仍需对整个截面进行扫描涂覆,成型时间长。适合于产品设计的概念建模以及产品的形状及功能测试。由于甲基丙烯酸ABS(M AB S)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。但成型精度相对较低,不适合于制作结构过分复杂的零件。

FD M快速原型技术的优点是:

1、操作环境干净、安全可在办公室环境下进行。

2、工艺干净、简单、易于材作且不产生垃圾。

3、尺寸精度较高,表面质量较好,易于装配。可快速构建瓶状或中空零件。

4、原材料以卷轴丝的形式提供,易于搬运和快速更换。

5、材料利用率高。

6、可选用多种材料,如可染色的A BS和医用A BS、PC、PP SF等。FDM快速原型技术的缺点是:

1、做小件或精细件时精度不如SLA,最高精度0.127mm。

2、速度较慢。

SL A

敏树脂选择性固化是采用立体雕刻(Stereo litho gra phy)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。

在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的塑料薄片。然后,工作台下降一层薄片的高度,以固化的塑料薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢固的粘结在前一层上,如此重复不已,知道整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工件,进行清洗和表面光洁处理。

光敏树脂选择性固化快速原型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂模和其他软模的母模,使目前较为成熟的快速原型工艺。

SL A快速原型技术的优点是:

1、成形速度较快。

2、系统工作相对稳定。

3、尺寸精度较高,可确保工件的尺寸精度在0.1m m(但,国内SL A 精度在——0.3mm之间,并且存在一定的波动性)。

4、表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平;比较适合做小件及较精细件。

5、系统分辨率较高。

SL A快速原型的技术缺点:

1、需要专门实验室环境,维护费用高昂。

2、成型件需要后处理,二次固化,防潮处理等工序。

2、光敏树脂固化后较脆,易断裂,可加工性不好;工作温度不能超过100℃,成形件易吸湿膨胀,抗腐蚀能力不强。

3、氦-镉激光管的寿命仅3000小时,价格较昂贵。同时需对整个截面进行扫描固化,成型时间较长,因此制作成本相对较高。

4、且光敏树脂对环境有污染,使皮肤过敏。

5、需要设计工件的支撑结构,以便确保在成型过程中制作的每一个结构部委都能可*定位,支撑结构需在未完全固化时手工去除,容易

破坏成型件。

SLS

粉末材料选择性烧结(Sel ected La ser Sint ering)是一种快速原型工艺,简称SLS。

??粉末材料选择性烧结采用二氧化碳激光器对粉末材料(塑料粉、陶瓷与粘结剂的混合粉、金属与粘结剂的混合粉等)进行选择性烧结,是一种由离散点一层层对集成三维实体的工艺方法。

??在开始加工之前,先将充有氮气的工作室升温,并保持在粉末的熔点一下。成型时,送料筒上升,铺粉滚筒移动,先在工作平台上铺一层粉末材料,然后激光束在计算机控制下按照截面轮廓对实心部分所在的粉末进行烧结,使粉末溶化继而形成一层固体轮廓。第一层烧结完成后,工作台下降一截面层的高度,在铺上一层粉末,进行下一层烧结,如此循环,形成三维的原型零件。最后经过5-10小时冷却,即可从粉末缸中取出零件。未经烧结的粉末能承托正在烧结的工件,当烧结工序完成后,取出零件,未经烧结的粉末基本可自

??粉末材料选择性烧结工艺适合成型中小件,能直接的到塑料、陶瓷或金属零件,零件的翘曲变形比液态光敏树脂选择性固化工艺要小。但这种工艺仍需对整个截面进行扫描和烧结,加上工作室需要升温和冷却,成型时间较长。此外,由于受到粉末颗粒大小及激光点的限制,零件的表面一般呈多孔性。在烧结陶瓷、金属与粘结剂的混合粉并得到原型零件后,须将它置于加热炉中,烧掉其中的粘结剂,并在孔隙

中渗入填充物,其后处理复杂。

??粉末材料选择性烧结快速原型工艺适合于产品设计的可视化表现和制作功能测试零件。由于它可采用各种不同成分的金属粉末进行烧结、进行渗铜等后处理,因而其制成的产品可具有与金属零件相近的机械性能,故可用于制作EDM电极、直接制造金属模以及进行小批量零件生产。

SLS快速原型技术的优点是:

1、与其他工艺相比,能生产较硬的模具,有直接金属型的概念。

2、可以采用多种原料,包括类工程塑料、蜡、金属、陶瓷等。

3、零件的构建时间较短,可达到1i n/h高度。

4、无需设计和构造支撑。

SL S快速原型技术缺点是:

1、需要专门实验室环境,维护费用高昂。

2、在加工前,要花近2小时的时间将粉末加热到熔点以下,当零件构建之后,还要花5-10小时冷却,然后才能将零件从粉末缸中取出。

3、成形件强度和表面质量较差,精度低。表面的粗糙度受粉末颗粒大小及激光光斑的限制。

4、零件的表面多孔性,为了使表面光滑必须进行渗蜡等后处理。在后处理中难于保证制件尺寸精度,后处理工艺复杂,样件变型大,无法装配。

5、需要对加工室不断充氮气以确保烧结过程的安全性,加工的成本高。

6、该工艺产生有毒气体,污染环境。

LO M

箔材叠层实体制作(Lami nat ed Ob jec t Man ufactu ring)快速原型技术是薄片材料叠加工艺,简称LOM。

??箔材叠层实体制作是根据三维C AD模型每个截面的轮廓线,在计算机控制下,发出控制激光切割系统的指令,使切割头作X和Y方向的移动。供料机构将地面涂有热溶胶的箔材(如涂覆纸、涂覆陶瓷箔、金属箔、塑料箔材)一段段的送至工作台的上方。激光切割系统按照计算机提取的横截面轮廓用二氧化碳激光束对箔材沿轮廓线将工作台上的纸割出轮廓线,并将纸的无轮廓区切割成小碎片。

??然后,由热压机构将一层层纸压紧并粘合在一起。可升降工作台支撑正在成型的工件,并在每层成型之后,降低一个纸厚,以便送进、粘合和切割新的一层纸。最后形成由许多小废料块包围的三维原型零件。然后取出,将多余的废料小块剔除,最终获得三维产品。

??叠层实体制作快速原型工艺适合制作大中型原型件,翘曲变形较小,尺寸精度较高,成型时间较短,激光器使用寿命长,制成件有良好的机械性能,适合于产品设计的概念建模和功能性测试零件。且由于制成的零件具有木质属性,特别适合于直接制作砂型铸造模。

LO M快速原型技术的优点是:

1、由于只需要使激光束沿着物体的轮廓进行切割,无需扫描整个断面,所以这是一个高速的快速原型??工艺。常用于加工内部结构简单的大型零件及实体件。

2、无需设计和构建支撑结构。

LOM快速原型技术的缺点是:

1、需要专门实验室环境,维护费用高昂。

2、可实际应用的原材料种类较少,尽管可选用若干原材料,例如纸、塑料、陶土以及合成材料,但目前常用的只是纸,其他箔材商在研制开发中。

3、表面比较粗糙,工件表面有明显的台阶纹,成型后要进行打磨;且纸制零件很容易吸潮,必须立即进行后处理、上漆。

4、难以构建精细形状的零件,即仅限于结构简单的零件。

5、由于难以(虽然并非不可能)去除里面的废料,该工艺不宜构建内部结构复杂的零件。

6、当加工室的温度过高时常有火灾发生。因此,工作过程中需要专职人员职守。

几种快速成型技术的优缺点

优点:

FDM熔融沉积成型

(1)??成形材料种类较多,成形样件强度好,能直接制作ABS塑料;

(2)尺寸精度较高,表面质量较好,易于装配;(3) 材料利用率高;

(4) 操作环境干净、安全可在办公室环境下进行。

SL A光固化成型

(1)??成形速度极快,成形精度、表面质量高;(2) 适合做小件及精

细件。

SL S选择性激光烧结

(1)??有直接金属型的概念,可直接得到塑料、蜡或金属件;(2) 材料利用率高;造型速度较快。

LO M分层实体制造

(1)??成形精度较高;(2)只须对轮廓线进行切割,制作效率高,适合做大件及实体件;(3) 制成的样件有类似木质制品的硬度,可进行一定的切削加工。

缺点:

FDM熔融沉积成型

(1)??成形时间较长;(2)做小件和精细件时精度不如SLA。

SL A光固化成型

(1)? ?成形后要进一步固化处理;(2)光敏树脂固化后较脆,易断裂,可加工性不好;(3) 工作温度不能超过100℃,成形件易吸湿膨胀,抗腐蚀能力不强。

SL S选择性激光烧结

(1)??成形件强度和表面质量较差,精度低。(2) 在后处理中难于保证制件尺寸精度,后处理工艺复杂,样件变型大,无法装配。

LOM分层实体制造

(1)??不适宜做薄壁原型;(2)表面比较粗糙,工件表面有明显的台阶纹,成型后要进行打磨;(3) 易吸湿膨胀,成形后要尽快表面防潮处理;(4) 工件强度差,缺少弹性。

设备购置费用:

FD M熔融沉积成型:低廉

SLA光固化成型:高昂

SLS选择性激光烧结:高昂

LO M分层实体制造:中等

维护和曰常使用费用及发展趋势:

FD M熔融沉积成型

不使用激光,维护简单,运行费用低。

飞速发展

SL A光固化成型

激光器有损耗,光敏树脂价格昂贵,运行费用很高。

稳步发展

SLS选择性激光烧结

激光器有损耗,材料利用率高,原材料便宜,运行费用居中。

稳步发展

LO M分层实体制造

激光器有损耗,材料利用率很低,运行费用较高。

渐趋淘汰

无人值守

LO M和S LS使用的CO2激光器是依*热量对成形材料进行切割和融化的,因此在机构发生机械故障时(如:传动失灵,激光器无法自动关闭等),有发生火灾的可能,因此工作时必需有专人值守。SL A的紫

外光激光器是利用光敏树脂对紫外光敏感凝固的特性进行成形,不产生高热;FDM的热压喷头温度远低于成形材料的燃点;因此SLA和FDM 在安全性方面可实现无人值守。

办公环境下使用

LO M和S LS使用时产生烟尘,S LA、LO M和S LS使用激光,具有危险性,因此在严格意义上说SL A、L OM和SL S均不适合在办公室内使用。

快速成型技术(一)

2008-04-05 12:38

1、快速成型:它结合了数控技术,CAD技术,激光技术,材料科学技术,自动控制技术等多门学科的先进成果,利用光能,热能等能量形式,对材料进行烧结,固化,粘结或熔融,最终成形出零件的三维实物模型。激光烧结深度:是直接影响烧结成型质量的重要因素之一,合适的烧结深度是获得良好烧结成型质量的前提,烧结深度必须大于铺粉厚度,以保证激光能量能够溶透当前层,使相邻两层产生烧结,否则就会产生分层导致成型强度精度变差,甚至无法成型,所以对影响烧结深度的因素进行研究,通过合理选择工艺参数来控制烧结深度具有十分重要的意义。烧结深度主要由激光能量参数及粉末材料的特征参数决定。其中激光能量参数又包括激光功率激光束,扫描速度,激光线束,长度及宽度;粉末材料的特征参数则包括粉末材料对激光的吸收率,粉末熔点比热容,颗粒尺寸及分布,颗粒形态及铺粉密度。成型精度:是指成型工件的精度,而非快速成型机的机器精度,是保

证成型件精度的重要前提,成型精度主要包括形状精度,尺寸精度与表面精度,即烧结成型件在形状尺寸和表面相互位置三个方面指标与设计要求的符合程度。??直接/间接快速制模;直接快速制模是制用SLS,FDM,LOM等快速成型工艺方法之间制造出树脂模,陶瓷模和金属模具。间接快速制模是指用快速成型作母件或过度模具,再通过传统的每模具制造方法来制造模具。软模技术;采用各种快速成型技术包括SLS,FDM,LOM可直接将CAD模型(虚拟模型)转换为具有一定机械性能的非金属的原型(物理原型),在许多场合下可作为软模具使用,用于小批量塑料零件的生产。??桥模技术;是将环氧树脂与有机或无机复合材料作为基体材料,以原型为基准烧浇模具的一中间接制模方法。覆模陶瓷金属粉:是经混粒-挤压-球磨粉碎制得的,大块的有机树脂与陶瓷粉末的混合替经球磨粉碎后呈不规则的形状,颗粒尺寸从零点几微米到几十微米,大颗粒是由大量有机树脂与陶瓷基本颗粒构成的团粒(聚集体)。

2 、SLA/LOM基本原理及特点:LOM原理也称薄型材料选择性切割它根据三维模型每一个截面的轮廓线,在计算机的控制下,用二氧化碳激光束对薄型材料(如底面涂胶的纸)进行切割,逐步得到各层截面,并粘结在一起,形成三维产品。特点:这种方法适合成形大中型零件,翘曲变形小,成型时间较短,但尺寸精度不高,材料浪费,大,且清除废料困难。SLA使用二氧化碳激光器烧结粉末材料(如蜡粉,PS粉,ABS粉,尼龙粉,覆膜陶瓷和金属粉等)。成型时先在工作台上铺一层粉末材料,激光束在计算机的控制下,按照截面轮廓的信息,对制

件的实心部分所在的粉末进行烧结。一层完成后,工作台下降一个层厚,再进行后一层的铺粉烧结。如此循环,最终形成三维产品。特点:这种方法适合成型中小型零件,能直接制造蜡模或塑料,陶瓷和金属产品。制件的翘曲变形比SLS工艺小,但仍需对容易发生变形的地方设计支撑结构。这种工艺要对实心部分进行填充扫描烧结,因此成型时间较长。和、可烧结覆膜陶瓷粉和覆膜金属粉,得到成型件后,将制件置于加热炉中,烧掉其中的粘结剂,并在孔隙渗入填充物。它最大的优点在与适用材料很广,几乎所用的粉末都可以使用,所以其应用范围也最广。

3 、STL文件格式规则:(1)共顶点规则。在一个小三角形平面必须与每个小三角形平面共用两个顶点,也就是说,一个小三角形平面的顶点不能落在相邻的任一个三角形平面的边上。(2)取向规则。对于每一个平面,其法向量必须向外,3个顶点连成的矢量方向按右手法则确定,而且对于相邻的小三角形平面,不会出现取向矛盾。(3)取值规则。每一个小三角形平面的顶点坐标必须是正数,零和负数是错误的。(4)充满规则。在三维模型的所有表面上,必须布满小三角形平面,不得有任何遗漏。

4、SLS直接成型精铸蜡模工艺步骤:(1)首先在CAD环境中,将设计好的蜡模三维实体模型直接翻成零件的反型,经过适当的处理,得到压型的CAD图形;(2)对覆模金属粉,如树脂包覆的不锈钢粉进行激光烧结成型,得到压型的原型件;(3)由于原型件中含有大量有机树脂,需在真空炉中经过脱脂处理彻底清除;(4)为了保证

一定的连接强度,以便进行金属处理过程中不致被破坏,对脱脂件要进行预烧结,对不锈钢预烧结温度大约为900℃;(5)在真空中对上述处理件进行渗金属,以提高其密实程度,在经过表面打磨,抛光处理,即可制得蜡模的金属压型。

5、快速模具优点:快速成型技术不仅能适应各种生产类型特别是单件小批量的模具生产,而且能适应各种复杂程度的模具制造。它既能制造塑料模具,也能制造压铸模等金属模具。因此快速成型一问世,就迅速应用与模具制造上。??

意义:应用快速成型方法快速制作模具的技术称为快速模具制造技术,而基于RP技术的快速模具制造由于技术集成程度高,从CAD数据到物理实体转换过程快,因而同传统的数控加工方法相比,加工一件模具的制作周期比前着的1∕3~1/10,生产成本也仅为1/3~1/5。所以国外发达国家已将RT技术作为缩短模具制作周期和产品开发时间的重要研究课题和制造核心技术之一。

6、直接制作金属模具成型金属工艺方法。1)利用SLS工艺制造金属模具1金属粉末大功率激光烧结成型技术2混合金属粉末激光烧结成型技术3金属-树脂粉末激光烧结成型法2)利用LOM工艺制造金属模具3)用FDM(熔积成型)法也可直接制造金属模具

7 、模技术特点,步骤常用材料,材料特性?特点:硅胶模制模过程简单,不需要高压注射机等专门设备,脱模容易。一套硅胶模能制造20个左右零件。一般在真空中浇注,以去除气泡。硅胶模的主要优点是成本低,许多材料都可以用硅胶模成型,适宜于蜡、树脂,石膏

等的浇注成型,广泛应用于精铸蜡模的制作、艺术品的仿制和生产的制备。硅胶模的主要缺点是制模速度慢,硅胶一般需24小时才能固化,为缩短这个时间,可以预加热原材料,将时间缩短一半。反应注射模就是针对龟甲们的缺点设计的。它采用自动混合快速凝固材料的方法,用单一模具,每天能制20—40件,若用多套模具,产量还将大大增加。常用材料:室温硫化硅橡胶,硫化硅橡胶种类很多但模具用的RTV要有如下的特征,伸长率和抗撕强度特别高,对原模具优异的兼容性,对于大多数化学物品有极好忍受能力,只有具有上述的RTV特性才能有较长的模具寿命和较低的模具成本(1)TE-1089硅橡胶,属于双组分试问硫化硅橡胶,具有优异的柔软性,极强的抗撕强度,及耐高温、耐化学腐蚀性。(2)甲基乙烯基硅橡胶,耐高温性,低温弹性,耐气候性,具有卓越的电性能,优良的物理机械性能,耐化学物质性能,透气性,生理惰性。(3)RTV358,是一种室温硫化非透明硅橡胶,它在25度加入固化剂,经24小时后初步固化成弹性体。(4)RTV141,是一种室温硫化透明硅橡胶,它在25度加入固化剂,经24—48小时后初步固化成弹性体。(5)TEKSIL高温硫化硅橡胶,它比室温硫化硅橡胶哟更好的性能,硬度HSA55—75,抗拉强度—,工作温度可以达到150—500度。(6)聚氨酯树脂与工程塑料,是三种聚氨酯树脂SG95、SG200、2170与三种工程塑料ABS、Nylon6、聚丙烯PP的性能。

8、快速铸造技术实现途径?P213

9 、金属粉激光烧结成型技术状况?1利用高功率激光(1000w以上)

对金属粉末进行扫描烧结,逐层叠加成型,成型件经表面后处理即完成模具制作,制作的模具可作为压铸模、锻模使用。2optomec公司于1998年和1999年分别推出了LENS-50、LENS-1500机型,以钢合金、铁镍合金、钛镍合金、钛钽合金镍铝合金为原料,采用激光技术,将金属直接熔化沉积成型,其生产的金属零件强度达到了传统方法生产的金属零件,精度在x-y平面可达0.13mm,z方向0.4mm,但表面粗糙度高,相当于砂型铸件的表面光洁程度,在使用前需进行精加工。3国内今年来也开展了这方面的研究工作,西北工业大学、北京航空航天大学利用这种方法制作了高温合金零件,清华大学也正在开展这项工作。华中科技大学在国际上提出了一种激光—等离子复合成型技术,即利用大功率激光逐层烧结熔化金属粉末,利用等离子逐层对实体进行轮廓整形,以得到表面精度较高的金属零件或模具。

10、 RP在铸造模具快速制造中应用/?刘光富P147-149

11、 LOW原型制造误差分析,提高精度措施?王广春P37-40

12、覆膜金属粉激光成型件后处理工艺?1)先用稀碳酸钠溶液清洗金属粉表面油脂,再用稀盐酸清洗表面氧化物,用清水洗涤,最后用润湿剂进行表面处理;2)包覆溶液制备。将增滑剂、脱模剂、润湿分散剂、不同熔点的热熔胶按一定比例在卤代烃中加热溶解成溶液;3)将包覆溶液和表面处理后的金属粉按一定比例在双锥回转真空干燥机中混合、烘干、回收溶剂;4)将包覆的金属粉在球磨机中进行粉碎加工,过筛得到一定粒度的粉末;5)在加工好的粉末中添加纳米粉末降低粉末粘度、改善粉末流动性,得到适合选择性激光烧结的

覆膜金属粉(CMP1)????13、铝填充环氧树脂膜?刘光富P134

14、电弧喷涂快速制摸原理及基本结构?原理:将两根待喷金属丝作为自耗性电极,利用两根金属丝端部短路产生的电弧使丝材熔化,用压缩气体把已熔化的金属雾化成微滴,并使其加速沉积到基本表面形成涂层。以这种金属涂层作为模具的型腔表面,背衬加固并设置相应的钢结构后就形成了简易的快速经济模具。基本结构:金属喷涂层,背衬层和钢结构部分

快速成型技术(二)

2008-04-05 12:38

1、快速成型:快速成型技术,又称实体自由成型技术,快速成型的工艺方法是基于计算机三维实体造型,在对三维模型进行处理后,形成截面轮廓信息,随后将各种材料按三维模型的截面轮廓信息进行扫描,使材料粘结、固化、烧结,逐层堆积成为实体原型。

激光烧结深度:是直接影响烧结质量的重要因素之一,主要由激光能量参数及粉末材料的特征参数决定的。其中,激光能量参数又包括激光功率、激光束扫描速度、激光线的长度及宽度;粉末材料的特征参数则包括粉末材料对激光的吸收率、粉末熔点、比热容、颗粒尺寸及分布、颗粒形态及铺粉密度。

成型精度:是评价成型质量最主要的指标之一,它是快速成型技术发展的基石。精度值一般的指机器的精度,即使给出制作也是专门设计的标准件的精度,而并非以为着制作任何制件都能达到的精度。

直接制模:用SLS、FDM、LOM等快速成型工艺方法直接制造出树脂模、

陶瓷模和金属模具。

间接制模:用快速成型件作母模或过度模具,在通过传统的模具制造方法来制作模具。

软模技术:采用各种快速成型技术包括SLA、SLS、LOM,可直接将模型(虚拟模型)转换为具有一定机械性能的非金属的原型(物理模型),在许多场合下作为软模使用,用于小批量塑料零件的生产。

桥模制作:将液态的环氧树脂于有机或无机复合材料作为基体材料,以原型为基准浇注模具的一种间接制模方法。

覆模陶瓷:与覆模金属粉末类似,包覆陶瓷粉末(Al2O3等)。

金属粉:按其组成情况分为三种:(1)单一的金属粉(2)两种金属粉末的混合体,其中一种熔点较低起粘结剂的作用(3)金属粉末和有机粘结剂的混合体。

2、SLA/LOM基本原理及特点:(1)SLA基本原理: SLA技术是交计算机CAD造型系统获得制品的三维模型,通过微机控制激光,按着确定的轨迹,对液态的光敏树脂进行逐层扫描,使被扫描区层层固化,连成一体,形成最终的三维实体,再经过有关的最终硬化打光等后处量,形成制件或模具。特点:可成型任意复杂形状,成型精度高,仿真性强,材料利用率高,性能可*,性能价格比较高。适合产品外型评估、功能实验、快速制造电极和各种快速经济模具。但该技术所用的设备和光敏树脂价格昂贵,使其成本较高。(2)LOM基本原理: LOM 技术是通过计算机的三维模型,利用激光选择性地对其分层切片,将得到的各层截面轮廓层层粘结,最终叠加成三维实体产品。特点:成

型速度快,成型材料便宜、成本低,因无相变,故无热应力、收缩、膨胀、翘曲等,所以形状与尽寸精度稳定,但成型后废料块剥离较费事,特别是复杂件内部的废料剥离。该工艺适用于航空、汽车等和中体积较大制件的制作。

3、STL文件格式规则:(1)共顶点规则:一个小三角形平面地顶点不能落在相邻的任何一个三角形平面的边上(2)取向规则:对于每一个小三角形平面,其法向量必须向外,3个顶点连成的矢量方向按右手法则确定,而且对于相邻的小三角形平面,不能出现取向矛盾(3)取值规则:每一个小三角形平面的顶点坐标值必须是正数,零和负数是错误的(4)充满规则:在三维模型的所有表面上,必须布满小三角平面,不得有任何遗漏。缺点:(1)出现违反共顶点的三角形(2)出现错误的裂缝或孔洞(3)三角形过少或过多(4)微小特征遗漏或出错。

4、SLS直接成型精铸蜡模工艺:快速成型精铸蜡模工艺流程如下所示:CAD原形-----分层处理-----快速成型蜡模----涂壳-----脱模----培烧----浇注----精铸零件。(1)在计算机中建立要加工蜡模的三维试题CAD模型,然后用分层软件进行切片处理,得[1]到每一加工曾面的信心,并将其转化为电信号控制激光扫描系统工作。(2)在成型工作平台上铺设一层致密均匀的成型粉末材料,激光束在计算机控制下根据切片层面信息对成型粉末材料进行扫描烧结,被激光束早社的粉末熔化并在随后的冷却进程中粘结在一起,完成第一个层面的加工(3)逐层铺粉,逐层扫描烧结,采用上述叠加成型法,最后

制造出三维试题零件----蜡模。

5、快速模具优点和意义:优点:快速经济制模技术与传统的机械加工相比,具有制模周期短、成本低、精度与寿命又能满足生产上的使用要求,是综合经济效益比较显着的一类制造模具的技术。意义:以RPM为技术支撑的快速模具制造RT(Rapid Tooling)也正是为了缩短新产品开发周期,早日向市场推出适销对路的、按客户意图定制的多品种、小批量产品而发展起来的新型制造技术。由于产品开发与制造技术的进步,以及不断追求新颖、奇特、多变的市场消费导向,使得产品(尤其是消费品)的寿命周期越来越短已成为不争的事实。例如,汽车、家电、计算机等产品,采用快速模具制造技术制模,制作周期为传统模具制造的1/3~1/10,生产成本仅为1/3~1/5。所以,工业发达国家已将RPM/RT作为缩短产品开发时间及模具制作周期的重要研究课题和制造业核心技术之一,我国也已开始了快速制造业的研究与开发应用工作。

6、直接制作金属模具、成型金属型工艺方法:(1)利用激光烧结快速成型机制作COPPER PA 金属中空暂时模(2)利用高温树枝和硬化剂,依照一定比例调配耐高温金属树脂溶液(3)将调制完成只来高温金属树脂,灌注于中空金属模具中以强化其强度(4)以高温振动机,将金属树脂内气泡清除,完成后,再用高温烤箱以一定规范使高温金属树脂加热硬化(5)取出金属树脂硬化后之金属暂时模,放于室温使整个模具完全硬化(6)以CNC加工机切除模具毛边,装置于模座上完成暂时制作。

7、硅胶模技术特点、常用材料、材料特性:特点:成本低,许多材料都可以用硅胶模成型,适合于蜡、树脂、石膏等浇注成型,广泛应用于精铸蜡模的制作、艺术品的仿制和生产样的制备。制作步骤:A、根据实体造型、正确选择分模线,以确保制品能够顺利脱模,在分模线处贴上胶带并涂以颜色以示分区。B、从四方以包围母样的方式组合板状的模框。C、计算硅胶主剂所需的剂量,将主剂与硬化剂按10:1比例均匀混合,放入真空浇注机中进行真空脱泡。D、取出硅橡胶注入模框直至母样被完全包围。E、将注入硅橡胶时带的空气再次放入真空注型中进行脱泡。F、室温下放置约24小时硅橡胶可完全硬化,35℃时完全硬化所需时间为10小时。尽量使用室温硬化,加温硬化会引起硅橡胶收缩。G、取下模框用手术刀将硅橡胶模具剖开,取出母样。H、在上模部分作气孔。如果发现模具有少量缺陷,可以用新配置的硅橡胶修补,并经固化处理即可。常用材料:材料特性:

8、快速铸造技术实现途径:主要有以下四种:(1)直接成型熔模铸造用蜡模或树脂消失模(2)直接成型砂型铸造用砂型(芯)或木模(3)直接成型陶瓷型精密铸造用陶瓷型壳(芯)(4)直接制造消失模或蜡模用模具。

9、金属粉激光烧结成型技术状况:现状:美国DTM公司金属粉末产品主要特点(1)材料成分:覆模1080碳钢(2)应用:制作注塑模的金属型芯及金属压铸模(3)制作主要特点:完全密实,达到铝材的强度和硬度;模量同钢相似,导热性好;能进行机加工、焊接、表面处理及热处理;抛光后表面粗燥度达到Ra=0。1μm;主要尺寸公

认识快速成型技术

教学难点与重点: 难点: 《产品逆向工程技术》教案 共 页 第 页 授课教师: 教研室: 备课日期: 年 月 日 课 题: 教 学 准 备: 教学目的与要求: 授 课 方 式: 项目四 快速成型技术认识 任务一 认识快速成型技术 PPT 掌握快速成型技术的原理、工作流程和特点。 讲授(90') 重点:快速成型技术的原理、工作流程和特点。 教 学 过 程: 上节课回顾→讲授课题→课堂小结

“ “ 张家界航院教案 第 页 上节课回顾: 讲授课题: 项目四 快速成型技术认识 通过前面的几节课我们学习了什么是逆向工程。通过逆向工程技术, 企业可以迅速的设计出符合当前流行趋势,以及符合人们消费需求的产品, 快速抢占市场。市场这块蛋糕就那么大,谁先抢到谁先吃,后来的就只能 看别人吃。现在的企业发展战略已经从以前的“如何做的更多、更好、更 便宜”转变成了“如何做的更快”。所以快速的响应市场需求,已经是制 造业发展的必经之路。 但是一件产品是不是设计出来就完事了?从设计到产品,中间还有一 个制造的过程,逆向工程解决了快速设计的问题,但是如果在制造加工阶 段耗费太长的时间,最后依然是无法快速的响应市场。尤其是在加工复杂 薄壁零件的时候,往往加工一件零件的周期要好几周,甚至几个月才能完 成,比如飞机发动机上的涡轮,加工周期要 90 天。 怎么解决这个问题呢?这就要用到今天我们这节课要讲的内容:快速 成型技术。快速成型技术就是在这种背景需求下发展起来的一种新型数字 化制造技术,利用这项技术可以快速的将设计思想转化为具有结构和功能 的原型或者是直接制造出零部件,以便可以对设计的产品进行快速评价、 修改。按照以往的技术,在生产一件样品的时候,要么开模、要么通过复 杂的机加工艺来生产,这样不管是从成本的角度还是时间的角度来讲,都 会带来成本的提高。而快速成型技术可以极大地缩短新产品的开发周期, 降低开发成本,最大程度避免产品研发失败的风险,提高了企业的竞争力。 任务一 认识快速成型技术 快速成型技术(Rapid Prototype ,简称 RP)有许多不同的叫法,比如 “3D 打印”( 3D printing)、分层制造”( layered manufacturing ,LM) 、增材制 造”( additive manufacturing ,AM) 等。同学们最熟悉的应该就是“3D 打 印”,其实刚开始的时候,3D 打印本是特指一种采用喷墨打印头的快速成 型技术,演变至今,3D 打印成了所有快速成型技术的通俗叫法,但是现在 在学术界被统一称为“增材制造”。 增材制造是一种能够不使用任何工具(模具、各种机床),直接从三 维模型快速地制作产品物理原型也就是样件的技术,可以使设计者在产品 的设计过程中很少甚至不需要考虑制造工艺技术的问题。使用传统机加的 方法来加工零件时,在设计阶段设计师就需要考虑到零件的工艺性,是不 是能够加工出来。对于快速成型技术来讲,任意复杂的结构都可以利用它 的三维设计数据快速而精确的制造出来,解决了许多过去难以制造的复杂 结构零件的成型问题,实现了“自由设计,快速制造”。 一、物体成型的方式 之所以叫“增材制造”很好理解就是通过“堆积”材料的方式进行制 造。与之相应的还有“减材制造”和“等材制造”。在现代成型学的观点 中,物体的成型方式可分以下几类:

快速成型技术的发展与应用

快速成型技术的发展与应用 摘要:快速成型技术是一项多学科交叉多技术集成的先进制造技术,本文简要介绍该技术的原理、特点,并重点研究阐述该技术在国内外应用和发展状况,并结合实际指出了该技术开发方向。 关键词:快速成型;原理;应用;开发 一引言 最近英国经济学人指出:快速成型技术(简称RP技术)市场潜力巨大,必将引领未来制造业,它将使工厂彻底告别车床、钻床等传统工具,改由更加灵巧的电脑软件主宰,这便是第三次工业革命到来的标志。虽然究竟谁能够引领第三次工业革命?目前我们要下这个结论,显得时机过早。但重视这被西方媒体誉为将带来“第三次工业革命” 的“RP技术”是非常必要的。本文就这一技术的原理及发展应用情况予以介绍。 二快速成型技术原理及特点 RP技术是20世纪90年代发展起来的一项高新技术。笼统地讲,RP技术属于堆积成形;严格地讲,它是基于离散和堆积原理,将零件的CAD模型按一定方式离散,成为可加工的离散面、离散线、离散点,而后采用物理或化学手段,将这些离散的面、线段和点堆积而形成零件的整体形状。RP技术工艺流程如图1所示。其主要工艺方法有:SLA、SLS、FDM、TDP,具体见下表: 用粉末材料为原料,按照分层信息铺好一层粉末材料计算机控制喷头有选择性地喷射粘接剂,使部分粉末粘接形成截面层。一层完成后,工作台下降一个层厚,如此循环形成三维产品。 三快速成型技术的发展现状 3.1国外的快速成型技术的发展现状 这种为现代社会带来强大冲击和震撼的新技术起源于1988年,美国3D System 公司推出的SLA-250液态光敏树脂选择性固化成形机,标志着RP技术的诞生。目前,RP技术被广泛应用于各个领域,如航天航空、医疗、军工、艺术设计等领域,应用最为广泛的是航空零部件的快速制造,包括快速精铸技术、金属直接制造零部件、风洞模型的制造。 国外主要的航空企业都在应用RP技术研制新型航空器。例如,美国军用和商用航空发动机制造商Sundstrand公司使用RP技术制作新型燃气轮发动机进风口外壳原型(φ300×250,壁厚仅1.5),节省了4个多月的加工制造时间和超过8.8万美元的费用。

快速成形技术的快速模具制造技术(doc 6)

快速成形技术的快速模具制造技术(doc 6)

基于快速成形技术的快速模具制造技术 一、引言 近10年来,制造业市场环境发生了巨大的变化,迅速将产品推向市场已成为制造商把握市场先机的重要保障。因此,产品的快速开发技术将成为赢得21世纪制造业市场的关键 快速成形技术(以下简称RP)是一种集计算机辅助设计、精密机械、数控激光技术和材料学为一体的新兴技术,它采用离散堆积原理,将所设计物体的CAD模型转化成实物样件。由于RP技术采用将三维形体转化为二维平面分层制造的原理,对物体构成复杂性不敏感,因此物体越复杂越能体现它的优越性。 以RP为技术支撑的快速模具制造RT(Rapid Tooling)也正是为了缩短新产品开发周期,早日向市场推出适销对路的、按客户意图定制的多品种、小批量产品而发展起来的新型制造技术。由于产品开发与制造技术的进步,以及不断追求新颖、奇特、多变的市场消费导向,使得产品(尤其是消费品)的寿命周期越来越短已成为不争的事实。例如,汽车、家电、计算机等产品,采用快速模具制造技术制模,制作周期为传统模具制造的1/3~1/10,生产成本仅为1/3~1/5。所以,工业发达国家已将RP/RT作为缩短产品开发时间及模具制作周期的重要研究课题和制造业核心技术之一,我国也已开始了快速制造业的研究与开发应用工作。 二、基于RPM的快速模具制造方法 模具是制造业必不可少的手段,其中用得最多的有铸模、注塑模、冲压模和锻模等。传统制作模具的方法是:对木材或金属毛坯进行车、铣、刨、钻、磨、电蚀等加工,得到所需模具的形状和尺寸。这种方法既费时又费钱,特别是汽车、摩托车和家电所需的一些大型模具,往往造价数十万元以上,制作周期长达数月甚至一年。而基于RPM技术的RT直接或间接制作模具,使模具的制造时间大大缩短而成本却大大降低。 1. 用快速成形机直接制作模具 由于一些快速成形机制作的工件有较好的机械强度和稳定性,因此快速成形件可直接用作模具。例如,Stratasys公司TITAN快速成形机的PPSF制件坚如硬木,可承受30 0℃高温,经表面处理(如喷涂清漆,高分子材料或金属)后可用作砂型铸造木模、低熔点合金铸造模、试制用注塑模以及熔模铸造的压型。当用作砂形铸造的木模时,它可用来重复制作50~100件砂型。作为蜡模的成型模时,它可用来重复注射100件以上的蜡模。用FDM快速成形机的ABS工件能选择性地融合包裹热塑性粘结剂的金属粉,构成模具的半成品,烧结金属粉并在孔隙渗入第二种金属(铝)从而制作成金属模。

快速成型技术的现状和发展趋势

快速成型技术的现状和发展趋势 1 快速成型技术的基本成型原理 近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得快速成型技术 (Rapid Prototyping简称RP)得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。 传统的加工技术是采用去材料的加工方式,在毛坯上把多余的材料去除,得到我们想要的产品。而快速成型技术基本原理是:借助计算机或三维扫描系统构建目标零件的三维数字化模型,之后将该信息传输到计算机控制的机电控制系统,计算机将模型按一定厚度进行“切片”处理,即将零件的3D数据信息离散成一系列2D轮廓信息,通过逐点逐面的增材制造方法将材料逐层堆积,获得实体零件,最后进行必要的少量加工和热处理,使零件性能、尺寸等满足设计要求。。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。 目前,快速成形的工艺方法已有几十种之多,大致可分为7大类,包括立体印刷、叠层实体制造、选择性激光烧结、熔融沉积成型、三维焊接、三维打印、数码累积成型等。其基本的原理如下图所示。 图1 快速成型原理示意图 2 快速成型技术在产品开发中的应用 不断提高RP技术的应用水平是推动RP技术发展的重要方面。目前,交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心快速成

型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。RP技术的实际应用主要集中在以下几个方面: 2.1 用于新产品的设计与试制。 (1)CAID应用: 工业设计师在短时间得到精确的原型与业者作造形研讨。 (2)机构设计应用: 进行干涉验证,及提早发现设计错误以减少后面模具修改工作。 (3)CAE功效:快速模具技术以功能性材料制作功能性模具,以进行产品功能性测试与研讨。 (4)视觉效果:设计人員能在短时间之便能看到设计的雛型,可作为进一步研发的基石。 (5)设计确认:可在短时间即可完成原型的制作,使设计人员有充分的时间对于设计的产品做详细的检证。 (6)复制于最佳化设计:可一次制作多个元件,可使每个元件针对不同的设计要求同时进行测试的工作,以在最短时间完成设计的最佳化。 (7)直接生产: 直接生产小型工具,或作为翻模工具 2.2 快速制模及快速铸造 快速模具制造传统的模具生产时间长,成本高。将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RP技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具 2.3 机械制造 由于RP技术自身的特点,使得其在机械制造领域,获得广泛的应用,多用于制造单件、小批量金属零件的制造。有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。2.4 医疗中的快速成形技术 在医学领域的应用近几年来,人们对RP技术在医学领域的应用研究较多。以医学影像数据为基础,利用RP技术制作人体器官模型,对外科手术有极大的应用价值。 2.5 三维复制 快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。 2.6 航空航天技术领域 航空航天产品具有形状复杂、批量小、零件规格差异大、可靠性要求高等特点,产品的定型是一个复杂而精密的过程,往往需要多次的设计、测试和改进,耗资大、耗时长,而快速成型技术以其灵活多样的工艺方法和技术优势而在现代航空航天产品的研制与开发中具有独特的应用前景。

快速成型技术及应用论文

基于激光快速成型技术的金属快速成型技术 摘要:文章详细介绍了金属粉末快速成型的研究现状 ,分析了金属粉末选择性激光烧结的工艺特点,对这些工艺的影响因素进行了讨论。 关键词:选区激光烧结;金属零件;影响因素。 引言 快速制造 (Rapid Manufacturing) 金属零件一直受到国内外的广泛重视 , 是当今快速成型领域的一个重要研究方向。到目前为止 ,用于直接成型金属材料、制备三维金属零件的技术主要有激光近形制造与金属粉末的选择性激光烧结技术。激光近形制造(LENS) ,又称激光熔覆制造或熔滴制造 ,它将激光熔覆工艺与激光快速成型技术相结合 , 利用激光熔覆工艺逐层堆积累加材料,形成具有三维形状的三维结构。在该方面 ,美国的Aeromet、德国的汉诺威激光中心以及清华大学激光加工研究中心等均进行了大量的研究 , 并得到了具有一定形状的三维实体零件。有异于激光近形制造 ,选择性激光烧结则有选择地逐层烧结固化粉末金属得到三维零件。在这一领域,美国的DTM丶德国的汉诺威激光中心等进行了多元金属的烧结研究。就选区激光烧结(SelectiveLaser Sintering , SLS)而言 ,根据成型用金属粉末的不同 , 人们又开发出多种工艺途径来实现金属零件的烧结成型 ,主要有三种途径:一是利用金属粉末与有机粘结剂粉末共混粉体的间接烧结,金属粉末与有机粘结剂粉末均匀共混,烧结中,低熔点的粘结剂粉末熔化并将高熔点的金属粉末粘结,形成原型(“绿件”),经后处理,烧失粘结剂,形成“褐件”,最后通过金属熔渗工艺得到致密的金属件;二是利用金属混合粉末的直接烧结 , 其中一种粉末具有较低的熔点(如铜粉) ,另一种粉末熔点较高 (如铁粉) ,烧结中低熔点的金属粉末铜熔化并将难熔的铁粉粘结在一起 , 这种方法同样需要较大功率激光器;三是利用单一成分金属粉末的直接烧结,这种方法目前主要用于低熔点金属粉末的烧结,对熔点高的金属粉末,需采用大功率激光器。本文分别对上述的间接和直接烧结成型工艺进行了初步的研究。 1 SLS的烧结原理 激光选择性烧结快速成型技术是使用激光束熔化或烧结粉末材料 ,利用分层的思想 ,把计算机中的 CAD 模型直接成型为三维实体零件。它的创新之处在于将激光、光学、温度控制和材料相联系。SLS烧结原理如图1所示,烧结过程可分为三部分: (1)首先在粉体床上铺一薄层粉体 , 并压实 , 可以根据需要 ,在激光烧结前进行预热; (2)激光照射粉体层 ,烧结粉体,形成所设计零件一层的形状;(3) 粉体床下降一个薄层厚度的距离;重复上面的过程 ,直到原型零件完成。 SLS对粉末烧结的明显优势在于: (1) 和其它的加工方法比较,能获得优良的材料性能,同时,它的加工材料范围比较宽 (聚合物、金属、陶瓷、铸造砂等);(2) 易于实现液相烧结 , 烧结周期比较短; (3) 比传统的烧结方法更易得到密实的以粉末金属为原料的产品;(4)工艺比较简单 , 烧结路线、烧结温度便于控制。

几种常见快速成型工艺的比较

几种快速成型方式的比较 几种常见快速成型工艺的比较 在快速领域里一直站主导地位快速成型工艺主要包括:FDM, SLA, SLS, LOM等工艺,而这几种工艺又各有千秋,下面我们在主 要看一下这几种工艺的优缺点比较: FDM(fused deposition Modeling)丝状材料选择性熔覆快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料、聚碳酸酯)加热熔化进而堆积成型方法,简称丝状材料选择性熔覆. 原理如下:加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作平面运动,热塑性丝状材料由供丝机构送至热熔喷头,并在喷头中加热和熔化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层画出截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料可供选用,如工程塑料;聚碳酸酯、工程塑料PPSF: 以及ABS 与PC的混合料等。这种工艺干净,易于操作,不产生垃圾,并可安全地用于办公环境,没有产生毒气和化学污染的危险。适合于产品设计的概念建模以及产品的形状及功能测试。专门开发的针对医用的材料ABS-i: 因为其具有良好的化学稳定性,可采用伽码射线及其他医用方式消毒,特别适合于医用。 FDM快速原型技术的优点是: 制造系统可用于办公环境,没有毒气或化学物质的污染;1次成型、易于操作且不产生垃圾;独有的水溶性支撑技术,使得去除支撑结构简单易行,可快速构建瓶状或中空零件以及一次成型的装配结构件; 原材料以材料卷的形式提供,易于搬运和快速更换。 可选用多种材料,如各种色彩的工程塑料以及医用ABS等 快速原型技术的缺点是:成型精度相对国外先进的SLA工艺较低,最高精度、成型表面光洁度不如国外 SLA:成型速度相对较慢光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺的简称,是最早出现的一种快速成型技术。在树脂槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的树脂薄片。然后,工作台下降一层

快速成型技术与试题---答案

试卷 2. 3.快速成型技术的主要优点包括成本低,制造速度快,环保节能,适用于新产品开发和单间零件生产等 4.光固化树脂成型(SLA)的成型效率主要与扫描速度,扫描间隙,激光功率等因素有关 5. 也被称为:3D打印,增材制造; 6.选择性激光烧结成型工艺(SLS)可成型的材料包括塑料,陶瓷,金属等; 7.选择性激光烧结成型工艺(SLS)工艺参数主要包括分层厚度,扫描速度,体积成型率,聚焦光斑直径等; 8.快速成型过程总体上分为三个步骤,包括:数据前处理,分层叠加成型(自由成型),后处理; 9.快速成型技术的特点主要包括原型的复制性、互换性高,加工周期短,成本低,高度技术集成等; 10.快速成型技术的未来发展趋势包括:开发性能好的快速成型材料,改善快速成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,开发新的成形能源,快速成形方法和工艺的改进和创新,提高网络化服务的研究力度,实现远程控制等; 11.光固化快速成型工艺中,其中前处理施加支撑工艺需要添加支撑结构,支撑结构的主要作用是防止翘曲变形,作为支撑保证形状; 二、术语解释 1.STL数据模型 是由3D SYSTEMS 公司于1988 年制定的一个接口协议,是一种为快速原型制造技术服务的三维图形文件格式。STL 文件由多个三角形面片的定义组成,每个三角形面片的定义包括三角形各个定点的三维坐标及三角形面片的法矢量。stl 文件是在计算机图形应用系统中,用于表示三角形网格的一种文件格式。它的文件格式非常简单,应用很广泛。STL是最多快速原型系统所应用的标准文件类型。STL是用三角网格来表现3D CAD模型。STL只能用来表示封闭的面或者体,stl文件有两种:一种是ASCII明码格式,另一种是二进制格式。 2.快速成型精度包括哪几部分 原型的精度一般包括形状精度,尺寸精度和表面精度,即光固化成型件在形状、尺寸和表面相互位置三个方面与设计要求的符合程度。形状误差主要有:翘曲、扭曲变形、椭圆度误差及局部缺陷等;尺寸误差是指成型件与CAD模型相比,在x、y、z三个方向上尺寸相差值;表面精度主要包括由叠层累加产生的台阶误差及表面粗糙度等。 3.阶梯误差 由于快速成型技术的成型原理是逐层叠加成型,因此不可避免地会产生台阶效应,使得零件的表面只是原CAD模型表面的一个阶梯近似(除水平和垂直表

快速成型技术的发展和应用

快速成型技术的发展和应用 摘要:科技飞速发展的今天,人类对制造业也提出了更高的要求,行业竞争也日趋激烈。 快速成型技术也应运而生,并且展现了它强大的生命力和广阔的应用前景。目前,快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。 The rapid development of science and technology today, the human is put forward higher requirements on manufacturing, industry competition is increasingly fierce. Rapid prototyping technology also arises at the historic moment, and shows its strong vitality and broad application prospects. At present, the modelling of rapid prototyping technology has been in the industry, machinery manufacturing, aerospace, military, architecture, film and television, home appliances, light industry, medicine, archaeology, cultural art, sculpture, jewelry, and other fields has been widely used. And with the development of the technology itself, and will continue to expand its application field. 关键词:快速成型,堆积法,高集成性、高柔性、高速性,自动、直接、快速、精确。 前言: 21世纪是以知识经济和信息社会为特征的时代,随着科学技术的发展和社会需求的多样化,全球统一市场和经济全球化的逐步形成,产品的竞争更加激烈。在工业化的国家中,60%—80%的财富是由制造业提供的。制造业是衡量一个国家实力水平的重要标志之一,也是创造社会财富和国民经济赖以生存发展的重要支柱产业。 现代制造已不仅仅是机械制造,而且具有大制造,全过程,多科学的新特点。大制造应包括机电产品的制造,工业流程制造,材料科学制造等等,所以它是一个广义的制造概念。 我国在先进制造技术方面和国外有比较大的差距,特别是我国制造业的自动化,信息化水平不高。大力发展和应用先进制造技术,勇气改造传统产业和形成高技术,提升我国制造业得产业结构,产品结构和组织结构,增强其技术创新能力,产品开发,和市场竞争能力。是制造业,特别是机械制造业走出困局的关键性措施。这样才能保证我们世界工厂地位的确立,实现由制造业大国向制造业强国的转变。 快速成型技术的诞生 快速成型技术作为一个专用名词在20世纪80年代末期,美国为了加强其制造业的竞争力与促进国民经济的增长,根据其制造业面临的挑战与机遇,并对其制造业存在的问题进行深刻反省提出来的。快速成型技术是集成制造技术,电子技术,信息技术,自动化技术,能源晕技术,材料科学以及现在管理技术等众多技术的交叉,融合和渗透而发展起来的,涉及到制造业中的产品设计,加工装配,检验测试,经营管理等产品生命周期全过程,已实现优质,高效,低耗,清洁,灵活生产,提高对动态多变,细分的市场的适应能力和竞争能力的一项综合技术。 快速成型技术是顺应这一潮流而出现的先进制造技术,它能自动,直接,快速,精确的将设计思想物转化具有一定功能的原型或直接制造零件,快速成型技术是先进制造技术的重要组成部分,也是制造技术在制造理论的一次革命性飞跃,快速成型技术目前在美国,欧洲,日本等地已被广泛应用,受到制造业界及各类用户的普遍重视。 世界上第一台快速成形机于自1988年诞生于美国。快速成型制造技术是国外20世纪80年

几种常见快速成型工艺优缺点比较

几种常见快速成型工艺优缺点比较 FDM 丝状材料选择性熔覆(FusedDepositionModeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。 丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。热塑性丝状材料(如直径为1.78mm的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。但仍需对整个截面进行扫描涂覆,成型时间长。适合于产品设计的概念建模以及产品的形状及功能测试。由于甲基丙烯酸ABS(MABS)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。但成型精度相对较低,不适合于制作结构过分复杂的零件。 FDM快速原型技术的优点是: 1、制造系统可用于办公环境,没有毒气或化学物质的危险。 2、工艺干净、简单、易于材作且不产生垃圾。 3、可快速构建瓶状或中空零件。 4、原材料以卷轴丝的形式提供,易于搬运和快速更换。 5、原材料费用低,一般零件均低于20美元。 6、可选用多种材料,如可染色的ABS和医用ABS、浇铸用蜡和人造橡胶。

FDM快速原型技术的缺点是: 1、精度较低,难以构建结构复杂的零件。 2、垂直方向强度小。 3、速度较慢,不适合构建大型零件。 SLA 敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。 在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的塑料薄片。然后,工作台下降一层薄片的高度,以固化的塑料薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢固的粘结在前一层上,如此重复不已,知道整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工件,进行清洗和表面光洁处理。 光敏树脂选择性固化快速原型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂模和其他软模的母模,使目前较为成熟的快速原型工艺。 SLA快速原型技术的优点是: 1、系统工作稳定。系统一旦开始工作,构建零件的全过程完全自动运行,无需专人看管,直到整个工艺过程结束。 2、尺寸精度较高,可确保工件的尺寸精度在0.1mm以内。 3、表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平。

(整理)快速成型技术的应用与发展前景

快速成型技术的应用与发展前景 一.什么是快速成型技术 快速成形技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。即,快速成形技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。 二.快速成型技术的产生背景 (1)随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。在这种情况下,自主快速产品开发(快速设计和快速工模具)的能力(周期和成本)成为制造业全球竞争的实力基础。 (2)制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。因此,产品的开发速度和制造技术的柔性就十分关键。 (3)从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。 三.快速成形技术的特点 快速成型技术具有以下几个重要特征: l )可以制造任意复杂的三维几何实体。由于采用离散/堆积成型的原理.它将一个十分复杂的三维制造过程简化为二维过程的叠加,可实现对任意复杂形状零件的加工。越是复杂的零件越能显示出 RP 技术的优越性此外, RP 技术特别适合于复杂型腔、复杂型面等传统方法难以制造甚至无法制造的零件。 2 )快速性。通过对一个 CAD 模型的修改或重组就可获得一个新零件的设计和加工信息。从几个小时到几十个小时就可制造出零件,具有快速制造的突出特点。 3 )高度柔性。无需任何专用夹具或工具即可完成复杂的制造过程,快速制造工模具、原型或零件。 4)技术高度集成性。RP技术是计算机、数控、激光、材料和机械等技术的综合集成。CAD技术通过计算机进行精确的离散运算和繁杂的数据转换,实现零件的曲面或实体造型,数控技术为高速精确的二维扫描提供必要的基础,这又是以精确高效堆积材料为前提的,激光器件和功率控制技术使材料的固化、烧结、切割成为现实。快速扫描的高分辨率喷头为材料精密堆积提供了技术保证术产生背景。 5)快速响应性。快速原型零件制造从CAD设计到原型 (或零件 )的加工完毕,只需几个小时至几十个小时,复杂、较大的零部件也可能达到几百小时,但从总体上看,速度比传统成形方法要快得多。尤其适合于新产品的开发,RP技术已成为支持并行工程和快速反求设计及快速模具制造系统的重要技术之一

快速成型技术及其发展综述

计算机集成制造技术与系统——读书报告 题目名称: 专业班级: 学号: 学生姓名: 指导老师

快速成型技术及其发展 摘要:快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,同时简述快速成型技术在国内的发展历程。 关键词:快速成型烧结固化叠加发展服务 1 快速成形技术的产生 快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。与此同时,其它的成形原理及相应的成形系统也相继开发成功。1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys 公司,1992年推出第一台商业成形系统LOM-1015。1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM 公司,于1992年开发了基于SLS的商业成形系统Sinterstation。斯科特科瑞普在1988年提出了熔融成形(Fused Deposition Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。 自从80年代中期SLA光成形技术发展以来到90年代后期,出现了几十种不同的RP技术,但是SLA、SLS和FDM几种技术,目前仍然是RP技术的主流,最近几年LJP(立体喷墨打印)技术发展迅速,以色列、美国、日本等国的RP设备公司都力推此类技术设备。 2基本原理 快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。 1、从成形角度看,零件可视为“点”或“面”的叠加。从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。 2、从制造角度看,它根据CAD造型生成零件三维几何信息,控制多维系统,通过激光束或其他方法将材料逐层堆积而形成原型或零件。 3快速成型技术特点 RP技术与传统制造方法(即机械加工)有着本质的区别,它采用逐渐增加材料的方法(如凝固、焊接、胶结、烧结、聚合等)来形成所需的部件外型,由于RP技术在制造产品的过程中不会产生废弃物造成环境的污染,(传统机械加工的冷却液等是污染环境的),因此在当代讲究生态环境的今天,这也是一项绿色制造技术。 RP技术集成了CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,解决了传统加工制造中的许多难题。 RP技术的基本工作原理是离散与堆积,在使用该技术时,首先设计者借助三维CAD或者

快速成型技术复习重点

1. 快速成型:简称RP,即将计算机辅助设计CAD\计算机辅助制造CAM\计算机数字控制CNC、激光、精密伺服驱动和新材料等先进技术集于一体,依据计算机上构成的工件三维设计模型,对其进行分层切片,得到各层截面的二维轮廓信息,快速成型机的成形头按照这些轮廓信息在控制系统的控制下,选择性地固化或切割一层层的成形材料,形成各个截面轮廓,并逐步顺序叠加成三维工件。.快速成形技术全过程步骤:a.前处理b.分层叠加成型c.后处理 快速成形制造流程:CAD模型→面型化处理→分层→层信息处理→层准备→层制造→层粘接→实体模型 2.什么是快速模具制造技术?该技术有何特点? 快速模具制造就是以快速成形技术制造的快速成型零件为母模,采用直接或间接的方法实现硅胶模、金属模、陶瓷模等模具的快速制造从而形成新产品的小批量制造,降低新产品的开发成本。特点:制模周期短、工艺简单、易于推广,制模成本低,精度和寿命都能满足特定的功能需要,综合经济效益好,特别适用于新产品开发试制、工艺验证和功能验证以及多品种小批量生产 3 LOM涂布工艺采用薄片型材料,如纸塑料薄膜金属箔等,通过计算机控制激光束,按模型每一层的内外轮廓线切割薄片材料,得到该层的平面轮廓形状,然后逐层堆积成零件原型。 SLS技术(选择性激光烧结成型技术)利用粉末材料如金属粉末非金属粉末,采用激光照射的烧结原理,在计算机控制下进行层层堆积,最终加工制作成所需的模型或产品。4.快速成形与传统制造方法的区别? 传统方法根据零件成形过程分为两大类:一类是以成型过程中材料减少为特征,通过各种方法将零件毛胚上多余材料去除,即材料去除法,二类是材料的质量在成型过程中基本保持不变,成型过程主要是材料的转移和毛胚形状的改变即材料转移法,但此类方法生产周期长速度慢。快速成型技术可以以最快的速度、最低的成本和最好的品质将新产品迅速投放市场。 5 硅胶模及制作方法硅胶模具是制作工艺品的专用模具胶。制作工艺原型表面处理制作型框和固定型框硅橡胶计量,混合并真空脱泡硅橡胶浇注及固化拆除型框,刀剖并取出原型 7. 构造三维模型的主要方法:a应用计算机三维设计软 件,根据产品的要求设计三维模型b应用计算机三维设计软件,将已有产品的二维三视图转换为三维模型c防制产品时,应用反求设备和反求软件,得到产品的三维模型d利用网络将用户设计好的三维模型直接传输到快速成形工作站 9 光固化快速成形(SLA)有那几种形式的支撑? a.角板支撑b.投射特征边支撑c.单臂板支撑d.臂板结构支撑e.柱形支撑 6. 目前比较成熟的快速成型技术有哪几种?它们的成型原 理上分别是什么? 液态光固化聚合物选择性固化成形简称SLA,粉末材料选择性烧结成形简称SLS,薄型材料选择性切割成形简称LOM,丝状材料选择性熔覆成形简称FDM ⑦SLA原理:1利用计算机控制下的紫外激光,按预定零件各分层截面的轮廓为轨迹逐点扫描,使被扫描区的光敏树脂薄层产生光聚合反应,从而形成零件的一个薄层截面;2当一层固化完毕,移动升降台,在原先固化的树脂表面上再敷上一层新的液态树脂,刮刀刮去多余的树脂;3激光束对新一层树脂进行扫描固化,使新固化的一层牢固地粘合在前一层上;4重复2、3步,至整个零件原型制造完毕。『或SLA是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长(λ=325nm)和功率(P=30mW)的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也从液态转变成固态』 ⑦SLS原理: 1在先开始加工之前,先将充有氮气的工作室升温,温度保持在粉末的熔点之下;2成型时,送料筒上升,铺粉滚筒移动,先在工作台上铺一层粉末材料;3激光束在计算机控制下,按照截面轮廓对实心部分所在的粉末进行烧结,使粉末融化并相互黏结,继而形成一层固体轮廓,未经烧结的粉末仍留在原处,作为下一层粉末的支撑;4第一层烧结完成后,工作台下降一截面层的高度,再铺上一层粉末,进行下一层烧结,如此循环,直至完成整个三维模型 FDM原理:加热喷头正在计算机的控制下,可根据界面轮廓的信息作X—Y平面运动和高度Z方向的运动丝状热塑性材料由供丝机构送至喷头,并在喷头中加热至熔融态,然后被选择性涂覆在工作台上,快速冷却后形成界面轮廓。一层截面完成后,喷头上升一截面层的高度在进行下一层的涂覆,如此循环,最终形成三维产品。 LOM:LOM快速成形系统由计算机原材料存储及送进机构、热粘压机构、激光切割系统、可升降工作台、数控系统、模型取出装置和机架等组成。计算机用于接受和存储工件的三维模型沿模型的成型方向截取一系列的截面轮廓信息发出控制指令原材料存储及送进机构将存于其中的原材料。热黏压机构将一层层成形材料粘合在一起。可升降工作台支撑正在成型的工件并在每层成形完毕之后,降低一个材料厚度以便送进、粘合和切割新的一层成形材料。数控系统执行计算机发出的指令,使材料逐步送至工作台的上方,然后粘合、切割,最终形成三维工件。b 原型制件过程模型剖分基底制作原型制作余料,废料去除后继处理

快速成型技术与试题-答案

试卷 —、填空题 1?快速成型技术是由计算机辅助设计及制造技术、逆向工程技术、分层制造技术(SFF)、材料去除成形(MPR)、材料增加成形(MAP)技术等若干先进技术集成的; 2. 3. 快速成型技术的主要优点包括成本低,制造速度快,环保节能,适用于新产品开发和单间零件生产等 4?光固化树脂成型(SLA的成型效率主要与扫描速度,扫描间隙,激光功率等因素有关 5. 快速成型技术的英文名称为:Rapid Prototyping Manufacturing (RPM),其目前 也被称为:3D打印,增材制造; 6. 选择性激光烧结成型工艺(SLS可成型的材料包括塑料,陶瓷,金属等; 7. 选择性激光烧结成型工艺(SLS工艺参数主要包括分层厚度,扫描速度,体积成型率,聚焦光斑直径等; 8. 快速成型过程总体上分为三个步骤,包括:数据前处理,分层叠加成型(自由成型),后处理; 9. 快速成型技术的特点主要包括原型的复制性、互换性高,加工周期短,成本低,高度技术集成等; 10?快速成型技术的未来发展趋势包括:开发性能好的快速成型材料,改善快速 成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,开发新的成形能源,快速成形方法和工艺的改进和创新,提高网络化服务的研究力度,实现远程控制等; 11.光固化快速成型工艺中,其中前处理施加支撑工艺需要添加支撑结构,支撑结构的主要作用是防止翘曲变形,作为支撑保证形状; 二、术语解释 1.STL数据模型 是由3D SYSTEM公司于1988年制定的一个接口协议,是一种为快速原型制造技术服务的三维图形文件格式。STL文件由多个三角形面片的定义组成,每个三角形面片的定义包括三角形各个定点的三维坐标及三角形面片的法矢量。stl 文件是在计算机图形应用系统中,用于表示三角形网格的一种文件格式。它的文件格式非常简单,应用很广泛。STL是最多快速原型系统所应用的标准文件 类型。STL是用三角网格来表现3D CAD模型。STL只能用来表示封闭的面或者体,stl文件有两种:一种是ASCII明码格式,另一种是二进制格式。 2■快速成型精度包括哪几部分 原型的精度一般包括形状精度,尺寸精度和表面精度,即光固化成型件在形状、尺寸和表面相互位置三个方面与设计要求的符合程度。形状误差主要有:翘曲、扭曲变形、椭圆度误差及局部缺陷等;尺寸误差是指成型件与CAD模型相比,在x、y、z三个方向上尺寸相差值;表面精度主要包括由叠层累加产生的台阶误差及表面粗糙度等。 3■阶梯误差

快速成型技术及原理

RP技术简介 快速原型制造技术,又叫快速成形技术,(简称RP技术); 英文:RAPID PROTOTYPING(简称RP技术),或 RAPID PROTOTYPING MANUFACTUREING,简称RPM。 快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。 快速成型机的工艺 立体光刻成型sla 层合实体制造lom 熔融沉积快速成型fdm 激光选区烧结法SLS 多相喷射固化mjs 多孔喷射成型mjm 直接壳法产品铸造dspc 激光工程净成型lens 选域黏着及热压成型SAHP 层铣工艺lmp 分层实体制造som 自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。其成形原理分别介绍如下: (1)SLA(光固化成型法)快速成形系统的成形原理: 成形材料:液态光敏树脂; 制件性能:相当于工程塑料或蜡模;

长春工业大学快速成型期末试题

1、国内快速成型技术领军人物都有谁 2、快速成形主要的成形工艺方法有几种都是什么 3、快速成型技术概念是什么 4、模型输出常用的文件格式有多种,常用的是哪种数据格式 5、STL文件格式的规则有哪些 6、快速成型的全过程包括哪几个个阶段 7、用于FDM的支撑的类型有哪几种 8、快速成型技术产生的背景原因有哪些 9、快速成型缩写快速成型技术缩写快速成型系统缩写 10、快速成型五个步骤 11、快速成型在成型概念上的指导思想是什么 12、快速成形技术的重要特征是什么 13、根据现代成形学的观点,从物质的组织方式上,可把成形方式分为哪几类 14、传统的车、铣、刨、磨等加工方法属于哪种成型方式 15、现代电火花加工、激光切割、打孔属于哪种成型方式 16、焊接属于哪种成型方式 17、传统的锻压、铸造和粉末冶金哪种成型方式 18、简述快速成型的工艺过程 19、设计三维模型常用的软件有哪些 20、三维模型构件的方法有哪几种 21、常用的后处理方法有哪几种 22、LOM原材料有哪些以及对其要求 23、热熔胶涂布可分为哪两种 24、立体印刷的优缺点 25、分层实体制造(LOM)的优缺点 26、选择性激光烧结(SLS)的优缺点 27、熔化沉积成形(FDM)的优、缺点 28、主要阐述3种热塑性材料选择性喷洒成型系统

29、快速成型技术与哪些学科有密切的联系 30、最常用的几种RP工艺方法是什么成型材料各是什么 31、快速成型材料按材料的物理状态分几类 32、快速成型材料按材料的化学性能分几类 33、快速成型材料按材料的成型方法分几类 34、快速成型工艺对材料性能的一般要求 35、三维模型的表达方法有几种 36、目前RP成形系统常用的三种数据格式 37、STL文件格式的缺陷表现在哪几个方面 38、RP软件的主要模块一般包括哪几个方面 39、第一台快速成型商品化设备是什么哪年哪个公司 40、快速成型设备主要有哪五种 41、列举常见的光固化成型设备的型号 42、列举常见的叠层实体制造设备的型号 43、列举常见的选择性激光烧结设备的型号 44、列举常见的熔融沉积制造设备的型号 45、列举常见的三维喷涂粘结制造设备的型号 46、简述几种快速成形工艺中常用激光器的类型 47、简述四种常用快速成形工艺的原理 48、RP技术在产品设计和制造中的应用 49、任举例说明快速成型技术应用的案例 50、RP技术在未来的发展前景谈谈你对快速成型技术的看法

相关文档
相关文档 最新文档