文档库 最新最全的文档下载
当前位置:文档库 › 绝对值不等式和柯西不等式题型

绝对值不等式和柯西不等式题型

绝对值不等式和柯西不等式题型
绝对值不等式和柯西不等式题型

1.设不等式|x+1|-|x-2|﹥k 的解集为R ,求实数k 的取值范围。

2.设函数)0(|||1|)(>-++=a a x a

x x f

(1)证明:2)(≥x f ;

(2)若5)3(

3.已知a b c >>,求证:222222ca bc ab a c c b b a ++<++。

4.求证:当),0(,+∞∈b a 时,2)(b a b a ab b a +≥。

5.已知c b a ,,均为正数,且1=++c b a ,求证:9111≥++c b a 。

6.已知c b a >>,且0=++c b a ,求证:a ac b 32<-。

7.已知)1,0(,,∈c b a ,求证:a c c b b a )1(,)1(,)1(---不能同时大于4

1。

8.设n 是正整数,求证:121...211121<+++++≤n n n 。

9.若正数c b a ,,满足1=++c b a ,求2

31231231+++++c b a 的最小值。

10.设n a a a ,...,,21是几个互不相同的正整数,求证:

233221...321...31211n a a a a n n ++++≤++++。

11.设N n c b a ∈>>,,且011≥-+-+-a c n c b b a 恒成立,则n 的最大值是多少?

含绝对值的不等式

含绝对值的不等式 [学习要求] (1)理解并掌握解含绝对值的不等式的基本思路是化去绝对值符号,转化为不含绝对值符号的不等式(或不等式组)来解。 (2)弄懂去绝对值符号的理论依据,掌握去绝对值符号的主要方法,会解简单的含有绝对值的不等式。 [重点难点] 1.实数绝对值的定义: |a|= 这是去掉绝对值符号的依据,是解含绝对值符号的不等式的基础。 2.最简单的含绝对值符号的不等式的解。 若a>0时,则 |x|a x<-a或x>a。

注:这里利用实数绝对值的几何意义是很容易理解上式的,即|x|可看作是数轴上的动点P(x)到原点的距离。 3.常用的同解变形 |f(x)|g(x) f(x)<-g(x)或f(x)>g(x); |f(x)|<|g(x)| f2(x)

评注:绝对值的概念是分类定义的,因此,在解决这类问题时,必须要分类讨论。 例2:型如:|x|a,(其中a>0)不等式的解法。 探路:利用不等式的乘方法则或绝对值意义均可。 解:当a>0时, |x|a x2>a2x>a或x<-a;其几何意义为 评注: 解:型如|x|0)和|x|>a,(a>0)的不等式,可以利用平方法化为关于x的二次不等式来解;也可以利用定义法来解,均可求得它们的解集。今后,要熟记|x|0)的解集为-aa,(a>0)的解集为x>a或x<-a是十分重要的。 例3:由定理-“|a|-|b|≤|a+b|≤|a|+|b|”导出定理:“|a|-|b|≤|a-b|≤ |a|+|b|” 探路:利用“代换法” 证明:由定理一可知,|a|-|-b|≤|a+(-b)|≤|a|+|-b|,即|a|-|b|≤|a-b|≤ |a|+|b|

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+(2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 特别说明:以上不等式中,当且仅当b a =时取“=” 5、常用结论 (1)若0x >,则1 2x x +≥(当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤-(当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若*,R b a ∈,则2 2111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当 b a =时取“=” (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥b a 112 + 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2 2 2 3、已知1a b c ++=,求证:2221 3 a b c ++≥ 4、已知,,a b c R +∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 5、已知,,a b c R +∈,且1a b c ++=,求证:1111118a b c ?????? ---≥ ??????????? 6、选修4—5:不等式选讲

不等式知识点与题型总结

不等式 一、知识点: 1. 实数的性质: 0>-?>b a b a ;0<-??<,a b b a . 传递性 a b >且b c a c >?>. 加法性质 a b a c b c >?+>+;a b >且c d a c b d >?+>+. 乘法性质 ,0a b c ac bc >>?>;0a b >>,且00c d ac bd >>?>>. 乘方、开方性质 0,n n a b n N a b *>>∈?>;0,n n a b n N a b *>>∈?>. 倒数性质 11,0a b ab a b >>? <. 3. 常用基本不等式: 条 件 结 论 等号成立的条件 a R ∈ 20a ≥ 0a = ,a R b R ∈∈ 2 2 2a b ab +≥,2()2 a b ab +≤, 22 2()22a b a b ++≥ a b = 0,0>>b a 基本不等式: 2a b ab +≥ 常见变式: 2≥+b a a b ; 21 ≥+a a a b = 0,0>>b a 22112 2 2b a b a ab b a +≤ +≤≤+ a b = 4.利用重要不等式求最值的两个命题: 命题1:已知a ,b 都是正数,若ab 是实值P ,则当a=b= 时,和a +b 有最小值2 . 命题2:已知a ,b 都是正数,若a +b 是实值S ,则当a=b=2 s 时,积ab 有最大值42s . 注意:运用重要不等式求值时,要注意三个条件:一“正”二“定”三“等”,即各项均为正数,和或积 为定值,取最值时等号能成立,以上三个条件缺一不可. 5.一元二次不等式的解法:设a>0,x 1x 2是方程ax 2+bx+c=0的两个实根,且x 1≤x 2,则有

绝对值不等式(经典题型)

1.若a >0,且|x |>a ,则____________;若a >0,且|x |c (c >0)型不等式的解法: 3.解下列不等式. (1)|2x +5|<7. (2)|2x +5|>7+x . (3)|x 2-3x +1|<5. (4)|2x -1|<2-3x . (5)1<|2-x |≤7. (6)1<|x -2|≤3 4.集合A ={x ||2-x |<5},B ={x ||x +a |≥3},且A ∪B =R ,求a 的取值范围 |x -a |+|x -b |≥c |x -a |+|x -b |≤c 5.解不等式 (1)|x -1|+|x -2|>2. (2)|x +2|-|x -1|<2 |(3)x +2|-|x -1|<2x 6.恒成立问题 (1)对任意x ∈R ,若|x -3|+|x +2|>a 恒成立,则实数a 的取值范围 . (2)关于x 的不等式a >|x -3|+|x +2|的解集非空,则实数a 的取值范围 . (3)关于x 的不等式a >|x -3|+|x +2|在R 上无解,则实数a 的取值范围 . (4)若不等式|x +3|-|x -5|x -2x 的解集是________. 10..已知函数f (x )=|x +2|-|x -1|,则f (x )的值域是________. 11. 对于x ∈R ,不等式||x +10-||x -2≥8的解集为______ 12.设函数f(x)=|3x -1|+x +2. (1)解不等式f(x)≤3; (2)若不等式f(x)>a 的解集为R ,求a 的取值范围.

高考数学经典专题:绝对值不等式含参数成立问题(含详解答案)

高考数学经典专题:绝对值不等式中含参数成立问题 1.已知函数()|1||2|f x x x m m =-+-∈R ,. (1)当3m =时,解不等式()3f x ≥; (2)证明:当0m <时,总存在0x 使00()21f x x <-+成立 2.已知函数()32f x x =-. (1)若不等式213f x t ? ?+≥- ???的解集为11,,33????-∞-?+∞ ??????? ,求实数t 的值; (2)若不等式()3133y y f x x m -≤+++?对任意x ,y 恒成立,求实数m 的取值范 围. 3.已知函数()2f x x a =-,()|1|g x a x =-,a R ∈. (Ⅰ)若1a =,求满足()(1)1g x g x +->的实数x 的取值范围; (Ⅱ)设()()()h x f x g x =+,若存在12,[2,2]x x ∈-,使得()()216h x h x -≥成立,试求实数a 的取值范围. 4.已知()|3|f x ax =-,不等式()6f x …的解集是{|13}x x -剟 . (1)求a 的值; (2)若()()3 f x f x k +-<存在实数解,求实数k 的取值范围. 5.已知函数f (x )=|2x ﹣a |+|x ﹣a +1|. (1)当a =4时,求解不等式f (x )≥8; (2)已知关于x 的不等式f (x )2 2 a ≥在R 上恒成立,求参数a 的取值范围. 6.已知定义在R 上的函数2 ()|24|f x x a x a =-+-. (1)当1a =时,解不等式()5f x ≥; (2)若2()4f x a -≥对任意x ∈R 恒成立,求a 的取值范围. 7.已知,a b 均为实数,且3410a b += . (Ⅰ)求22a b +的最小值; (Ⅱ)若2232x x a b +--≤+对任意的,a b ∈R 恒成立,求实数x 的取值范围.

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

《不等式》常见题型归纳和经典例题讲解

? x + 1 ?? 2 3 《不等式》常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 定义类 1.下列不等式中,是一元一次不等式的是( ) A. 1 x +1>2 B.x 2>9 C.2x +y ≤5 D. 1 2 (x -3)<0 2.若 (m - 2) x 2m +1 - 1 > 5 是关于 x 的一元一次不等式,则该不等式的解集为 . 用不等式表示 a 与 6 的和小于 5; x 与 2 的差小于-1; 数轴题 1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a __________ b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a . 2.已知实数 a 、b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 、ab >0 B 、 a > b C 、a -b >0 D 、a +b >0 同等变换 1.与 2x <6 不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 借助数轴解不等式(组): (这类试题在中考中很多见) ?1 - ≥ 0 1.(2010 湖北随州)解不等式组 ? 3 ??3 - 4( x - 1) < 1 D.-2x <-6 2.(2010 福建宁德)解不等式 2 x - 1 - 5x + 1 3 2 ?1 - 2( x -1) > 1, ? 3.(2006 年绵阳市) ? x 1 - ≥ x. 含参不等式: 此类试题易错知识辨析 ≤1,并把它的解集在数轴上表示出来.

含有绝对值的不等式·典型例题分析

含有绝对值的不等式·典型例题分析 例1 求下列函数的定义域和值域: 分析利用绝对值的基本概念. 解 (1)x+|x|≠0,即|x|≠-x.∴x>0. ∴定义域为(0,+∞),值域为(0,+∞). (2)|x|≥x,x∈R.|x|-x≥0,∴y∈[0,+∞). (3)x+|x|>0,x∈R+.y∈R. 画出函数图象如图5-17所示.不难看出,x∈R,y∈[-1,1]. 说明本例中前三个易错,第四个要分析写出函数表达式,并画出函数图象,此法在求值域时常用. 例2 解不等式|x+1|>|2x-3|-2.

将不等式中的绝对值符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. (1)当x≤-1时原不等式化为-(x+1)>-(2x-3)-2. ∴x>2与条件矛盾,无解. 综上,原不等式的解为{x|0<x<6}. 注意找零点去绝对值符号最好画数轴,零点分段,然后从左向右逐段讨论,这样做条理分明、不重不漏. 例3 解不等式|x2-4|<x+2. 分析解此题的关键是去绝对值符号,而去绝对值符号有两种方法:

二是根据绝对值的性质:|x|<a?-a<x<a,|x|>a?x>a或x<-a,因此本题有如下两种解法. ∴2≤x<3或1<x<2 故原不等式的解集为{x|1<x<3}. 解法二原不等式等价于-(x+2)<x2-4<x+2 例4 求使不等式|x-4|+|x-3|<a有解的a的取值范围. 分析此题若用讨论法,可以求解,但过程较繁;用绝对值的几何意义去求解十分简便. 解法一将数轴分为(-∞,3],[3,4],(4,+∞)三个区间 当3≤x≤4 时,得(4-x)+(x-3)<a,即a>1;

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+. 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

不等式常见题型归纳和经典例题讲解

《不等式》常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x 1 +1>2 B.x 2>9 C.2x +y ≤5 D.21 (x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 . a 与6的和小于5; x 与2的差小于-1; 1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a __________ b ; |a |__________|b |; a +b __________0 a - b __________0; a +b __________a -b ; ab __________a . 2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 、ab >0 B 、a b > C 、a -b >0 D 、a +b > 0 1.与2x <6不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 D.-2x <-6 ): (这类试题在中考中很多见) 1.(2010湖北随州)解不等式组110334(1)1 x x +?-???--???-≥?? : 此类试题易错知识辨析

(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <) 当0a <时,b x a <(或b x a >) 当0a <时,b x a <(或b x a >) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 5 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠2 7.如果不等式(a -3)x <b 的解集是x < 3-a b ,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6 D.无数个 2.不等式4x - 41141+

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

绝对值不等式中的含参问题(原创)

绝对值不等式中的含参问题 在高中数学中,绝对值不等式的求解及含参问题是高考中不等式选讲部分重要的考点,面对诸多的含参问题,我们来对这些类型的题目作以梳理。绝对值不等式的核心是去掉绝对值符号,将它转化为一般不等式加以解决。 一、绝对值的最值问题 1、当绝对值中x的系数相同时。 运用三角不等式:a?b≤a±b≤a+b 例1:求函数f x=x?3+x?4的最值 解:x?3+x?4≥x?3?x?4=1,函数f x的最小值为1。 例2:求函数f x=2x?1?2x?3的最值 解:2x?1?2x?3≤2x?1?2x?3=2,即得到?2≤2x?1?2x?3≤2,函数f x的最小值为?2,最大值为2。 2、当绝对值中x的系数不相同时。 ①零点分段,②写出分段函数,③画草图(或直接由直线的上升与下降判断最高或最低处),在分界点处求最值。 例:求函数f x=2x?2+x+2的最值 解:当 x≤?2 ?x+2?(2x?2)即 x≤?2 ?3x, 当 ?2

则有f x= ?3x, x≤?2 ?x+4, ?2f x恒成立,则a>f max(x) 例1:x?3+x?4>a对一切x∈R恒成立,求a的取值范围。 析:先求函数f x=x?3+x?4的最小值,再a f max(x)二次不等式。 解:由于x∈0,1,则f x=2x?1?x?2, 当 0≤x≤1 2 ?2x?1?x?2 即 0≤x≤1 2 ?3x?1 当 1 2

基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 .基本不等式 ①公式: -_b ab (a 0,b 0),常用 a b 2. ab 2 2 ■ 2 2 ②升级版: a b a b ab a,b R 2 2 选择顺序:考试中,优先选择原公式,其次是升级版 二?考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定三相等 一正: 指的是注意a,b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时 a b 典型例题: 1 例1?求 y x £;(x 0)的值域 分 x 范围为负,提负号(或使用对钩函数图像处 1 解:y (x ) Q x 0 2x 2x 1 x 2x 得到y ( , &]

1 分析:sinx 的范围是(0,1),不能用基本不等式,当 y 取到最小值时,sinx 的值是.2,但「2不 在范围内 解:令 t sinx , t (0,1) 是对钩函数,禾U 用图像可知: 2 在(0,1)上是单减函数,所以t 3,(注:3是将t 1代入得到) y (3,) 注意:使用基本不等式时,注意 y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式 ,要借助对钩函数图像来求 值域。 例2 ?求y 2x (x 3)的值域 解:y 2x (“添项”,可通过减3再加3,利用基本不等式后可出现定值 ) 2(x 3) 22 即 y 2.2 6, 例3?求 y sin x 2 sin x (0 x )的值域

y t f (p 为常数)型函数,要注意t 的取值范围; 【失误与防范】 1.使用基本不等式求最值,其失误的真正原因 是对其前提“一正、二定、三相等”的忽视. 要利 用基本不等式求最值,这三个条件缺一不可. 2 ?在运用重要不等式时, 要特别注意“拆” “拼” “凑” “正” “定” “等”的条件. 3.连续使用公式时取 等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 【题型2】条件是a b 或ab 为定值,求最值(值域)(简) x 2 2x 1 例 4.求 y (x 2)的值域 分析:先换元,令t x 2 ,t 0,其中x 解:y (t 2)2 2(t 2) 1 t 2 6t 1 t Qt 0 [8, 总之:形如y 2 CX ax b dx f (a 0,c 0)的函数,一般可通过换元法等价变形化为 等技巧,使其满足重要不等式中 例5. 0, y 0且x y 18,则xy 的最大值是 解析: 由于 x 0,y 0,则x y 2 xy ,所以2 xy 18,则xy 的最大值为81 例6. 已知 x,y 为正实数,且满足 4x 3y 12,则xy 的最大值为

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

必修五基本不等式题型分类(绝对经典)

一对一个性化辅导教案课题基本不等式复习 教学 重点 基本不等式 教学 难点 基本不等式的应用 教学目标掌握利用基本不等式求函数的最值学会灵活运用不等式 教学步骤及教学内容一、教学衔接: 1、检查学生的作业,及时指点; 2、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。 二、内容讲解: 1.如果那么当且仅当时取“=”号). 2.如果那么(当且仅当时取“=”号) 3、在用基本不等式求函数的最值时,应具备三个条件:一正二定三相等。 ①一正:函数的解析式中,各项均为正数; ②二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③三取等:函数的解析式中,含变数的各项均相等,取得最值。 三、课堂总结与反思: 带领学生对本次课授课内容进行回顾、总结 四、作业布置: 见讲义 管理人员签字:日期:年月日 作1、学生上次作业评价:○好○较好○一般○差 备注:

基本不等式复习

知识要点梳理 知识点:基本不等式 1.如果(当且仅当时取“=”号). 2.如果(当且仅当时取“=”号). 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等。 ①一正:函数的解析式中,各项均为正数; ②二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③三取等:函数的解析式中,含变数的各项均相等,取得最值。 类型一:利用(配凑法)求最值 1.求下列函数的最大(或最小)值. (1)求的最小值; (2)若 (3)已知,,且. 求的最大值及相应的的值变式1:已知 类型二:含“1”的式子求最值

2.已知且,求的最小值. 变式1:若 变式2: 变式3:求函数 类型三:求分式的最值问题 3. 已知,求的最小值 变式1:求函数

含绝对值不等式的题型

含绝对值不等式题型 一、单绝对值问题 1.解下列不等式: (1).4321x x ->+; (2).|2||1|x x -<+; (3).4|23|7x <-≤: (4).|23|3x x ->; (5). 2x x +≥ 2. 不等式1|1|3x <+<的解集为( ). .A (0,2) .B (2,0)(2,4)- .C (4,0)- .D (4,2)(0,2)-- 3. 已知全集{12345}U =,,,,,集合{} 32A x Z x =∈-<,则U C A = ( ) .A {1234},,, .B {234},, .C {15}, .D {5} 4. 设集合{}22,A x x x R =-≤∈,{}2,12B y x x ==--≤≤,则()R C A B 等于 ( ) .A R .B {},0x x R x ∈≠ .C {}0 .D ? 5. 不等式2103x x -≤的解集为( ) .A {|2x x ≤≤ .B {}|25x x -≤≤ .C {}|25x x ≤≤ .D {}5x x ≤ 6. 若x R ∈,则()()110x x -+>的解集是 ( ) .A {} 01x x ≤< .B {0x x <且1}x ≠- .C {}11x x -<< .D {1x x <且1}x ≠- 7. 不等式()120x x ->的解集是( ) .A ()1 2,-∞ .B ()()1 2,00,-∞ .C ()12,+∞ .D ()120, 8. 不等式3529x ≤-<的解集是 ( ) .A ()(),27,-∞-+∞ .B []1,4 .C [][]2,14,7- .D (][)2,14,7- 9. 不等式211x x --<的解集是_______________. 10. 方程223x x x ++223x x x ++=的解集为___________,不等式22||x x x x -->的解集是_______

含参数不等式及绝对值不等式的解法

含参数不等式及绝对值不等式的解法 例1解关于x 的不等式:2(1)0x x a a ---> 0)(3 22<++-a x a a x 01)1(2<++-x a ax 02)12(2>++-x a ax 22+≥+ a x ax 11 +>-a x x 11<-x ax ()()02 21>----x a x a 0)2(≥--x x a x 01 2≥--x ax x a x x <- 0)2)(1(1≥----x x k kx 例2: 关于x 的不等式01)1(2 <-+-+a x a ax 对于R x ∈恒成立,求a 的取值范围。

例3:若不等式210x ax ≥++对于一切1(0,)2 x ∈成立,则a 的取值范围. 例4:若对于任意a (]1,1-∈,函数()()a x a x x f 2442-+-+=的值恒大于0,求x 的 取值范围。 例5:已知19≤≤-a ,关于x 的不等式: 0452 <+-x ax 恒成立,求x 的范围。 例 6: 对于∈x (0,3)上的一切实数x,不等式()122-<-x m x 恒成立,求实数m 的 取值范围。 例7:2212<--+x x 1332+<-x x 321+<+x x x x 332≥- 例8、 若不等式a x x >-+-34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x >---34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x <---34有解,求a 的取值范围 若不等式a x x <---34的解集为空集,求a 的取值范围 若不等式a x x <---34解集为R ,求a 的取值范围

柯西不等式(原始版)题型分类

柯西不等式(原始版)的习题分类 柯西不等式已经成为高考当中的新贵,去年全国卷II 的选修4-5不等式选讲,已经出现了柯西不等式命题,因此对柯西不等式几种典型习题加以分类,有助于知识的掌握。 一、柯西不等式(原始版) 1、()()()22211222 1222 1b a b a b b a a +≥++,当且仅当向量()21,a a a = ,()21,b b b = 同向时候成立,如果0,21≠b b 时,那么当且仅当2 211b a b a =时成立。 2、()() ()2 332211232221232221b a b a b a b b b a a a ++≥++++,当且仅当321321::::b b b a a a =时等号成立。 3、2 11212 ??? ??≥?∑∑∑===n k k k n k k n k k b a b a ,当且仅当n n b b b b a a a a :...::::...:::321321=时等号成立。 由以上柯西不等式(原始版)来看,柯西不等式是齐次,不等式左右两边的式子的次数相等,因此做题的时候可以抓住这个关键进行应用。 二、常见题型 1、()常数次次≥-?11。 例1、已知1=+b a ,且0,>b a ,求b a 11+的最小值。 解析:这道题的方法非常多,利用二元的均值定理可以求解,但是应用柯西不等式更加方便。考虑最后求解的形式一定是k b a ≥+11,k 为某个常数,那么不等式左边1-次,右边为0次,并不相等,所以左边要乘以 b a +,这样左边变成了()??? ? ?++b a b a 11,次数就成为了0,就可以应用柯西不等式。 ()41111112=??? ? ???+?≥+??? ??+=+b b a a b a b a b a ,当且仅当21==b a 时等号成立,所以b a 11+的最小值为4。 显然以上对例1的求解,柯西不等式比均值定理更为简单,有些优势,而且柯西不等式的应用范围更加广泛。 例2、若0,,>c b a ,求证()9111≥++??? ? ?++c b a c b a 。 解析:可以直接应用柯西不等式 ()91111112=??? ? ???+?+?≥++??? ??++c c b b a a c b a c b a ,当且仅当1===c b a 时等号成立。 练习: 1、已知0,,>c b a ,证明: c b a c b a ++≥++9111。 2、已知0,,>c b a ,证明:() c b a a c c b b a ++≥+++++29111。 提示:()()()()a c c b b a c b a +++++=++2。

专题一、含绝对值不等式的解法(含答案)

第三讲 含绝对值不等式与一元二次不等式 一、知识点回顾 1、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =) ()()()?? ? ??<-=>=0,0,00,a a a a a a 2、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法; (5)不等式同解变形原理:即 ()a x a a a x <<-?><0 ()a x a x a a x -<>?>>或0 ()c b ax c c c b ax <+<-?><+0 ()c b ax c b ax c c b ax -<+>+?>>+或0 ()()()()()x g x f x g x g x f <<-?< ()()()()()()x g x f x g x f x g x f <>?>或 ()()()()a x f b b x f a a b b x f a -<<-<><<或0 3、不等式的解集都要用集合形式表示,不要使用不等式的形式。 4、二次函数、一元二次方程、一元两次不等式的联系。(见P8) 5、利用二次函数图象的直观性来研究一元二次方程根的性质和一元二次不等式解集及变化,以及含字母的有关问题的讨论,渗透数形结合思想。 6、解一元二次不等式的步骤: (1)将不等式化为标准形式()002≥>++c bx ax 或()002≤<++c bx ax (2)解方程02=++c bx ax (3)据二次函数c bx ax y ++=2的图象写出二次不等式的解集。 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。

相关文档
相关文档 最新文档