文档库 最新最全的文档下载
当前位置:文档库 › 真皮免疫系统研究进展(一)

真皮免疫系统研究进展(一)

真皮免疫系统研究进展(一)
真皮免疫系统研究进展(一)

真皮免疫系统研究进展(一)

摘要:皮肤是一个具有免疫功能并与全身免疫系统密切相关的外周淋巴器官。皮肤内的免疫反应主要发生于真皮。真皮免疫系统的细胞包括树突状细胞、t淋巴细胞、内皮细胞、肥大细胞、成纤维细胞等。这些细胞相互作用,并通过其衍生的细胞因子相互调节以发挥免疫功能。本文仅就真皮免疫系统的细胞组成、各细胞功能及其相互作用作一综述。

1990年,bos等1]提出皮肤免疫系统(sIS)的概念,1993年,nickoloff等2]进一步提出真皮免疫系统(dIS),对sIS作了重要的补充。近年对真皮免疫细胞功能和特点的研究又取得了许多新的成果,本文对其研究进展综述如下。

一、真皮免疫系统的细胞

真皮内参与免疫应答的细胞主要集中于真皮浅层微血管丛周围,有树突状细胞(包括郎格罕细胞和单核巨噬细胞)、血管内皮细胞、t淋巴细胞、肥大细胞等。近年研究发现,参与真皮免疫反应的成分除上述细胞外,还有成纤维细胞,多种结缔组织成分及细胞因子,它们对于免疫细胞的活化、游走、增殖分化、免疫应答的诱导及炎症损伤和创伤修复均具有重要作用。

(一)树突状细胞:真皮树突状细胞为组织树突状细胞。目前关于树突状细胞的来源尚未统一,因真皮树突状细胞既表达凝血因子ⅩⅢa,也表达白细胞分化抗原(cD)34,故有人提出它可能来源于真皮cD34+间叶干细胞2]。但目前大部分证据支持树突状细胞起源于骨髓,经血液循环进入各组织器官。如巨噬细胞前体为血液中的幼单核细胞;人类外周血中cD34+CLA+树突状细胞CD71(low)/CD11a+/CD11b+/CD49d+/CD45RA+]体外经粒细胞-巨噬细胞集落刺激因子和肿瘤坏死因子(tNF)-α诱导可分化为郎格罕细胞,cD34+CLA-树突状细胞CD71+/CD11a(low)/CD11b(low)/CD49d+/CD45RA(low)]则仅分化成树突状细胞3]。树突状细胞的游走及吞噬功能可能与其表面cD44分子有关。接触抗原后,郎格罕细胞和树突状细胞上调cD44的表达,抗cD44表位的抗体抑制郎格罕细胞的迁移,阻止活化的郎格罕细胞和树突状细胞与淋巴结内t淋巴细胞区结合,抑制迟发型超敏反应4]。树突状细胞受刺激后除分泌tNF-α、白介素1(iL-1)、干扰素(iFN)等多种细胞因子外,最近研究发现,其经脂多糖处理后,细胞内编码巨噬细胞炎性蛋白γ、巨噬细胞炎性蛋白α、c10、iL-1β的mRNA 增多5],这些因子为免疫应答的诱导及调节提供了有利的微环境。

(二)内皮细胞:虽然内皮细胞不直接参与免疫反应,但内皮细胞的活化是免疫反应答起动的重要前提。内皮细胞在iL-1、tNF-α等作用下活化,引起形态和功能的改变;①由上皮型转变为纺缍型并伴有波形蛋白丝(vimentinfilaments)的重组;②内皮细胞表面标志逐渐减少直至消失;③被覆胶原后形成管状结构的能力增加6];④表达主要组织相容性复合体(mHC)Ⅱ类抗原及e-选择蛋白,增加细胞间粘附分子(iCAM)-1的表达,粘附白细胞能力增加,这是炎症细胞在皮肤中聚集的关键。内皮细胞经iL-1β、tNF-α、iFN-γ等刺激,可合成单核细胞趋化蛋白(mCP)-1、iL-8、一种“调控正常t细胞活性、表达和分泌”的趋化因子(rANTES)、iL-10等多种白细胞趋化因子7]。内皮细胞结构和功能异常亦会给机体带来危害。皮肤淋巴瘤晚期,内皮细胞通过细胞因子介导机制表达iCAM-3,该分子可能与淋巴瘤的全身性播散有关8]。

(三)淋巴细胞:淋巴细胞中只有t淋巴细胞能进入皮肤器官,目前已发现多种分子与t淋巴细胞归巢至皮肤有关。正常皮肤中40%T淋巴细胞表达皮肤淋巴细胞相关抗原(cLA),而机体其它部位只有极少数t淋巴细胞表达该分子9],cLA与e-选择蛋白结合对t淋巴细胞外渗具有十分重要的作用10]。因此多数学者认为cLA可能为皮肤特定的归巢受体9-12]。最近研究发现,t淋巴细胞和内皮细胞结合及其在皮肤炎症区聚集与cD73分子有关。外周血淋巴细胞中,cD73+者占13%,cLA+者占9%,同时表达cD73和cLA者仅占1%,而浸润皮肤的淋巴细胞大部分同时表达这两种分子。若用cD73单克隆抗体4G4处理外周血淋巴细胞,其

结合炎症区内皮细胞的能力70%被抑制12]。此外,极迟活化抗原-4/血管细胞间粘附分子-1(vCAM-1)及淋巴细胞功能相关抗原-1(lFA-1)/ICAM-1的相互作用亦参与t淋巴细胞的归巢活动10]。t淋巴细胞识别抗原多肽及自身mHC分子,并在协同刺激分子作用下活化、增殖、产生免疫应答。一方面杀伤靶细胞及肿瘤细胞,清除抗原,发挥保护作用;另一方面也可引起组织损伤。如皮肤慢性溃疡边缘有大量cD45RO+T淋巴细胞浸润聚集,其释放的细胞因子和生长因子使创伤趋于慢性化,不易愈合13]。

(四)肥大细胞:真皮内肥大细胞属结缔组织肥大细胞,内含中性蛋白酶、类胰蛋白酶及食糜酶。肥大细胞起源于骨髓内cD34+多能干细胞,进入循环系统后表面标志为cD34+、fcεrⅠ—、kit+,形态上与其它单核细胞无法区别。肥大细胞表面cD11a/CD18、cD11b/CD18、cD11c/CD18等β2整合素家族粘附分子可能在其迁移过程中起主要作用14]。迁移至组织内的肥大细胞在干细胞因子及其它局部细胞因子作用下发育成熟,干细胞因子缺乏时,肥大细胞将发生凋亡15]。肥大细胞表面存在多种膜受体,其中fcεrⅠ通过igE桥联变应原是Ⅰ型变态反应的主要机理。真皮内的肥大细胞受到免疫或非免疫性刺激后较肺及粘膜内的肥大细胞更容易活化,导致脱颗粒反应。产生并释放多种生物活性物质:“一类预合成并贮存在颗粒内,包括组胺、肝素、中性粒细胞及嗜酸粒细胞趋化因子、各种蛋白酶类;另一类为新合成的物质,如前列腺素和白三烯。这些物质释放后导致局部水肿(风团)或血管舒张及白细胞浸润。肥大细胞亦是产生tNF-α的主要细胞,该因子即可贮存在颗粒内,又可在受刺激后合成。tNF-α能诱导合成iL-1、iL-6、iL-1β、粒细胞-巨噬细胞集落刺激因子等。另外,肥大细胞自身还可合成iL-1、iL-3、iL-4、iL-5、iL-6、粒细胞-巨噬细胞集落刺激因子,其释放的介质以及由这些介质诱导产生的细胞因子构成一复杂的调节网络,以维持、恢复局部的平衡状态2]。

(五)成纤维细胞:实验发现,真皮成纤维细胞可合成人及鼠各类t淋巴细胞亚群最适活化所必需的多种基质蛋白。成纤维细胞可通过粘附分子cD44、lFA-3、iCAM-1与t淋巴细胞结合,其产生的因子可延长正常及病理状态下皮肤内t淋巴细胞的存活时间。成纤维细胞还可产生许多细胞因子如iL-1α、iL-6、iL-8、iFN-β、单核细胞趋化/活化蛋白、b因子、c3粒细胞-巨噬细胞集落刺激因子、转化生长因子-α、转化生长因子-β等,这些因子对皮肤内的免疫反应及炎症反应具有重要的调节作用2]。最近研究表明,损伤的皮肤组织内外周血来源的一种纤维细胞表达mHC-Ⅱ类抗原,可能在局部作为抗原呈递细胞具有激活t淋巴细胞的功能16]。关于成纤维细胞在免疫反应中的作用尚有待于进一步研究。

二、真皮免疫系统细胞间相互作用

正常皮肤中,上述各类细胞集中分布于以表浅真皮微血管丛为中心的区域,围绕血管形成“套袖”样结构,据此,sontheimer提出了真皮微血管单位(dMU)的概念17],它包括真皮微血管内皮细胞(dMVEC)、真皮血管周围t淋巴细胞、真皮血管周围树突状细胞(dPDC)、真皮血管周围肥大细胞(dPMC)。dMU形成的原因可能为:

1.骨髓来源的细胞(dPTC来源于胸腺)进入皮肤组织,血管周围区域是其必经之路。2.通过如下几种方式锚定于血管周围:①与血管外膜结缔组织中粘附分子结合;②局部趋化因子的趋化作用;③细胞间通过树状突起相互连接。这些以血管为中心分布的细胞群在功能上可能作为一免疫学单位,完成皮肤内的保护性和(或)病理性免疫反应2]。

(一)dPDC-DPTC:dPDC作为抗原呈递细胞,与记忆型cD4+DPTC作用引发局部t淋巴细胞介导的迟发型超敏反应如接触性皮炎等。dPDC产生的细胞因子如tNF-α、iL-1在dPTC的激活过程中起作用。dPTC产生的iFN-γ可诱导巨噬细胞表达凝血因子ⅩⅢa。活化t淋巴细胞产生的iL-2可增强树突状细胞的游走性并促进其在肺部及皮肤中聚集18]。

(二)dPDC-DMVEC:炎症反应中dPDC产生的tNF-α和iL-1可使dMVEC增加mHC-Ⅱ类抗原及iCAM-1的表达并可产生新的粘附分子e-选择蛋白、vCAM-1,辅助lFA+及cLA+T淋巴细胞的渗出。

(三)dPDC-DPMC:肥大细胞前体与单核细胞形态非常相似,活化dPMC可产生粒细胞-巨噬细胞集落刺激因子促进巨噬细胞分化,tNF-α则有诱导dPDC产生iL-1的能力;dPDC产生的iL-1等细胞因子可增强组织胺诱导的内皮细胞释放前列环素的使用。

(四)dPTC-DPMC:dPMC产生的tNF-α作用于dMVEC辅助t淋巴细胞的粘附渗出。体外实验显示,dPTC产生的组胺释放因子可使肥大细胞、嗜碱粒细胞脱颗粒,释放的介质又吸引、活化其他免疫细胞,形成炎症循环。组胺局部浓度增大时,通过诱导单核细胞产生组胺释放抑制因子或通过与h2受体结合,活化局部抑制性t淋巴细胞亚群。

(五)dPTC-DMVEC:dPTC-通过与内皮细胞粘附分子e-选择蛋白等结合渗出血管。内皮细胞产生的趋化因子iL-8与其b型受体结合可控制cLA+T淋巴细胞的迁移10]。活化t淋巴细胞分泌的细胞因子如iFN-γ可增加dMVECⅠa类抗原及粘附分子如iCAM-1的表达。t淋巴细胞产物对维持dMVEC在淋巴细胞归巢中的“预激活”状态是十分重要的。

(六)dPMC-DMVEC:dPMC释放的组胺与dMVEC上h1及h2受体结合使血管通透性增加,体外,组胺与h1受体结合可促进内皮细胞增殖。dPMC产生的肝素附着在内皮细胞表面可为其他内皮细胞生长因子提供结合位点。dPMC产生的tNF-α可使dMVEC表达多种粘附分子以起动内皮细胞-淋巴细胞间的相互作用及随后的免疫反应。

(七)免疫细胞与结缔组织细胞的相互作用:淋巴细胞与内皮细胞上粘附分子结合可介导淋巴细胞归巢,与成纤维细胞上粘附分子结合则对淋巴细胞起定位作用,使免疫反应局限化。免疫细胞产生的iL-1和tNF-α可通过不同途径刺激或抑制成纤维细胞的增殖及胶原合成;转化生长因子-β、tNF-α、iL-4等则对成纤维细胞具有趋化作用。

研究证实,在免疫细胞上还存在有儿茶酚胺、aCTH、β-内啡肽、p物质、血管活性肠肽、多巴胺等的受体;内源性或注射入真皮内的p物质引起局部皮肤潮红、风团与p物质诱导的肥大细胞脱颗粒有关;无髓神经纤维可通过轴索-肥大细胞-内皮细胞轴触发或促进细胞免疫反应。可见皮肤内的免疫反应亦受神经-内分泌系统的调节2]。相信随着免疫学、分子生物学的发展及研究的深入,必将会促进皮肤免疫系统概念的进一步更新。同时,将对皮肤免疫性疾病有更深入的了解。

本文所用缩写:CD:白细胞分化抗原,CLA:皮肤淋巴细胞相关抗原,TNF:肿瘤坏死因子,IL:白介素,IFN:干扰素,ICAM:细胞间粘附分子,VCAM:血管细胞间粘附分子,LFA:淋巴细胞功能相关抗原,FcεRⅠ:IgEⅠ型受体,DMVEC:真皮微血管内皮细胞,DPTC:真皮血管周围T淋巴细胞,DPDC:真皮血管周围树突状细胞,DPMC:真皮细胞周围肥大细胞

中国免疫规划信息管理系统用户与权限管理规范

中国免疫规划信息管理系统用户与权限管理规范 一、总则 (一)目的 加强中国免疫规划信息管理系统管理,规范系统用户与权限,保障免疫规划信息管理系统的安全运行,特制定本规范。 (二)依据 《计算机信息系统安全保护条例》 《疫苗流通和预防接种管理条例》 《卫生系统电子认证服务管理办法(试行)》 《预防接种工作规范》 《儿童预防接种信息报告管理工作规范(试行)》 《全国疑似预防接种异常反应监测方案》 《中国疾病预防控制中心计算机网络安全管理办法(试行)》 (三)适用范围 “中国免疫规划信息管理系统”包括预防接种、疫苗管理、疑似预防接种异常反应、冷链设备4个业务管理子系统和综合管理系统。 本规范适用于使用“中国免疫规划信息管理系统”的所有机构和用户,包括各级卫生计生行政部门、疾病预防控制机构、乡级防保组织和预防接种单位、药品不良反应监测机构及其它有关机构和用户。 二、用户管理 (一)用户类型

1、系统管理员 国家、省、市、县级疾病预防控制机构设立系统管理员,授权管理“中国免疫规划信息管理系统”用户,是履行用户管理与服务职能的唯一责任人。 2、审计管理员 国家、省、市、县级疾病预防控制机构设立审计管理员,授权“中国免疫规划信息管理系统”安全审计,是履行系统安全审计的责任人。 3、业务管理员 国家、省、市、县级疾病预防控制机构设立业务管理员,授权分配业务子系统用户权限,是履行所管业务子系统的权限分配、建立角色等职能的责任人。 4、普通用户 各级根据业务需求,由系统管理员建立普通用户,由业务管理员授权,是执行相应业务工作的责任人。 (二)用户职责 1、系统管理员 负责本级的业务管理员、普通用户以及下一级系统管理员的用户账号管理,县级系统管理员还需负责辖区内乡级普通用户的账号管理。包括各类用户的创建、有效性及密码等维护管理,分配业务子系统,为所管用户提供账号使用的操作培训和技术指导等。 2、审计管理员 负责本级及下一级操作安全审计,县级审计管理员还需负责辖区

免疫分析技术的应用

时间分辨荧光免疫分析技术的研究进展及在食品安全领域中的应用 应化1001 王旸慧 随着分析方法的飞速发展,无论是食品中有毒有害物质,还是环境中 痕量元素的检测,或者生物体内功能因子的分析,都迫切需要一种灵敏度高、快速准确、性能稳定的痕量分析方法。时间分辨荧光免疫分析技术(time-resolved fluoroimmunoassay,简称为TRFIA)是20世纪80 年代中 期发展起来的一种新的荧光标记技术。这种方法应用某些特殊的稀土金属,能够区分背景光的散射所引起的干扰,从而大大地提高了分析的灵敏度。与传统的酶免疫法(EIA)、发射免疫分析法(RIA)相比,它具有很多优点:灵敏度高达10-19;稳定性好,克服了酶和放射性荧光物质的不稳定性; 动态范围宽;试剂货架期长;无放射性危害等,时间分辨荧光分析目前被公 认为是灵敏度最高的分析方法之一。 一、时间分辨荧光免疫分析法的原理及优势 时间分辨荧光免疫分析法(TRFIA)是在荧光分析(FIA)的基础上发展 起来的一种特殊的荧光分析法。它利用了具有独特荧光特性的镧系元素及 其螯合物为示踪物,标记抗体、抗原、激素、多肽、蛋白质、核酸探针及 生物细胞,以代替传统的荧光物质、酶、同位素、化学发光物质。用时间 分辨荧光免疫分析检测仪测定反应产物中的荧光强度,根据产物荧光强度 和相对荧光强度的比值,准确地测定反应体系中被分析物的浓度。TRFIA 所 使用的荧光标记物是镧系稀土金属,由于镧系稀土金属离子螯合物有很长 的荧光寿命(微秒级),有别于传统荧光的短荧光寿命,使其能通过时间分 辨方式区别于背景荧光(钠秒级),正是由于荧光衰变时间长,可以延缓 测量时间,待测样品中短寿命的本底荧光衰变后再测稀土离子的特异荧光,因此可完全消除本底荧光的干扰。镧系稀土金属离子螯合物荧光很宽的Stokes 位移使其容易通过波长分辨方式进一步区别于背景荧光,提高方法 学的稳定性。镧系稀土金属离子螯合物狭窄的荧光发射峰使其荧光检测具 有很高的效率,进一步提高了信号检测的特异性和灵敏性。此外,由于检 测时加入了荧光增强液,它可使原来荧光增强100万倍,以上各种因素使TRFIA 的检测灵敏度和准确性大大提高。 二、TRFIA 的反应模式 目前在实践中应用的主要有固相双位点夹心法和竞争法。夹心法多用 于蛋白质类大分子化合物的测定,竞争法多用于小分子半抗原的检测。反 应模式流程如下:

第一章免疫学发展简史及其展望

第一章 免疫学发展简史及其展望 第一节 免疫学简介 本节为浅近简介免疫学的最基本内含,免疫系统的功能及其功能产生过程的特点,这些内容将在以后的各章中会逐步介绍。 一、免疫系统的基本功能 机体是多种器官系统组成,各自执行专职功能,如呼吸系统主要执行气体交换,呼出CO2,吸入O2,供新陈代谢需要;免疫系统则执行免疫功能,保卫机体免受生物体的侵害。为使医学生在学习免疫学课程之始,即对免疫学有初步印象,本章将简介免疫学基本概念,并从免疫学发展过程理解这些概念的形成,开拓、发展及取得的成就,从而成为一门生命科学前沿的一门医学免疫学科。 免疫(immunity)即通常所指免除疫病(传染病)及抵抗多种疾病的发生。这种通俗认识在科学上的含意则包括:免疫由机体内的免疫系统执行,免疫系统具有:(1)免疫防御功能:防止外界病原体的入侵及清除已入侵的病原体及有害的生物性分子;(2)免疫监视功能(immunological surveillance),监督机体内环境出现的突变细胞及早期肿瘤,并予以清除;(3)免疫耐受:免疫系统对自身组织细胞表达的抗原(解释见后)不产生免疫应答,不导致自身免疫病,反之,对外来病原体及有害生物分子表达的抗原,则产生免疫应答,予以清除,从这层功能上说,免疫系统具有“区分自我及非我”功能;(4)调节功能:免疫系统参与机体整体功能的调节,与神经系统及内分泌系统连接,构成神经-内分泌-免疫网络调节系统,不仅调节机体的整体功能,亦调节免疫系统本身的功能。 二、免疫应答的特点 免疫系统是由免疫器官(胸腺、骨髓、脾、淋巴结等)、免疫组织(黏膜相关淋巴组织)、免疫细胞(吞噬细胞、自然杀伤细胞、T及B淋巴细胞)及免疫分子(细胞表面分子、抗体细胞因子、补体等等)组成。体内的免疫细胞通常处于静止状态,细胞必须被活化,经免疫应答过程,产生免疫效应细胞,释放免疫效应分子,才能执行免疫功能。免疫细胞分为两类:(1)固有免疫应答细胞,如单核-巨噬细胞,自然杀伤细胞,多形核中性粒细胞等等,这类细胞经其表面表达的受体,能识别一种分子,这种分子表达于多种病原体表面,如单核-巨噬细胞表面的Toll样受体(Toll-like receptor 4, TLR4)能识别脂多糖(LPS),它表达于多种Gram-肠道杆菌表面,经受体-配基作用,固有免疫细胞被活化,迅速执行免疫效应,吞噬杀伤病原体,并释放细胞因子,如干扰素(IFN),抑制病毒复制,这类细胞在病原体入侵早期,即发挥免疫防御作用,称固有免疫(innate immunity)。固有免疫应答不经历克隆扩增,不产生免疫记忆。(2)适应性免疫应答细胞:即淋巴细胞,包括T细胞及B细胞,这类细胞是克隆分布的,每一克隆的细胞,表达一种识别抗原受体,特异识别天然大分子中的具有特殊结构的小分子(如蛋白中的多肽、糖中的寡糖、类脂中的脂酸、核酸中的核苷酸片段)。这些能被T或B细胞受体特异识别的小分子,我们称之为抗原(antigen, Ag)。T 细胞识别的主要是蛋白中的多肽,但T细胞不能直接识别游离的多肽,它们必须与主要组织相容性复合体(MHC)编码分子组成抗原肽-MHC分子复合物,表达于抗原提呈细胞表面,才能与T细胞受体结合,使相应克隆的T细胞开始活化。但要使T细胞充分活化,尚须抗原提

黏膜免疫系统研究进展

黏膜免疫系统研究进展 摘要黏膜免疫系统(Mucosal immune system,MIS)是指广泛分布于呼吸道、胃肠道、泌尿生殖道粘膜下及一些外分泌腺体(唾液腺、泪腺、乳腺)处的淋巴组织,是执行局部特异性免疫功能的主要场所。该系统在体内覆盖范围很广.是机体整个免疫网络的重要组成部分,并且又是具有独特结构和功能的独立免疫体系,它在抵抗感染方面起着极其重要的作用,黏膜表面与外界抗原(比如食物、共生菌、有害病原体等)直接接触,是机体抵抗感染的第一道防线[1]。本文简述了黏膜免疫系统的结构及功能,就黏膜免疫的体液、细胞调节的研究进展做一综述。 关键字黏膜免疫系统黏膜免疫调节体液调节细胞调节 前言 自20世纪60年代黏膜免疫概念产生以来,黏膜免疫系统作为机体相对独立的免疫系统,就一直被国内外学者所关注。动物机体黏膜组织是机体与外部环境进行交流的场所。肠黏膜与肠腔内大量细菌及毒素广泛接触,是机体最重要的屏障,也是机体受威胁最大的部位,机体95%以上的感染发生于黏膜或从黏膜入侵。为了预防局部黏膜疾病的发生,黏膜组织形成了严密的防御体系——黏膜免疫系统,构成动物有机体抵抗病原微生物入侵的第一道免疫屏障。通过黏膜免疫后,黏膜局部的抗体比血清抗体出现的早,效价高,且维持的时间长。黏膜免疫系统(Mucosal immune system,MIS)是指广泛分布于呼吸道、胃肠道、泌尿生殖道粘膜下及一些外分泌腺体处的淋巴组织,是执行局部特异性免疫功能的主要场所。黏膜免疫系统由肠粘膜相关淋巴组织(GALT)、支气管粘膜相关淋巴组织(BALT)、眼结膜相关淋巴组织(CALT)和泌尿生殖道黏膜相关淋巴组织(UALT)四部分构成,它们在抗病毒免疫反应中起着非常重要的作用。是形成生物体防御外界病原物入侵的首道屏障。 1.黏膜免疫的重要性 黏膜广泛分布于机体的呼吸道、消化道及泌尿生殖道表面。黏膜表面的上皮细胞彼此之间紧密排列,形成一道天然屏障,与皮肤一起将机体内环境与外界环境隔离开来,使机体免受外界多种病原微生物的侵扰。例如,肠道黏膜免疫系统主要是指肠道相关的淋巴样组织(gut—associated lymphoidtissue,GALT)。根据形态、结构、分布和功能,可将GALT分类为两大部分.即有结构的组织黏膜滤泡和广泛地分布于黏膜固有层中的弥漫淋巴组织。黏膜滤泡是免疫应答的传人淋巴区.又称诱导区,抗原由此进入GALT,被抗原呈递细胞捕获、处理和呈递给免疫活性细胞,诱发免疫应答;而弥漫淋巴组织是免疫应答的传出淋巴区,又称效应区。浆细胞和致敏淋巴细胞通过归巢机制迁移至弥漫

鱼类粘膜免疫机制

水产动物免疫学—鱼类粘膜免疫 1 粘膜免疫系统的非特异性免疫 鱼类的非特异性免疫,如通过一些非特异性的溶菌酶、蛋白酶及呼吸暴发产生的活性氧自由基等来杀灭入侵微生物,是鱼类相当重要的防御机制之一.研究表明,粘膜免疫系统也存在这些非特异性的免疫机制.通过对鱼的皮肤和粘液抽提物进行研究,发现其中具有一些非特异性的抗细菌、真菌的物质[15] ,这些物质对病原的作用具有广谱性.对皮肤粘液与寄生虫感染的关系研究发现,虹鳟鳍条和皮肤 粘液细胞密度与三代虫感染强度呈负相关,并认为粘液中的溶菌酶、蛋白酶、免疫球蛋白及C3补体对寄生虫的感染都有影响.鱼类鳃和肠道的吞噬细胞都存在活性氧自由基(O·-2 )鳃上的吞噬细胞具有吞噬活性,但是从其O·-2活性看,其呼吸暴发( respiratory burst ) 强度不如头肾白细胞.而对肠道巨嗜细胞的呼吸暴发进行研究, 结果表明虹鳟后肠巨嗜细胞对PMA 刺激后的化学发光反应(chemiluminescence response) 强度明显比前肠细胞强,这种差别并不是因为 巨嗜细胞在前、后肠中数量上的明显差别,而是两个部位的巨嗜细胞细胞反应强度不相同.此外,大剂量的维生素E 可以增强鱼类肠道白细胞的吞噬活性,这可能与维生素E 能增强吞噬细胞膜的流动性有关.鱼类的嗜曙红粒细胞 (eosinophilic granule cells ,EGCs)在非特异性免疫中也有相当重要的作用。Flano等发现虹鳟鱼体外培养的鳃在受到细菌刺激时,EGCs数量增加,并推测EGCs 是由局部的前体细胞分化而来.Holland等[16]的结果也证实了这一点,在体外培养的鳃受到LPS 和人重组TNFα刺激时,EGCs的数量有显著的增加,并且还发现鱼体受急性应激(acute stress )和慢性应激(chronicstress)时,EGCs 的数量也会 增加,这些现象类似于哺乳动物肥大细胞应激时的反应机制.另外鱼类皮肤、鳃 及肠道的EGCs与哺乳动物肥大细胞有类似的细胞酶活性(如磷酸酶,非特异性脂 酶等) ,并在P物质(substance P,SP)、辣椒素等物质的刺激下发生去颗粒化,因而一般认为鱼类的EGCs 细胞与哺乳动物肥大细胞是同源的. 2 粘膜免疫系统的特异性免疫 在哺乳动物中,当抗原接触粘膜时, 可以引起局部的免疫应答,并分泌特异性的IgA 抗体.成特异性免疫应答.最初, 研究表明口服和肠道灌注的方法进行免疫 都可以引起体液和细胞免疫应答,而且口服疫苗可以使鱼体产生不依赖于血清抗体的粘膜抗体.近十年来,围绕这一问题的研究取得了很大的进展,越来越多的学

化学发光免疫分析技术及其应用研究进展

化学发光免疫分析技术及其应用研究进展 发表时间:2014-12-16T16:00:48.107Z 来源:《科学与技术》2014年第10期下供稿作者:岳伦 [导读] 通过对化学发光免疫分析技术及其应用的相关研究,我们可以发现,该项技术的良好效果已经被普遍应用在临床检验与检测当中岳伦 重庆热展建筑工程咨询服务中心重庆 400012 【摘要】本文首先介绍了化学发光免疫分析技术的基本原理,分析了其基本装置。在探讨化学发光免疫分析技术在临床检验中应用的基础上,研究了其应用进展。 【关键词】化学发光;免疫分析技术;应用;研究进展 一、前言 作为一项效果较为理想的分析技术,化学发光免疫分析技术近期得到了长足的发展。研究该项技术的应用进展情况,能够更好地把握其运用动态,以更好地指导该项技术的实际应用。本文从介绍该项技术的基本原理着手本课题的研究。 二、化学发光免疫分析技术的基本原理 化学发光免疫分析技术是由免疫分析和化学发光分析两个系统构成的。其中免疫分析是用标记物直接标记在抗原或抗体之上的,然后再经过抗原与抗体反应生成抗体免疫复合物,其中标记物可以是化学发光物质,也可以是某种酶。化学发光免疫分析系统是在免疫反应结束后,加入氧化剂或酶的发光底物,待发光物质氧化后就会形成一个处于激发态的中间体,会发射光子释放能量以回到稳定的基态,发光强度可以利用发光信号测量仪器进行检测,其中被测物的含量就是根据化学发光标记物与发光强度的关系利用标准曲线计算出来的。 化学发光的原理是指分子或原子中的电子吸收能量后,发生能级跃迁而释放光子的过程,能级跃迁过程是电子从基态到激发态的过程,实现了从较低能级向较高能级的跃迁。其中可以根据形成激发态分子的能量来源不同将发光过程分为化学发光、光照发光和生物发光。 化学发光又可分为直接化学发光和间接化学发光,若参加反应的物质是一个反应产物分子,且被激发到能发射光的电子激发态,那么这就是直接化学发光过程。若参加反应的物质激发能传递到另一个未参加化学反应的分子D上,使D分子激发到电子激发态,D分子从激发态回到基态时发光,这种过程叫间接化学发光。 三、化学发光免疫分析的基本装置 1.电极材料的选择与制备 化学发光检测的基本模式决定了其在免疫传感中必须使用特定的光电活性电极。而免疫探针分子则在这种电极表面固定,随后的免疫识别反应也在该表面发生,所以光电活性材料的选择和制备与免疫传感的检测性能密切相关。理想的光电活性电极应该具有较低的电子空穴复合率,以便获得稳定的光电流密度。一般而言,在化学发光免疫传感中,光电活性电极的选择主要取决于所设计的检测路径与传感过程。常用的电极有整体电极和氧化铟锡(ITO)修饰电极。整体电极如二氧化钛纳米管阵列电极,ITO修饰电极则由ITO基底和光电修饰材料两部分构成。 2.免疫探针分子的固定 电极制备好后,免疫探针分子的固定是传感器制备中重要的一步,直接决定着传感器性能的优劣。原则上,电化学免疫传感器中可以使用的固定方法都可以用于化学发光传感。但因后者使用的电极材料有所不同,所以具体采用的固定方法往往和电极材料的种类以及实验的设计有关。另外,为了保证探针分子的准确定位与吸附以使探针分子在固定后保持较高的活性和稳定性并形成具有适宜厚度、密度、多孔性的敏感膜,同时为了避免非特异性吸附和结合的干扰,在固定这一步骤中需对电极的表面化学性质进行严格控制,因此需要对实验条件进行多重优化以便确定最佳条件。 四、化学发光免疫分析技术在临床检验中的应用 1.激素分析 所谓的激素,其实就是内分泌腺或者内分泌细胞所分泌出来的活性物质,是细胞之间进行信息传递的一种化学媒介。各种激素通过化学发光面积分析技术进行测定,然后由化学发光面积分析技术提供各种检测数据,化学发光面积分析技术检测能够为临床治疗、诊断,以及预后等提供相关数据,且数据可靠性非常高,将检测的灵敏度与特异性大大地提高了。 2.对肿瘤标志物的分析 所谓的肿瘤标志物,其实是肿瘤在增殖的过程中,有肿瘤相关细胞的合成与释放,或者是机体与该细胞产生反应后,生成的一种物质,如激素、蛋白质、酶以及癌基因等。在患者的体液、血液以及细胞与组织中都存在肿瘤标志物。化学发光面积分析技术对肿瘤患者(良性及恶性肿瘤)在早期进行辅助诊断,并且对术后进行监测,同时,它还能用于对新肿瘤标志物的寻找。相关检测人员对血清中的相关抗原及cyfra21-1的浓度进行了检测,结果显示,对于食管癌患者的诊断,以及对预后的监测,它们能够达到相关标准。相关检测人员对肝病中,细胞色素的含量进行了检测,结果显示,作为肝衰竭病症的新标志物,细胞色素C达标。 3.病原诊断 对于乙型肝炎病症,其病毒表面的抗原与抗体是在感染后,对免疫功能及治疗效果的评价指标是血清标志物。如果应用常规的酶检测法,很有可能会漏检一些病毒携带量少的患者。而化学发光面积分析技术的灵敏度以及线性范围比酶法更高。相关检测人员对容易感染相关病毒的围产期儿童体内的相关病毒进行了检测,结果显示,化学发光面积分析技术检测法比常规酶法的灵敏度更高。 五、化学发光免疫分析技术的应用进展 1.检测细菌及病毒细胞的是一切生命活动的基本组成单位,人体就是由千千万万的细胞集合而成,每个细胞就是一个独立的小生命,而控制着细胞的核心物质就是核酸,核酸是遗传物质基础,具有贮存、传递和表达遗传信息的功能。因此对标本中的核酸进行定量检测,对于临床准确、及时的诊断疾病,监测治疗效果是十分必要的。传统采用普通的细菌培养方法往往存在培养时间过长等诸多缺陷,因此,现在很多实验室都在寻求快速、灵敏的检测方法。研究表明用放大核酸序列分析的方法对食物中沙门杆菌进行检测,结果表明,应用化学

免疫系统与营养代谢的研究进展

免疫系统与营养代谢的研究进展 冯焱,佟建明,贺永明,郝生宏 (中国农业科学院畜牧研究所,北京 100094) 摘要:免疫系统在营养代谢调控中的重要作用已被人们所认识,但大多数研究工作主要是针对人的临床治疗,而对饲养动物的研究相对较少。作者结合免疫系统对动物营养代谢的变化及其调控作一综述。 关键词:免疫系统;调控;营养代谢 中图分类号:Q493.99 文献标识码:A 文章编号:167127236(2004)1020010203 机体免疫系统是一个十分复杂的网络体系,负责对异体、异种和自我物质的反应,包括防御、自我稳定和免疫监视等生理功能。免疫系统作为一种感受器可检测体内的抗原(如细菌、病毒、外源蛋白)的存在并将这种信息传递给身体其它部分而带来的一系列行为的、细胞的及代谢上的变化,关于免疫系统介导与代谢相关的生长或营养的机制包括(K lasing,1987,1988):①免疫组织(胸腺、脾及淋巴结)与中枢神经系统间的直接联系。外周免疫反应可触发中枢神经系统反应,如行为上的适应或下丘脑与垂体释放激素;②免疫系统与内分泌系统间的调控联系,如免疫系统可通过垂体释放的激素引起代谢上的变化;③白细胞中细胞因子的释放(单细胞因子与淋巴因子)。这些细胞因子是由巨噬细胞 单核细胞释放的激素样肽,可因免疫反应而产生并对代谢变化产生影响。免疫系统是一个动态的、具有多种自我调节的体系。在不同的体外和体内环境下,免疫系统所处的状态不一样。免疫系统这种功能状态的变化取决于多种因素的影响,同时它又能影响到机体的各种生理活动。它们之间的传递介质主要通过细胞因子,细胞因子的释放激活了细胞免疫(巨噬细胞)与体液免疫(抗体),可降低自由采食量,增加体温及产热量。同时对营养代谢也兼顾着重要的调节作用。 1 免疫机能抑制及种类 免疫系统是机体的防御体系,其机能状况决定了其防御病原微生物等外来非物质的侵染能力和反应速度。现代化集约化养殖为病原体的生长和存在提供了很好的环境。同时,高密度养殖也减弱动物福 收稿日期:2003212218 作者简介:冯焱(1974-),女,山西太原人,硕士生,研究方向: 营养与免疫。 基金项目:国家“十五”科技攻关计划资助项目(2002BA514A212)。 通讯作者:佟建明(1960-),男,研究员。利。这不仅增加动物被感染的机率,同时也恶化动物生长环境。人们认为饲料供给方式则建立在快速生长的基础之上,并没顾及机体的健康状况。这些都可造成机体免疫系统的异常,甚至损伤。相应地免疫机能状态也会受到不同程度的影响。 当动物感染病原微生物时,机体会动用一切力量同病原微生物作斗争,保证机体自身健康。这种由病原微生物刺激引起的生理反应称之为免疫应答,它是针对特定的抗原而产生的反应,包括对抗原物质的加工处理和呈递,以及淋巴细胞的识别、活化和增殖分化。免疫应答时大多数是特异性,目的较明确。但机体发生免疫应答时,一般伴随体温升高、采食量和能量和氮沉积负平衡。这是机体自身能量物质同病原微生物作斗争的表现。 由于免疫系统是一个动态的调节网络,因而该系统的总体机能状态是不稳定的,受到内外环境的变化而改变。除了上述的免疫应答外,免疫系统还存在免疫抑制和免疫亢进两种状态。引起免疫抑制的因素很多,大体可分为以下几类: 1.1 生物性免疫抑制 当免疫系统受到一些病原微生物感染后,如果不能有效地清除微生物,就可能导致免疫系统异常。H udson(1975)、Inoue(1994)、Sharm a(2000)、R agland(2002)等报道,鸡感染传染性法氏囊病毒(I BDV)后,其免疫系统反应性降低,淋巴细胞增殖能力下降,免疫细胞因子的表达也减少,这是病毒性的免疫抑制,存在广泛,但不同病毒引起免疫抑制的机理也不相同。B ech t(1991)和H saif(1991)报道,法氏囊为I BDV的生存提供了良好的环境,I BDV的靶细胞为带有Ig M膜蛋白的B 细胞,未成熟的B细胞或其前体细胞(更具有侵嗜性)被感染后,鸡体液免疫抗体反应受到抑制,导致其它致病性或条件性因子的易感性增高,增加发病率。马立克氏病毒(M DV)则以淋巴细胞为靶细胞, ? 1 ?营养与饲养中国畜牧兽医 2004年第31卷第10期

免疫分析技术研究进展

免疫分析技术研究进展 摘要:目的:综述免疫分析技术的最新研究进展。方法:通过查阅国内外有关免疫分析技术的研究论文,对放射免疫分析(RIA)、酶免疫分析(EIA)、荧光免疫分析(FIA)、化学发光免疫分析(CLIA)等免疫分析技术进行了综述,同时指出了发展前景和尚待解决的问题。结果:多种免疫分析方法相互结合,可大大提高分析方法的灵敏度,增大检测范围;CLIA和TRFIA是非放射免疫分析的两大主流,其中,CLIA更具有竞争力。结论:目前还没有一种免疫分析技术是完美无缺的,各种技术还需要不断发展和完善,以开发出更新、更理想的免疫分析技术。 关键词:药物分析学;免疫分析;放射免疫分析;酶免疫分析;荧光免疫分析;化学发光免疫分析 免疫分析法(immunoassay ,IA)是基于抗原和抗体特征性反应的一种技术。由于免疫分析试剂在免疫反应中所体现出的独特的选择性和极低的检测限,使这种分析手段在临床、生物制药和环境化学等领域得到广泛应用。各种标记技术(放射性标记、荧光标记、化学发光、酶标记等)的发展,使免疫分析的选择性更加突出。免疫分析法起始于本世纪50年代,首先应用于体液大分子物质的分析,1960年,美国学者Yalow和Berson等将放射性同位素示踪技术和免疫反应结合起来测定糖尿病人血浆中的胰岛素浓度,开创了放射免疫分析方法的先河。1968年,Oliver将地高辛同牛血清白蛋白结合,使之成为人工抗原,免疫动物后成功获得了抗地高辛抗体,从而开辟了用免疫分析法测定小分子药物的新领域。在RIA的基础上,随着新的标记物质的发现及新的标记方法的使用,以及电子计算机、自动控制技术的广泛应用,派生出许多新的检测技术[1],使免疫分析法逐渐发展成为一门新型的独立学科。 1 免疫分析方法分类 (1)根据标记物的不同,可以免疫分析主要分为放射免疫分析(radioimmunoassay,RIA)、酶免疫分析(enzyme immuoassay,EIA)、化学发光免疫分析(chemiluminescent immunoassay,CLIA)、荧光免疫分析法(fluorescence immunoassay,FIA)等。 (2)按反应机制的不同,可以分为竞争法和非竞争法。非竞争法是将待测抗原与足够的标记抗体充分反应形成抗原-标记抗体复合物,产生的信号强度与抗原的量成正比。竞争法是将过量的待测抗原与定量标记抗原竞争结合形成定量的特异性抗体,待测抗原的量越大,与抗体结合的标记抗原量越少,产生的信号强度越小,由此定量待测抗原的量。 (3)还可以按测定过程中的某些步骤的差异分为均相免疫分析和非均相免疫分析两大类。均相酶免疫测定法的特点是抗原-抗体反应达到平衡,对结合与游

2020年免疫学指标应用研究进展

范文 2020年免疫学指标应用研究进展 1/ 6

免疫学指标应用研究进展【提要】类风湿性关节炎(RA)是以关节滑膜炎为特征,以慢性多发性关节炎为主要临床表现的一种自身免疫性疾病。 其新的实验室血清免疫学指标有蛋白类如血清淀粉样蛋白A(SAA)、正五聚蛋白 3(PTX3)、葡萄糖-6 磷酸异构酶(G6PI)、脑信号蛋白 7A(Sema7A)、免疫球蛋白 G4(IgG4)和各种细胞因子类如白细胞介素(IL)-20、IL-21、IL-33、 IL-34、IL-35 等。 这些指标可能与RA 的发生发展相关,同时也可为治疗及评估预后提供新思路。 风湿性关节炎(rheumatoidarthritis,RA)为一种病因未明的慢性、以炎性滑膜炎为特征的系统性疾病。 RA 疾病的活动期一般有血小板、血沉、C-反应蛋白(C-reactiveprotein,CRP)、补体水平升高,类风湿因子(rheumatoidfactor,RF)、抗瓜氨酸化蛋白抗体(anticitrullinatedproteinantibodies,ACPA)及抗核抗体阳性等表现。 最新的 2010 年RA 分类标准和评分系统纳入了新的炎症标志物指标,提高了诊断的敏感性,为早期诊断和治疗提供了重要依据[1]。 同时,除了经典的免疫学检查外,随着RA 免疫机制研究的深入,有更多的免疫学指标被发现及应用,本文对RA 的主要免疫学指标及其新进展进行综述。 1 蛋白类

1.1 血清淀粉样蛋白 A 血清淀粉样蛋白 A(serumamyloidA,SAA)是一种急性时相蛋白,由肝脏产生,主要通过与血浆中的 HDL 结合发挥其生物活性。 既往许多研究表明 SAA 在多种自身免疫性疾病中表达升高,尤其当系统性红斑狼疮(systemiclupuserythematosus,SLE)、关节炎患者和正常人相比时,SSA 在RA 患者中表达水平更高,并且与疾病活动度、CRP、血沉呈正相关[2]。 研究表明,SSA 在RA 中的作用机制可能是通过 P38 有丝分裂蛋白激酶(mitogenactivatedproteinkinase,MAPK)信号通路来影响B 类Ⅰ型清道夫受体的表达,从而促进血管的生成[3]。 还有研究显示,SAA 比 CRP 更能反映RA 的疾病活动度[4]。 提示 SAA 可能是与RA 疾病活动度相关性更高的生物学指标。 1.2 正五聚蛋白 3 正五聚蛋白 3(pentraxin3, PTX3)在 1992 年被发现,它含 381 个氨基酸,属于正五聚蛋白超家庭。 PTX3 为一种急性期反应蛋白,主要由肝细胞以外的多种细胞产生,正常情况下以备用形式储存在中性粒细胞的特殊颗粒中,当出现组织损伤及微生物感染等炎性反应时才释放出来,发挥其组织修复及重构作用[5-6]。 因其与心血管疾病有密切关系而备受关注,但最近研究发现,其在自身免疫性疾病,如RA、系统性硬化症、小血管的血管炎等疾病中呈高表达[7]。 3/ 6

化学发光免疫分析技术及其应用研究进展 蒋恩彬

化学发光免疫分析技术及其应用研究进展蒋恩彬 发表时间:2014-12-25T08:59:42.297Z 来源:《防护工程》2014年第9期供稿作者:蒋恩彬 [导读] 由于化学发光免疫分析技术具有灵敏度高、适用范围广泛等特点,所以受到了人们的认可。 蒋恩彬 重庆热展建筑工程咨询服务中心重庆 400012 [摘要]本文主要对化学发光免疫分析技术及其应用研究进展进行了分析,首先对化学发光免疫分析技术的相关概念进行了分析;然后从临床检验和兽医学应用化学发光免疫分析技术进行了分析;最后对化学发光免疫分析技术进行了新进展研究,希望对有关人士有所帮助。 [关键词]化学发光免疫分析、临床检验、兽医学 一、前言 由于化学发光免疫分析技术具有灵敏度高、适用范围广泛等特点,所以受到了人们的认可,在医学、药品等众多领域得到广泛的应用。同时化学发光免疫分析主要利用了化学发光测定技术和免疫反应,化学发光测定技术传统的免疫分析,需要的培育时间比较长。 二、化学发光免疫技术的工作原理 1、检测器的检测原理 化学反应的检测过程中,一些化学基团在处于被氧化状态之后,会形成一个激发态,在回归至基态的过程中,会发射出光子,实质上就是免疫反应与化学反应有机结合在一起之后形成的一种分析方法,即微量倍增技术。微量倍增技术在临床检验中的应用,主要是通过粒径比较小的颗粒磁粉增大复合物表面的面积,提升复合物的吸附量,加强表面能,以此加快反应速度。 2、基本原理 化学发光免疫技术,反应过程主要包括两类,即化学发光反应与免疫反应。化学发光免疫技术的工作原理,主要是在抗体或者抗原上对化学发光物质或者其它一系列处于发光状态的酶标记物进行标记,使其产生免疫反应,使抗体与抗原能够特异性结合,产生一种复合物,然后在该复合物中加入发光底物或者氧化剂,使复合物可以发光。根据待测物质具备的浓度与仪器监测中获取的发光强度之间存在的线性关系,实现浓度的合理测定。 三、化学发光免疫分析的分类 化学发光免疫分析根据应用于免疫分析体系中的方式不同,可以分为以下三类: 1、直接标记发光物质的免疫分析这种分析方式是用吖啶酯直接标记抗体,作为抗原,然后与待测标本中相应抗体发生免疫反应,就会形成固相包被抗体一待测抗原一吖啶酯标记抗体复合物,到这一步后再加入双氧水氧化剂,这样环境就会呈碱性,吖啶酯就会在不需要催化剂的情况下分解、发光。 2、酶催化化学发光免疫分析标本中的抗原在发生免疫反应时所用的标记物为发光的酶,这种化学发光免疫分析方法是酶催化化学发光免疫分析。 3、电化学发光免疫分析,这种分析过程包括电化学和化学发光两个过程,具体是以三丙胺(TPA)为电子供体,用电化学发光剂三联吡啶钌标记抗体(抗原),在电场中因电子转移而发生特异性化学发光反应。 四、化学发光免疫分析技术的应用 1、化学发光免疫分析在临床检验中的应用 就目前而言,化学发光免疫分析技术已经成为替代RIA的首选技术,且已经被广泛地应用于基础和临床医学的各个领域。下面就简要地谈谈化学发光免疫分析技术在临床检验中的几个应用。 (1)应用于传染性疾病的病原诊断作为评价和治疗机体免疫功能重要指标的重要血清学标志物乙型肝炎病毒表面抗原、抗体,以前诊断是否感染乙肝病毒用的是常规酶法,常规酶法的缺陷是可能使得部分低病毒含量携带者漏检。但是化学发光免疫分析具有高灵敏度和线性范围宽的特点,在传染性疾病的病原诊断方面其检测灵敏度比常规酶法高,Bowser等在测定感染人类免疫缺陷病毒的围产期儿童体内的单纯疱疹病毒、乙型肝炎病毒甲型肝炎病毒、及丙型肝炎病毒时给出了证明。 (2)应用于肿瘤标志物的分析肿瘤标志物包括蛋白质、酶、癌基因产物、激素等,它是由肿瘤细胞合成释放或机体对肿瘤细胞反应而产生的一类物质。在患者的细胞中,血液中以及组织中都存在肿瘤标志物。化学发光免疫分析可以用于寻找新的肿瘤标志物,也可以进行体外早期辅助诊断和对术后的监测,对恶性肿瘤患者的具有重要意义。Mac等达到了对食管癌患者的诊断和病情监测,他们采用的方法就是检测血清中癌胚抗原的浓度、cyfra21-1的浓度、鳞状细胞癌抗原的浓度。 (3)应用于心脏疾病的特征标记物测定临床上的心脏疾病常常采用同工酶定量测定,标记物为肌酸激酶和肌钙蛋白T\肌红蛋白。Dutra等运用心肌肌钙蛋白受体分子制成了免疫传感器,可用于临床上早期检测心肌梗死。有关资料显示,同时检测了肌酸激酶同工酶和肌红蛋白,相关系数分别为cTnT0.953-0.982;CK—MB0.835-0.999;肌红蛋白0.776-0.992,具有很好的相关性可用于检测临床标本。 2、化学发光免疫分析技术在兽医学中的应用 化学发光免疫分析技术在兽医学中的应用还处于早期阶段,因此没有得到较多的应用。主要原因则是化学发光免疫分析技术在兽医学的应用中会跨越化学、兽医以及生物学科方面的知识,而这样加大了化学发光免疫分析技术的应用难度,因此没有在兽医学中得到较多的应用。但是化学发光免疫分析技术仍然是兽医学中一项疾病快速检测的方法,即通过化学发光免疫分析技术可以精准快速的判定动物所发生疾病的原因,而且通过这项技术的运用还可以监测动物体内的疾病发生概率。化学发光免疫分析技术在我国没有较多的应用到兽医学中,而且技术也没有国外先进,这进一步制约了化学发光免疫分析技术在我国的应用。国外化学发光免疫分析技术在兽医学中的应用较多,比如国外利用化学发光免疫分析技术来进行动物肠道病毒检测试验、猪肉中沙门菌抗体检测以及评价胰岛素浓度对奶牛繁殖性能的影响,并且取得了较好的成果。 五、化学发光免疫分析技术的新研究进展 化学发光免疫分析技术运用的重点就是检测内部微观化学反应的情况,而为了达到更好的检测效果就需要发光物质发光时间更加持久发光更加明亮,而这可以通过标记新的标记物来得以实现。各国科学家都致力于研究标记物的发光时间以及发光强度,标记物发光需要特定酶的催化,这需要科学家通过长时间的实践才能够证明哪一种标记物在哪一种酶的催化下才能够达到长时间的发光以及高强度的发光,

理论免疫学研究进展

理论免疫学研究进展 (辽宁中医药大学基础医学院, 辽宁沈阳,110032) 【摘要】理论免疫学用数学的方法来研究和解决免疫学问题,以及对免疫学相关的数学方法进行理论研究的一门科学。随着高通量方法和基因组数据的出现,理论免疫学从受体交联和免疫原理、jerne的相互作用网络和自我选择等经典建模方法开始向信息学、空间扩展模型、免疫遗传学和免疫信息学、进化免疫学、分子生物信息学和表遗传学、高通量研究方法和免疫组学等方面转变。 【关键词】免疫学, 理论;数学模型;生物数学 advances of theoretical immunology jin yan (basic medical college, liaoning universtity of traditional chinese medicine, liaoning shenyang, 110032,)【abstracts】theoretical immunology is to develop mathematical methods that help to investigate the immunological problems, and to study the mathematical theory on immunology. with the advent of high-throughput methods and genomic data, immunological modeling of theoretical immunology shifted from receptor cross linking, jerne interaction networks and self-non self selection, toward the informatics, spatially extended models, immunogenetics and immunoinformatics, evolutionary immunology, innate immunity

免疫规划信息管理系统操作手册

免疫规划信息管理系统操作手册(疫苗、注射器和AEFI) 免疫规划信息管理系统(疫苗、注射器和AEFI) 用户操作手册 中国疾病预防控制中心 2008年3月

目录 1疫苗管理 (2) 1.1NIP疫苗计划 (2) 1.2疫苗出入库管理 (5) 1.3疫苗出入库查询 (12) 1.4统计分析 (14) 1.4.1疫苗计划数量 (14) 1.4.2疫苗出入库数量 (16) 1.4.3疫苗过期预警 (18) 2注射器管理 (20) 2.1NIP注射器计划 (20) 2.2注射器出入库管理 (23) 2.3注射器出入库查询 (29) 2.4统计分析 (31) 2.4.1注射器计划数量 (31) 2.4.2注射器出入库数量 (33) 2.4.3注射器过期预警 (35) 3AEFI管理 (37) 3.1AEFI个案查询/录入 (37) 3.2群体性AEFI查询/录入 (53) 3.3统计分析 (63) 3.3.1AEFI分类 (63) 3.3.2AEFI报告县数 (65) 3.3.3AEFI季节分布 (67) 3.3.4AEFI年龄分布 (69) 3.3.5AEFI<1岁儿童月龄分布 (72) 3.3.6AEFI间隔分布 (74) 3.3.7AEFI疫苗分布 (76) 3.3.8AEFI疫苗批号分布 (79) 3.3.9AEFI临床诊断分布 (81) 3.3.10一般反应的症状分布 (83) 3.3.11AEFI报告/调查及时率 (85) 3.3.12AEFI个案完整率 (87) 4用户档案管理 (89)

1 疫苗管理 “疫苗管理”的主要功能是实现对疫苗的批次及出入库管理。 1.1 NIP疫苗计划 功能说明 该模块主要完成的功能是通过选择“地区”,“计划年度”实现对具体地区在某年度内NIP疫苗计划信息的查询。同时,也可以对NIP疫苗计划的信息执行添加、查看、修改和删除操作。 进入方式 点击左侧功能树【疫苗管理】 【NIP疫苗计划】,进入NIP疫苗计划查询列表界面,如下图所示: NIP疫苗计划查询列表界面 每页最多显示20条信息记录,可以在输入框中输入数字来确定每页显示的信息条数量,同时还可以点击“首页”、“上页”、“下页”、“末页”进行翻页操作,也可以在文本框中输入页码,实现页面直接跳转。 界面说明 页面整体上分为两部分,上半部分为查询条件输入区域,下半部分列表区域显示接种单位信息,并提供对信息的修改、查看和删除操作。下面对该页面中的几大功能分别进行说明。 :完成的功能:根据指定的查询条件,查询浏览符合条件的NIP疫苗计划信息。操作

肠道菌群与粘膜免疫系统

肠道菌群与粘膜免疫系统 Michael H.Chapman , Ian R.Sanderson 英国伦敦大学Barts & The London,圣玛丽医院成人及儿童胃肠病科, Turner Street, 伦敦 E1 2AD ,英国 前言 出生时胃肠道是无菌的,但很快有种类繁多的细菌定植,因此成为人体接触病原微生物的首要部位,甚至90%的微生物是通过胃肠道进入人体的。胃肠道最主要的功能在于摄取营养和维持体液的平衡以驱除有害的微生物和其它一些毒素物质。我们就胃肠道粘膜免疫系统的基本组成及病原微生物如何与其和肠道功能的其它方面相互作用进行综述。 肠道的正常菌丛 出生时胃肠道的粘膜免疫系统的活性较低,与成年人比较淋巴细胞和Payer斑都较少。出生后经口菌群定植很快发生。肠道菌群在不断地发生变化直到成年才变得稳定,且会随着饮食结构的改变而发生变化。例如,母乳中IgA水平在婴儿期就起着非常重要的作用。 胃肠道的菌群总量是非常大的,近50%的粪便是细菌,约为1012/克。随着胃肠道的长度发生变化,其细菌数目和种类也不同。除口腔外,菌落随着胃肠道的延伸而逐渐增多,而胃和近端小肠却只有少量的以革兰氏阳性为主的细菌。菌群在小肠远端和结肠变成一个非常复杂的微生物环境。这些区域也正是炎性肠疾病(IBD)最容易受累的部位,这使我们推测粘膜免疫系统对胃肠道菌群的无效或不正常的反应在这些疾病的发病机制中扮演了非常重要的角色。 胃肠道的菌群总量是非常大的,粪便中近50%是细菌,约为1012/克粪便 由于许多方面的原因定义正常的肠道菌群是非常困难的。已知有超过500种不同种类的微生菌群在肠道定植,在回肠末端及结肠部的主要定植菌群包括乳酸杆菌、双歧杆菌、肠球菌和拟杆菌[1-2]。由于许多菌群无法在体外进行培养因而对其研究也一度受到阻碍,近来,借助于新的研究方法如变性梯度凝胶电泳(DGGE)和荧光原位杂交(FISH,利用菌群特异性探针对其进行组织定位)使对这些菌群研究取得重大进展。肠腔和其相关联的粘膜上微生物菌群的数量和类型也是有差别的[3]。粘膜相关菌

2020国家免疫规划疫苗儿童免疫程序及说明

附件1 国家免疫规划疫苗儿童免疫程序及说明 (2020年版) - 1 -

国家免疫规划疫苗儿童免疫程序表(2020年版) 2. 两剂次麻腮风疫苗免疫程序从2020年6月开始在全国范围实施。 3. 选择乙脑减毒活疫苗接种时,采用两剂次接种程序。选择乙脑灭活疫苗接种时,采用四剂次接种程序;乙脑灭活疫苗第1、2剂间隔7~10天。 4. 选择甲肝减毒活疫苗接种时,采用一剂次接种程序。选择甲肝灭活疫苗接种时,采用两剂次接种程序。 - 2 -

国家免疫规划疫苗儿童免疫程序及说明 (2020年版) 第一部分一般原则 一、接种年龄 (一)起始接种年龄:免疫程序表所列各疫苗剂次的接种时间,是指可以接种该剂次疫苗的最小年龄。 (二)儿童年龄达到相应疫苗的起始接种年龄时,应尽早接种,建议在下述推荐的年龄之前完成国家免疫规划疫苗相应剂次的接种: 1.乙肝疫苗第1剂:出生后24小时内完成。 2.卡介苗:<3月龄完成。 3.乙肝疫苗第3剂、脊灰疫苗第3剂、百白破疫苗第3剂、麻腮风疫苗第1剂、乙脑减毒活疫苗第1剂或乙脑灭活疫苗第2剂:<12月龄完成。 4.A群流脑多糖疫苗第2剂:<18月龄完成。 5.麻腮风疫苗第2剂、甲肝减毒活疫苗或甲肝灭活疫苗第1剂、百白破疫苗第4剂:<24月龄完成。 6.乙脑减毒活疫苗第2剂或乙脑灭活疫苗第3剂、甲肝灭活疫苗第2剂:<3周岁完成。 7.A群C群流脑多糖疫苗第1剂:<4周岁完成。 8.脊灰疫苗第4剂:<5周岁完成。 - 3 -

9.白破疫苗、A群C群流脑多糖疫苗第2剂、乙脑灭活疫苗第4剂:<7周岁完成。 如果儿童未按照上述推荐的年龄及时完成接种,应根据补种通用原则和每种疫苗的具体补种要求尽早进行补种。 二、接种部位 疫苗接种途径通常为口服、肌肉注射、皮下注射和皮内注射,具体见第二部分“每种疫苗的使用说明”。注射部位通常为上臂外侧三角肌处和大腿前外侧中部。当多种疫苗同时注射接种时,可在左右上臂、左右大腿分别接种。 三、同时接种原则 (一)不同疫苗同时接种:两种及以上注射类疫苗应在不同部位接种。严禁将两种或多种疫苗混合吸入同一支注射器内接种。 (二)不同疫苗接种间隔:两种及以上注射类减毒活疫苗如果未同时接种,应间隔≥28天进行接种。灭活疫苗和口服减毒活疫苗,如果与其他种类疫苗(包括减毒和灭活)未同时接种,对接种间隔不做限制。 (三)现阶段的国家免疫规划疫苗均可按照免疫程序或补种原则同时接种。免疫规划疫苗和非免疫规划疫苗可以同时接种,如选择不同时接种,应优先保证免疫规划疫苗的接种。 四、补种通用原则 未按照推荐年龄完成国家免疫规划规定剂次接种的<18周岁人群,在补种时掌握以下原则: - 4 -

相关文档