文档库 最新最全的文档下载
当前位置:文档库 › 交流传动电力机车主变流器原理及功能介绍

交流传动电力机车主变流器原理及功能介绍

交流传动电力机车主变流器原理及功能介绍
交流传动电力机车主变流器原理及功能介绍

交流传动电力机车主变流器原理及功能介绍

发表时间:2017-08-31T10:20:15.647Z 来源:《电力设备》2017年第12期作者:马连凤田鹏刚丁巧娅孙湘漪[导读] 摘要:本文详细介绍大功率交流传动电力机车主变流器的电路原理、结构特点、工作方式、理论基础、安全保护方法与实施情况。 (中车永济电机有限公司技术中心西安 710018) 摘要:本文详细介绍大功率交流传动电力机车主变流器的电路原理、结构特点、工作方式、理论基础、安全保护方法与实施情况。

关键词:交流传动;机车主变流器;四象限整流器、PWM逆变器。

一、引子

大功率交流传动电力机车主变流器是机车交流传动系统的核心构成。在正常的牵引/制动工况下,主变流器内的牵引控制单元接收司机控制指令,控制各变流器单元实现电源从工频、高压不可控单相交流电源到三相可控变压、变频的交流电源的转化,拖动异步牵引电动机,实现对牵引电机的控制。

二、主变流器的电路原理

大功率交流传动电力机车采用交—直—交电传动方式,主变压器的次边牵引绕组向主变流器中的四象限脉冲整流器供电,实现电源从交流到直流的转换;四象限脉冲整流器输出形成一个中间直流电路,变流器直流环节实现二次谐波吸收、直流储能、各种保护;中间直流电路向电压型牵引逆变器供电,实现直流到3相交流的VVVF变换,拖动一台异步牵引电动机,实现机车牵引电机轴控方式。牵引时能量从电网流向电机,电能转化为机械能;制动时过程相反,机械能转化为电能回馈电网。主变流器内部设置有向加热装置提供交流电源的接口,使机车电传动系统可以根据需求进行合理配置。

主变流器电路原理如上图1所示,按照功能可分为:四象限变流电路(输入电路)、中间直流电路、VVVF逆变电路(输出电路)。

2.1四象限变流器 2.1.1 四象限变流器电路构成

如图1所示,四象限变流器通过主变压器的牵引绕组得电,每组四象限变流电路由1个充电电阻、1个预充电接触器、一个主接触器及1个四象限变流器构成,四象限脉冲整流器由一个功率模块单元构成,其每一臂IGBT模块组成。四象限变流器将交流电变换成直流电向中间回路供电。

2.1.2 四象限变流器工作原理

正常情况下,主变流器刚启动工作时,中间电压为零,所以首先开始预充电,此时主接触器断开,预充电接触器闭合,四象限以自然整流方式向中间回路电容充电,预充电电阻的作用在于限制充电电流。中间回路电压上升一定阀值后充电完成,主接触器闭合,充电接触器断开并切除预充电电阻。四象限变流器采取瞬态电流控制方式实现中间电路电压的稳定,同时实现变压器次边的功率因素接近于1。

2.2中间直流电路 2.2.1 中间直流回路构成

中间直流电路由中间电压支撑电容、二次滤波LC谐振电路,能耗电路、放电保护电路和接地保护电路组成。

2.2.2 二次滤波电路

二次滤波电路由二次滤波电抗器L和二次滤波电容器C组成谐振电路,谐振频率为100Hz,谐振电抗器置于主变压器中,谐振电容器置于主变流器中。

2.2.3 能耗电路

中间直流环节并联有耗能电阻,利用逆变器功率模块中一个富余的桥臂实现斩波放电耗能控制。当电力机车进入电制动工况,主变流器完成能量回馈;如果四现象馈网能量小于牵引逆变器回馈能量,会造成中间电压升高,此时主变流器启动中间保护回路进行放电耗能;如果中间回路继续上升至设定安全阀值,则判定为主变流器故障,机车会自动切除主接触器以避免故障扩大。

2.2.4 放电保护电路

中间直流支撑电容及二次滤波电容均装有硬短接放电保护电路,当机车入库停车或停车维修时,关断主接触器使变流器断电,此时放电保护电路使中间回路电容在设定的时间范围内放电至安全值以内。

2.3 牵引逆变器 2.

3.1 牵引逆变器电路

电力机车每台牵引电机由一个PWM逆变器单独供电,实现牵引电机轴控。牵引逆变器主电路由两个功率模块组成,配置输出电流传感器,完成直流向交流的控制变换、机车制动时能量回馈、IGBT的散热及保护。

2.3.2 牵引逆变器控制原理 PWM逆变电路采用磁场定向控制策略,此策略是一种基于动态模型按转子磁链定向的矢量控制技术,通过对定子电流的励磁分量和转矩分量的解耦控制,达到分别控制电机磁链和转矩,实现快速响应的目的。通过正弦脉宽调制技术控制PWM变流器的输出,根据电机特性曲线要求优化变流器的输出特性。使得在牵引和制动工况下,对牵引电动机的电流最大值限制进行控制。

2.4主变流器的保护

主变流器内部两个不同的单元完全独立设置,且高压电路、低压控制电路、冷却风道各自分区隔离,同时高压区封闭且设置安全锁,只有满足一定条件下才能开锁,打开高压区,这是主要的安全操作设计。

2.4.1 过压保护

在直流回路电压大于整定值时,首先触发中间放电保护;如果中间电压继续上升或长时间触发中间放电保护,则判定出现故障,断开主接触器,切断一个牵引单元,防止故障扩散。

2.4.2过流保护

在主变流器的输入和输出侧有电流传感器,在短路和其它故障情况下,在达到最大电流设定值时自动封锁相关的模块触发脉冲,完成设定的逻辑保护动作并通过网络实现信息共享。

2.4.3 接地保护

UPS不间断电源工作原理及应用

UPS不间断电源工作原理及应用 国电新疆艾比湖流域开发有限公司—刘晓伟 摘要:本文介绍了UPS电源系统的基本组成,原理及特点,并对如何对其全面、完善维护做了详细的阐述。 关键字:UPS 储能电池、工作原理、维护 一、引言 保证任何情况下的正常供电,是水电行业的重要基础。为此,除工业电网正常供电外,还需配备UPS供电系统。UPS电源是保障供电稳定和连续性的重要设备,因其主要机智能化程度高,储能器材采用免维护蓄电池,使得在运行中往往忽略了对该系统的维护与检修。其实维护的好坏,对电源的寿命和故障率有很大影响,虽说各企业配臵的UPS供电系统设备型号及系统容量有所不同,但其原理和主要功能基本相同。在UPS电源类型选择上各站都选择了在线式,这时因为在线式UPS电源系统具有对各类供电的零时间切换,自身供电时间的长短可选,并具有稳压、稳频、净化的特点。当UPS电源系统本身出现故障时有自动旁路功能,当需要检修时可采用手动旁路,使检修、供电互不影响。 二、UPS电源系统 UPS电源系统由4部分组成:整流、储能、变换和开关控制。其系统的稳压功能通常是由整流器完成的,整流器件采用可控硅或高频开关整流器,本身具有可根据外电的变化控制输出幅度的功能,从而当外电发生变化时(该变化应满足系统要求),输出幅度基本不变的整流电压。储能电池除可存储直流直能的功能外,对整流器来说就象

接了一只大容器电容器,其等效电容量的大小,与储能电池容量大小成正比频率的稳定则由变换器来完成,频率稳定度取决于变换器的振荡频率的稳定程度。为方便UPS电源系统的日常操作与维护,设计了系统工作开关,主机自检故障后的自动旁路开关,检修旁路开关等开关控制。 UPS电源系统主要分两大部分,主机和储能电池。额定输出功率的大小取决于主机部分,并与负载属那种性质有关,因为UPS电源对不同性能的负载驱动能力不同,通常负载功率应满足UPS电源70%的额定功率。储能电池容量的选取当负载功率确定后主要取决其后备时间的长短,这个时间因各企业情况不同而不同,主要由备用电源的接入时间来定,通常在几分钟或几个小时不等。UPS电源系统在检测到电网电压中断后,可自行启动供电,且随着储能电池慢慢放电,储能电池的容量随着时间会逐渐降低,考虑到寿命终止时储能电池容量下降到50%并留有一定的余量。 2.1电源工作原理 2.1.1 AC-DC变换:将电网来的交流电经自耦变压器降压、全波整流、滤波变为直流电压,供给逆变电路。AC-DC输入有软启动电路,可避免开机时对电网的冲击。 2.1.2 DC-AC逆变电路:采用大功率IGBT模块全桥逆变电路,具有很大的功率富余量,在输出动态范围内输出阻抗特别小,具有快速响应特性。由于采用高频调制限流技术,及快速短路保护技术,使逆变器无论是供电电压瞬变还是负载冲击或短路,均可安全可靠地工

电力机车事故概况案例

2012年“”列车停于无电区一般D15事故概况 事故概况: 2012年10月14日,我段XX运用车间XXX机班HXD3-8123机车,值乘DH41087次列车,兖北四场开车经一场走白兖联络线方向,由于司机精力旁顾,在兖北一场出站前错过支线号输入时机后,未及时采取补救措施盲目运行,导致出站后装置默认外包线自动闭塞数据,机车信号双黄转白限速递减装置常用动作,机车停于分相无电区,被迫请求救援,构成铁路交通一般D15事故。 事故原因: 1、非正常情况下司机操纵不科学、不合理,在未判明列车前方进路时盲目加速。下行兖北一场出站后有三个进路方向,司机在无法车机联控确认列车运行方向时,没有适时降低列车速度,而是盲目提手柄加载运行,未给采取补救措施留出操作时间,为事故的发生埋下隐患。 2.关键地点、重点作业环节主次不分,精力不集中,错过输入时机。在距出站信号机约70米处,司机已确认进路表示器显示方向,但却将精力旁顾,在仅有的十几秒操作时间内没有完成输入步骤,耽误了操作时机。 3.发生错漏输后没有正确处理,分相前未采取补救措施。司机发现错误后没有执行“乘务员在出现错漏输时,必须在发现后

及时进行监控装置参数修正”要求,未及时采取停车措施对LKJ 降级重新输入站号操作;而是错误考虑前方有电分相,想提高速度先闯过电分相,期间盲目多次进行无效的支线号输入操作,导致在机车信号停车模式下继续运行,装置触发常用动作列车停在无电区,从而导致错误加大,问题升级,是造成本次事故的重要原因。 2013年“”事故因素概况 基本概况: 2013年2月24日,我段XX运用车间XXX机班,使用HXD2C-0127机车,DH38215次,由于机班对弓网异常信息不敏感,没有及时向车站反馈信息;对弓网故障后的应急处置能力差,应急处置措施不正确,造成接触网故障持续存在,导致接触网故障信息不能及时反馈,为后续列车运行带来了较大隐患,构成段定事故因素。 原因分析 1、对弓网异常信息不敏感。接到车站注意观察接触网运行的通知后,未降低运行速度,以75km/h的速度常速运行通过观察地点,对接触网状态确认不彻底,接触网吊悬故障未发现。 2、对弓网故障后的应急处置能力差,应急处置措施不正确。在机车出现只有感应网压、自动降弓动作后未果断采取停车措施。 3、对自动降弓故障不能做出正确判断。对接触网故障导致的机车受

交流传动机车系统分析

毕业设计任务书 一、课题名称: 电力机车交流传动系统分析 二、指导老师: 三、设计内容与要求: 1、课题概述: 早期电力机车常采用直流电机来实现牵引系统,随着电力电子技术的进步,VVVF逆变器控制的异步电机牵引系统得到了广泛的应用,替代了直流电机牵引系统。采用交流传动技术的电力机车具有性能好、可靠性高、驱动功率大、维护工作量小等直流传动无法比拟的优越性。因此,电力牵引交流传动已经取代了直流电机牵引系统,成为轨道交通实现高速和重载的唯一选择和发展方向。 本课题主要分析电力机车交流传动系统的组成结构和常见的主电路拓扑结构,交流传动系统各主要部件的功能和原理,以及各种交流传动控制技术的对比分析。 2、设计内容与要求: 1)设计内容 a)电力机车交流传动系统的发展现状分析 b)电力机车交流传动系统组成和各种主电路拓扑结构分析 c)电力机车交流传动系统各主要部件功能和原理分析 d)各种交流传动控制技术的对比和分析 e)结论 2)要求 a)通过检索文献或其他方式,深入了解设计内容所需要的各种信息; b)能够灵活运用《电力电子技术》、《交流调速技术》、《电力机车总体》 等基础和专业课程的知识来分析电力机车交流传动系统。 c)要求学生有一定的电力电子,轨道交通专业基础。 四、设计参考书 1、《现代变流技术与电气传动》 2、《HXD1型电力机车》

3、《HXD2型电力机车》 4、《HXD3型电力机车》 5、《电力牵引交流传动与控制》 五、设计说明书内容 1、封面 2、目录 3、内容摘要(200-400字左右,中英文) 4、引言 5、正文(设计方案比较与选择,设计方案原理、分析、论证,设计结果的说 明及特点) 6、结束语 7、附录(参考文献、图纸、材料清单等) 六、设计进程安排 第1周:资料准备与借阅,了解课题思路。 第2-3周: 设计要求说明及课题内容辅导。 第4-7周:进行毕业设计,完成初稿。 第7-10周:第一次检查,了解设计完成情况。 第11周:第二次检查设计完成情况,并作好毕业答辩准备。 第12周:毕业答辩与综合成绩评定。 七、毕业设计答辩及论文要求 1、毕业设计答辩要求 1)答辩前三天,每个学生应按时将毕业设计说明书或毕业论文、专题报 告等必要资料交指导教师审阅,由指导教师写出审阅意见。 2)学生答辩时,自述部分内容包括课题的任务、目的和意义,所采用的 原始资料或参考文献、设计的基本内容和主要方法、成果结论和评价。 3)答辩小组质询课题的关键问题,质询与课题密切相关的基本理论、知 识、设计方法、实验方法、测试方法,鉴别学生独立工作能力、创新 能力。 2、毕业设计论文要求 文字要求:说明书要求打印(除图纸外),不能手写。文字通顺,语言流畅,排版合理,无错别字,不允许抄袭。 3、图纸要求: 按工程制图标准制图,图面整洁,布局合理,线条粗细均匀,圆弧连接

改进型电力机车的劈相机工作原理

改进型电力机车的劈相机工作原理 劈相机是SS4改进型电力机车辅助系统的主要电机之一。它的性能的好坏直接影响到其它辅助电机的正常工作。异步电动机的许多故障现象都会在劈相机上发生,但劈相机又有其自己的特性。要想快速准确地找到劈相机的故障并及时排除故障就必须对劈相机有一个全面的了解。 首先就要了解劈相机在电力机车上的作用及工作原理。SS4改进型电力机车的劈相机实际上是单相电动机与三相发电机的组合。SS4改进型电力机车上所有的辅助电动机均由主变压器的辅助绕组a6-x6供给单相电源,经异步劈相机将单相电源劈成三相电源,再供给辅助电路的所有三相异步电动机使用。异步劈相机的结构与三相异步电动机不同,转子为鼠笼式,定子绕组按三相不对称规律嵌入在定子槽内,劈相机实际上是单相电动机与三相发电机的组合。劈相机的电负荷不是固定的,是随机车运行工况的改变而变动。 电动机单相交流电通过电机定子的单相绕组时,产生交变的脉振磁场,一个脉振磁场可以分解为两个幅值一样,转速相等转向相交的旋转磁场,与电机转子的转动方向相同为正序放置磁场,与转子转动方向相反的磁场为负序旋转磁场。劈相机的电动相绕组接到单相交流电源上,在劈相机的空气隙中产生两个大小相同的磁场,当劈相机的转子静止不动时,这两个磁场在转子导体中感应的电动势和电流的大小相等,方向相反。由此而产生的两个转矩也大小相等,方向相反而互相抵消。起动转矩为零,劈相机不能自行起动。如果转子与正序旋转磁场的相对速度比较小,而转子与负序旋转磁场的相对速度比较大,转子以几乎两倍于同步转速的速度切割该负序磁场,使转子导体内感应出近两倍于电网频率的电势和电流,该电流产生的磁场几乎抵消了定子绕组产生的负序磁场。 也就是说,当转子转动时,在劈相机的气隙中主要剩下了一个正序旋转磁场,它与转子相互作用产生电磁转矩,克服了转子的机械阻力矩及转子负序电流产生的电磁阻力矩,驱使转子沿着正序旋转磁场方向旋转,同时该正序旋转磁场切割定子三相绕组,并使它感应出三相电势,于是单相电源被劈成三相电源。在劈相机定子的三相输出端接上电负载,因其中两相负载直接与单相电源相联,不需要经过劈相机而直接从单相电源得到供电,而另一相负载则由劈相机的发电相得到供电,所以劈相机是将单相交流电源劈成三相,而本身只输出一相的异步电机。(劈相机工作原理图附图3-1) (二)改进型电力机车劈相机与控制电器的关系 我们了解了SS4改进型电力机车劈相机的工作原理,而它在电力机车上是如何起动和运行的,这对我们排除劈相机故障也是十分重要的。起动劈相机是电力机车动车前的预备性操作,其电路属于控制电路。在其受电弓升弓以及闭合主断路器后进行,SS4改进型电力机车的劈相机控制有手动和自动两种,它是通过对选择开关591QS进行选择,我们主要以手动为例,这样更好地认清各个电器件在劈相机起动过程中的作用。由于劈相机直接单相电源起动时只能在气隙中产生一个脉振磁场,而不能产生一个旋转磁场,起动转矩为零,劈相机必须带电阻或电容进行分相起动,起动电阻或电容必须接在劈相机电动第一相U1相与发电相W1之间,即辅助回路202母线与203母线之间,起动电阻值为0.79Ω起动电容为10个12kvar、138μF电容并联。所有辅机控制电源由605QA自动开关控制,劈相机的控制是完成其他辅机控制的先决条件。(劈相机起动原理图附图3-2)

UPS电源的工作原理详解

UPS电源的工作原理详解 UPS电源也称不间断电源,能够提供持续、稳定、不间断的电源供应的重要外部设备。顾名思义UPS电源,它就是一台这样的机器,它在市电停止供应的时候,能保持一段供电时间,使人们有时间存盘,再从容地关闭机器。 UPS电源按工作原理分成后备式、在线式与在线互动式三大类。 UPS电源现已广泛应用于:工业、通讯、国防、医院、广播电视、计算机业务终端、网络服务器、网络设备、数据存储设备等领域。 UPS电源工作原理 (1)在线式 在线式UPS(On-Line UPS)的运作模式为“市电和用电设备是隔离的,市电不会直接供电给用电设备”,而是到了UPS就被转换成直流电,再兵分两路,一路为电池充电,另一路则转回交流电,供电给用电设备,市电供电品质不稳或停电时,电池从充电转为供电,直到市电恢复正常才转回充电,“UPS在用电的整个过程是全程介入的”。其优点是输出的波型和市电一样是正弦波,而且纯净无杂讯,不受市电不稳定的影响,可供电给“电感型负载”,例如电风扇,只要在UPS输出功率足够的前题下,可以供电给任何使用市电的设备。 UPS电源一直使其逆变器处于工作状态,通过电路将外部交流电转变为直流电,再通过高质量的逆变器将直流电转换为高质量的正弦波交流电输出给计算机。在线式UPS在供电状况下的主要功能是稳压及防止电波干扰;在停电时则使用备用直流电源(蓄电池组)给逆变器供电。由于逆变器一直在工作,因此不存在切换时间问题,适用于对电源有严格要求的场合。在线式UPS电源不同于后备式的一大优点是供电持续长,一般为几个小时,也有大到十几个小时的,它的主要功能是可以让您在停电的情况可像平常一样工作,显然,由于其功能的特殊,价格也明显要贵一大截。这种在线式UPS比较适用于计算机、交通、银行、证券、通信、医疗、工业控制等行业,因为这些领域的电脑一般不允许出现停电现象。 (2)后备式 后备式又称为非在线式不间断电源(Off-Line UPS),它只是“备援”性质的UPS,市电直接供电给用电设备也为电池充电(Normal Mode),一旦市电供电品质不稳或停电了,市电的回路会自动切断,电池的直流电会被转换成交流电接手供电的任务(Battery Mode),直到市电恢复正常,“UPS只有在市电停电了才会介入供电”,不过从直流电转换的交流电是方波,只限于供电给电容型负载,如电脑和监视器。 平时处于蓄电池充电状态,在停电时逆变器紧急切换到工作状态,将电池提供的直流电转变为稳定的交流电输出,因此后备式UPS也被称为离线式UPS。后备式UPS电源的优点是:运行效率高、噪音低、价格相对便宜,主要适用于市电波动不大,对供电质量要求不高的场合,比较适合家庭使用。然而这种UPS存在一个切换时间问题,因此不适合用在关键性的供电不能中断的场所。不过实际上这个切换时间很短,一般介于2至10毫秒,而计算机本身的交换式电源供应器在断电时应可维持10毫秒左右,所以个人计算机系统一般不会因为这个切换时间而出现问题。后备式UPS一般只能持续供电几分钟到几十分钟,主要是让您有时间备份数据,并尽快结束手头工作,其价格也较低。对不是太关键的电脑应用,比如个人家庭用户,就可配小功率的后备式UPS。 (3)线上交错式 线上交错式又称为线上互动式或在线互动式(Line-Interactive UPS),基本运作方式和离线式一样,不同之处在于线上交错式虽不像在线式全程介入供电,但随时都在监视市电的供电状况,本身具备升压和减压补偿电路,在市电的供电状况不理想时,即时校正,减少不

电力机车撒砂装置的工作原理及常见故障分析

电力机车撒砂装置的工作原理及常见故障分析 摘要:机车在运行过程中,通过撒砂提高黏着系数以防止空转与打滑。本文介绍了撒砂装置的组成与工作原理,并对两种常用的撒砂器进行对比。最后对撒砂装置常见的故障进行分析并提出解决办法。 关键词:机车;撒砂;防空转 铁路运输的快速发展对机务系统行车安全提出了更高的要求。机车作为行车运输的主要移动设备,不但要防止自身的行车安全事故,而且也要有效预防其他相关的行车设备带来的安全隐患。机车撒砂的目的在于改善轮轨接触面的状态,提高黏着力。钢轨与车轮的表面状态对黏着系数的影响很大,在雨、雾、雪、冻的气候条件下行车,轮轨黏着系数会降低20%~30%;当轮轨上粘有油污时,对轮轨间的黏着状态更为不利。在这种状况下,良好的撒砂会使黏着系数达到 0.22~0.25,能有效防止空转或打滑。 1 撒砂装置的组成 撒砂装置主要由砂箱、撒砂器、空气管路与撒砂软管等组成。每台转向架配备有四套撒砂装置。分别安装在每个转向架前、后轮对两侧,分别实现两个行进方向的撒砂。以三轴转向架为例,砂箱、空气管路及撒砂器的安装如图1所示:图1 撒砂装置安装示意图 1—砂箱;2—撒砂器;3—空气管路;4—橡胶软管 1.1 撒砂器 常见的撒砂器有两种,在HXD1C、HXD1B与铁道部新八轴配备的是1.1.1所述的多功能撒砂器,而神华交流车配备的撒砂器是1.1.2所述的撒砂阀。二者构造不同,但原理类似。 1.1.1 多功能撒砂器 图2 TSQ1多功能撒砂器结构示意图 注:P1—干燥风进风口 P2—撒砂风进风口 工作原理: TQS1多功能撒砂器属完全气动撒砂装置。通过P1和P2两个供风口分别向撒砂器提供干燥风与撒砂风,风经过加热层加热后,透过透风层吹动砂箱里的砂子。出砂管通过撒砂软管与外界相通,因为气压差绝大部分风量通过导风盖经出砂管排出实现撒砂。 1.1.2 撒砂阀 图3 撒砂阀 撒砂阀与砂箱相连,机砂从进砂口进入撒砂阀腔体内。撒砂气流进入撒砂阀后分为两部分,分别通过风咀A与风咀B喷出。风咀B喷出的风搅动撒砂阀受体里的机砂,在风咀A气流的带动下喷出撒砂阀,从而实现撒砂。 1.2 砂箱 砂箱一般由焊接而成,顶部设有加砂盖,底端开口与撒砂器相连。由于机砂受潮后很容易板结而导致撒砂失效,所以砂箱加砂口设有带密封功能的加砂盖,形成封闭的空间以防止机车运行过程中砂箱进水。 1.3 撒砂管与喷嘴 在撒砂最后一个环节,机砂随压力气体通过撒砂管喷撒于轮轨间,撒砂管与橡胶软管的安装如图4所示:

铁路机车基本知识概述

铁路机车基本知识概述 机车是铁路运输的基本动力。客货列车的牵引和车站上的调车作业,都由机车来承担。机车对铁路运输的安全正点、多拉快跑、优质低耗起着重要的作用,也是发展铁路运输业的关键设备。因此,车站与行车有关的计划与指挥人员,对各种类型机车的基本性能和运用常识应有一定的了解。 一、机车的种类 机车按原动力的不同可分为蒸汽机车、内燃机车(内燃动车组)和电力机车(电力动车组)三种。 机车按用途的不同可分为运行速度较高的客运机车、牵引力较大的货运机车和机动灵活的调车机车。 1.蒸汽机车 蒸汽机车的应用,已有170多年的历史。它是通过蒸汽机,把燃料(煤、油、木材)的热能转变成机械能,用来牵引列车运行的一种机车。蒸汽机车主要由锅炉、汽机、走行部、车架、煤水车、车钩及缓冲装置和制动装置等部分组成。 蒸汽机车热效率低、能源消耗大、输送能力小,所以,目前在我国已逐步被淘汰。 2.内燃机车 内燃机车是以柴油机为原动力的机车。它的特点是热效率高,持续工作时间长,适合长交路运行。

目前,我国运用的内燃机车,按其传动方式的不同,可分为电传动和液力传动两种类型。 电传动内燃机车是由柴油机带动发电机,把柴油机的机械能转变成电能,将电能供给牵引电动机,再经齿轮传递给机车轮对使机车运行。 液力传动内燃机车是在柴油机与机车动轮之间装有一套液力传动装置,柴油机输出的扭矩通过传动装置传递到机车的轮对上,使机车产生牵引力。 目前,我国生产的几种内燃机车的概况如表1-4所示。 表1-4几种国产内燃机车概况表

3.电力机车 电力机车本身不带能源,是依靠从沿途接触网导线上获取电能,通过牵引电动机而驱动的机车。 发电厂将110~220kV的三相工频交流电经输电线送往铁路牵引变电所,由牵引变电所分别向与其两边相邻区间的接触网上供给25~27.5kV的单相工频交流电,供电力机车使用。 电力机车主要由车体、走行装置、车底架、车钩及缓冲装置、制动装置和一整套电气设备组成。 电力机车具有功率大、起动速度快、善于爬坡、便于实施高速重载等优点。目前国产主要型号电力机车的技术性能如表1-5所示。 表1-5几种韶山系列电力机车概况表

02 HXD1B型大功率交流传动电力机车总体说明书

中国南车集团株洲电力机车有限公司 设计文件 HXD1B型大功率交流传动电力机车 总体说明书 更改单编号 版本0.1 编 制 日 期 审 核 日 期 批 准 日 期

大功率交流传动9600kW六轴货运电力机车总体说明书 1 概述 大功率交流传动HX D1B型六轴9600kW交流传动电力机车在引进、消化、吸收HX D1型机车基础上进行自主再创新的成果,该型机车研制时紧紧围绕机车九大关键技术和十项主要配套技术,遵循先进、成熟、经济、适用、可靠的技术原则,按照模块化、标准化、系列化的要求,优化设计和制造,研制的适应铁路运输需要的六轴交流传动7200kW干线电力机车。机车设计、制造和试验等采用的技术标准是IEC、UIC、EN、DIN、GB及TB等相关标准。该型机车设计使用寿命30年。机车主要特点是: 采用模块化、标准化、通用化设计,并充分考虑噪音、防火、安全及维护等设计要素。 主电路:机车设有2个水冷牵引变流器,每个变流器包含2个四象限整流器以及3个为相应3台牵引电动机供电的主逆变器和1个为辅助设备供电的辅助逆 变器。整流器和逆变器均采用 6.5kV/600A IGBT。逆变器电机控制上采用单轴 控制技术,粘着利用率高;轴牵引功率1600kW,电制动采用再生制动。 辅助电路:机车辅助采用主辅一体化设计,辅助逆变器供电(集成在主逆变器中),可实现在过分相时不间断供电。辅助变流器分别由恒频恒压变流器(CVCF)与变频变压变流器(VVVF)两个模块构成,实现100%故障冗余。辅机采用无级 闭环控制,效率高,节能降噪。 控制网络:机车采用SIBAS 32微机控制系统,实现网络化、模块化,使机车控制系统具有控制、诊断、监测、传输、显示和存储功能,控制网络应符合IEC 61375 的标准要求。机车内部的通讯通过MVB总线实现,机车间的通讯通过WTB总线 实现,通过WTB总线进行多机(最多三台)重联控制及显示功能,CCU采用双套 热备冗余,具有当代机车微机网络控制的先进性; 设备布置:机车总体结构为双司机室、机械间设备按斜对称原则布置、中间走廊、采用预布线和预布管设计。 通风方式:机车采用独立通风方式,具有先进的冬夏季转换功能,保证机车内部清洁的环境和良好的通风效果。 车体:车体采用整体承载结构型式,全部由钢板及钢板压型件组焊而成的全钢焊接结构,车体纵向压缩载荷取3000kN,纵向拉伸载荷取2500kN。以中央纵梁 作为主要传递牵引力的构件,具有高强度低重量的优点,适合重载牵引。

UPS电源结构及原理

UPS电源结构及原理 拓荒者 建议删除该贴!! | 收藏| 回复 | 2009-03-24 22:42:24楼主 不间断电源UPS能够在市电断电后实现不间断地向计算机供电,因为断电后计算机靠储存在滤波电容中的能量来维持电流,一般仅能持续半个周期(10ms)左右。UPS能够在10ms 之内将蓄电池内的直流电能转变为交流电能重新向计算机供电,这样就实现了对计算机不间断供电,可避免存储器中的数据丢失。 一、UPS的基本结构与原理 图12-6为UPS电源系统的基本结构框图。它是由一套交流+直流充电+交直流逆变装置构成。UPS中的蓄电池在市电正常供电时处于充电状态。一旦市电中断,蓄电池立即将储存的直流电输出给逆变器逆变成交流电供给计算机设备,保持对计算机设备供电的连续性。一般情况下,中小功率后备式UPS靠蓄电池维持供电的时间在10~30min左右。 1.交流滤波调压回路 交流滤波回路主要是对输入的交流电进行滤波净化,去掉电网中的干扰成分。并在一定范围内进行调压。 2.整流充电回路 整流充电回路是将交流整流成直流,经充电电路给蓄电池充电,并向内部提供所需的直流电。 3.蓄电池组电路 在中小型UPS中广泛应用的是M型密封电池,这是一种密封免维护电池。一般每节电池的额定电压可为2V、4V、6V或12V,它们经串并联组成电池组在UPS中使用。 蓄电池的规格容量用安时(Ah)表示,如12V,6Ah/20hR。它表明该电池的输出电压为12V,其标称容量为6Ah。这一指标是指把该电池以20h速率的条件下进行放电(放电电流为 6/20=0.3A),一直放电到电池输出的终了电压为10.5V时,所测量到的总安培小时数。 蓄电池是UPS的重要组成部分,蓄电池性能和质量的好坏直接影响到UPS电源整机的质量,它的成本占整机成本的1/3以上。 4.脉宽调制型(PWM)逆变器及控制电路 在UPS中普遍地采用脉冲宽度调制技术(PWM)来实现直流转变成交流,实现直流转变成交流的电路称为逆变器。逆变器及其控制电路是UPS的核心电路。

一种实用ups电源电路图及电路工作原理

一种实用ups电源电路图及电路工作原理 UPS即不间断电源(ups不间断电源),该装置可以保障计算机系统停电后,用户还能再工作一段时间紧急存盘,不会因为停电而影响工作或使数据丢失。当市电输入正常时,ups可将市电稳压后提供给负载使用,此时ups(ups稳压电源)被当做交流市电稳压器,与此同时还向机内电池充电。当市电中断时,UPS 便立即将机内电池的电能向负载继续供电,使负载保持正常工作状态,并保护负载、软件、硬件不被损坏。UPS 设备通常对电压过大或电压太低都可以提供保护,本文主要介绍了一种实用ups电源电路图及电路工作原理。 在使用ups电源(ups电源的作用)时,我们要留意以下几个注意事项: 1)UPS的输出负载控制在60%左右为最佳,可靠性最高。 2)UPS放电后应及时充电,避免电池因过度自放电而损坏。 3)UPS的使用环境应注意通风良好,利于散热,并保持环境的清洁。 4)切勿带感性负载,如点钞机、日光灯、空调等,以免造成损坏。 5)UPS带载过轻(如1000VA的UPS带100VA负载)有可能造成电池的深度放电,会降低电池的使用寿命,应尽量避免。 6)对于多数小型UPS,上班再开UPS,开机时要避免带载启动,下班时应关闭UPS;对于网络机房的UPS,由于多数网络是24小时工作的,所以UPS也必须全天候运行。 7)适当的放电,有助于电池的激活,如长期不停市电,每隔三个月应人为断掉市电用UPS 带负载放电一次,这样可以延长电池的使用寿命。 一、UPS电源系统组成 UPS电源系统由4部分组成:整流、储能、变换和开关控制。其系统的稳压功能通常是由整流器完成的,整流器件采用可控硅或高频开关整流器,本身具有可根据外电的变化控制输出幅度的功能,从而当外电发生变化时(该变化应满足系统要求),输出幅度基本不变的整流电压。 净化功能由储能电池来完成,由于整流器对瞬时脉冲干扰不能消除,整流后的电压仍存在干扰脉冲。储能电池除可存储直流直能的功能外,对整流器来说就象接了一只大容器电容器,其等效电容量的大小,与储能电池容量大小成正比。 由于电容两端的电压是不能突变的,即利用了电容器对脉冲的平滑特性消除了脉冲干扰,起到了净化功能,也称对干扰的屏蔽。频率的稳定则由变换器来完成,频率稳定度取决于变换器的振荡频率的稳定程度。为方便UPS电源系统的日常操作与维护,设计了系统工作开关,主机自检故障后的自动旁路开关,检修旁路开关等开关控制。 在电网电压工作正常时,给负载供电,而且,同时给储能电池充电;当突发停电时,UPS 电源开始工作,由储能电池供给负载所需电源,维持正常的生产(如粗黑→所示);当由于生产需要,负载严重过载时,由电网电压经整流直接给负载供电(如虚线所示)。 二、实用ups电源电路图及电路工作原理 实用ups电源电路图如下图所示。 电路工作原理:常态下,市电(220V)通过可调充电器向蓄电池充电,同时自启动继电器K1吸合,R1与VZ1、VZ2对蓄电池+24V电压进行分压采样,采样电压Vo通过R2、VD3加到V1基极,使V1处于线性放大状态,V2、V3深度饱和,直流控制继电器K吸合,+24V电压通过K、K1送至逆变器V+端,逆变器工作,输出220V正弦波电压,同时自锁继电器K2吸合。 当市电断电时,K1断开,初时输人电压+24V不变,K继续吸合,由于K2的自锁作用,+24V仍正常送至逆变器。经一段时间后,电池电压开始下降,Vo跟着下降,V1导通减弱,

电力机车主电路发展概述(I)

电力机车主电路的发展概述 电力机车(electric locomotive)本身不带原动机、靠接受沿线接触网送来的电流作为能源、由牵引电动机驱动车轮的机车。所需的电能,可以由多种形式(火力、水力、风力、核能等)转换而来。电力机车具有功率大、热效率高、速度快、过载能力强和运行可靠边等主要优点,而且不污染环境,特别适用于运输繁忙的铁路干线和隧道多、坡度大的山区铁路。 发展概况【top】最早造出第一台标准轨距电力机车的是苏格兰人R·戴维森,时间是1842年,由40组蓄电池供电,但没有实用价值。1879年5月,德国人W·VON西门子设计制造了一台能拉乘坐18人的三辆敞开式“客车”的电力机车,它由外部150V直流发电机通过第三轨供电,这是电力机车首次成功的试验。1881年,法国在巴黎展出了第一条由架空导线供电的电车线路,这就为提高电压,采用大功率牵引电动机创造条件。1895年,美国在巴尔的摩—俄亥俄间5. 6 km长的遂道区段修建了直流电气化铁路,在该区段上运行的干线电力机车自重97 t,采用675 V直流电,功率为1 070 kW。1903年德国的三相交流电力机车创造了每小时210km 的高速记录。 中国最早使用电力机车在1914年,是抚顺煤矿使用的1 500 V直流电力机车。1958年中国成功地生产出第一台电力机车,从采用引燃管整流器到硅整流器,机车性能不断改进和提高,到1976年制成韶山型(SS1型)131号时已基本定型。截止到1989年停止生产,SS1型电力机车总共制造出厂926台,成为中国电气铁路干线的首批主型机车。1966年SS2型机车制成。1978年研制成功的SS3型机车,不仅改善了牵引性能,还把机车的小时功率从4 200kW提高到4 800kW,载止到1997年底,共生产了987台,成为中国第二种主型电力机车。1985年又研制成功了SS4型8轴货运电力机车,它是国产电力机车中功率最大的一种(6 400kW),已成为中国重载货运的主型机车。以后又陆续研制成功了SS5、SS6和SS7 型电力机车。1994研制成功了时速为160 km的准高速四轴电力机车等。至此,中国干线电力机车已基本形成了4、6、8 轴和3 200、4 800和6 400kW功率系列。1999年5月26日,中国株洲电力机车厂生产出第一台时速超过200km的DDJ1001号“子弹头”电力机车,标志着中国铁路电力牵引已跻身于国际高速列车的行列。为追踪世界新型“交—直—交”电力机车新技术,从20世纪70年代末开始,中国铁路一直在进行中小功率变流机组的地面试验研究和大功率的交—直—交电力机车的研制,也已取得了阶段性成果。 类型【top】电力机车是从接触网上获取电能的,接触网供给电力机车的电流有直流和交流两种。由于电流制不同,所用的电力机车也不一样,基本上可以分为三类: 直—直流电力机车采用直流制供电时,牵引变电所内设有整流装置,它将三相交流电变成直流电后,再送到接触网上。因此,电力机车可直接从接触网上取得直流电供给直流串励牵引电动机使用,简化了机车上的设备。直流制的缺点是接触网的电压低,一般为1 500V或3 000V,接触导线要求很粗,要消耗大量的有色金属,加大了建设投资。 交—直流电力机车在交流制中,目前世界上大多数国家都采用工频(50Hz)交流制,或25Hz低频交流制。在这种供电制下,牵引变电所将三相交流电改变成25 kV工业频率单相交流串励电动机,把交流电变成直流电的任务在机车上完成。由于接触网电压比直流制时提高了很多,接触导线的直径可以相对减小,减少了有色金属的消耗和建设投资。因此,工频交流制得到了广泛采用,世界上绝大多数电力机车也是交—直流电力机车。 交—直—交电力机车采用直流串励电动机的最大优点是调速简单,只要改变电动机的端电压,就能很方便地在较大范围内实现对机车的调速。但是这种电机由于带有整流子,使制造和维修很复杂,体积也较大。而交流无整流子牵引电动机(即三相异步电动机)在制造、性能、功能、体积、重量、成本、及可靠性等方面远比整流子电机优越得多。它之所以迟迟不能在电力机车上应用,主要原因是调速比较困难。改变端电压不能使这种电机在较大范围内改变速度,而只有改变电流的频率才能达到目的。因此,只有当电子技术和大功率晶闸管变流装置得到迅速发展的今天,才能生产出采用三相交流电机的先进电力机车。交—直

HXD3型大功率交流传动电力机车培训教材

第一章 机车总体 1. 概述 以在中国国内的主干线上进行大型货运为目的,设计并制造了HX D3型交流大功率电力机车。 此机车采用PWM矢量控制技术等最新技术的同时,尽量考虑对环境保护,减少维修工作量。另外,考虑能够在中国全境范围内运行为前提,在满足环境温度在-40℃ ~ +40℃,海拔高度在2500m以下的条件的同时,最大考虑到4组机车重联控制运行。 2. 机车主要特点 2.1 轴式为C 0-C ,电传动系统为交直交传动,采用IGBT水冷变流机组,1250kW大转矩 异步牵引电动机,具有起动(持续)牵引力大、恒功率速度范围宽、粘着性能好、功率因数高等特点。 2.2 辅助电气系统采用2组辅助变流器,能分别提供VVVF和CVCF三相辅助电源,对辅助机组进行分类供电。该系统冗余性强,一组辅助变流器故障后可以由另一组辅助变流器对全部辅助机组供电。 2.3 采用微机网络控制系统,实现了逻辑控制、自诊断功能,而且实现了机车的网络重联功能。 2.4 总体设计采用高度集成化、模块化的设计思路,电气屏柜和各种辅助机组分功能斜对称布置在中间走廊的两侧;采用了规范化司机室,有利于机车的安全运行。 2.5 采用带有中梁的、整体承载的框架式车体结构,有利于提高车体的强度和刚度。 2.6 转向架采用滚动抱轴承半悬挂结构,二系采用高圆螺旋弹簧;采用整体轴箱、推挽式低位牵引杆等技术。 2.7 采用下悬式安装方式的一体化多绕组(全去耦)变压器,具有高阻抗、重量轻等特点,并采用强迫导向油循环风冷技术。 2.8 采用独立通风冷却技术。牵引电机采用由顶盖百叶窗进风的独立通风冷却方式;主变流器水冷和主变压器油冷采用水、油复合式铝板冷却器,由车顶直接进风冷却;辅助变流器也采用车外进风冷却的方式;另外还考虑了司机室的换气和机械间的微正压。 2.9 采用了集成化气路的空气制动系统,具有空电制动功能。机械制动采用轮盘制动。 2.10 采用了新型的模式空气干燥器,有利于压缩空气的干燥,减少制动系统阀件的故障率。

电力机车工作原理

电力机车工作原理 电气化铁路的回路就是火车脚下的铁路。机车先通过电弓从接触网(就是天上的电线) 上受电,在经过机车上的牵引变压器,整流柜,逆变,然后传入牵引电机带动机车,最后通过车轮传入钢轨。形成一个巧妙的电路。 和电传动内燃机车相比就是动力源不同,能量来自接触网,其他如走行部,车体等并没有本 质区别。通过受电弓将25KV的电压引至车内变压器,之后,若是交直流传动的,便进行整流,驱动直流电动机,电机通过齿轮驱动轮对。一般调节晶闸管的导通角度来调节功率,从而进行调速。交直交流传动的要在整流后加逆变环节,之后驱动异步电动机,驱动轮对。这种的调速较为复杂,要合理调节逆变的频率和整流的电压才能保证功率因数。大体过程就是这样。 电力机车是通过车顶上的集电弓(也称受电弓)从接触网获取电能,把电能输送到牵引电动 机使电动机驱动车轮运行的机车。 电力机车的分类: 1按机车轴数分: 四轴车:轴式为BO-BO ; 六轴车:轴式为CO-CO、BO-BO-BO ; 八轴车:轴式为2(B0-B0); 十二轴车:轴式为2(C0-C0)、2(B0-B0-B0)。 轴式“ B ”表示一个转向架有2根轴;轴式“ C”表示一个转向架有3根轴;脚号“ 0”表示每个轴有一台牵引电机;"-"表示转向架之间是通过车体传递牵引力。 2、按用途分: (1)客运电力机车。用来牵引各种速度等级的客运列车,其特点是速度较高,所需牵引力较小。 ⑵货运电力机车。用来牵引货物列车,其特点是载荷大,牵引力大,但速度较低。 (3)客货通用电力机车。尤其是近年来新型电力机车中,其恒功运行速度范围大,可适用牵引客运列车,也可适用牵引货运列车。 3、按轮对驱动型式分: (1) 个别驱动电力机车指每一轮对是由单独的一台牵引电动机驱动的电力机车。 (2) 组合驱动电力机车指几个轮对用机械方式互相连接成组,共同由一台牵引电动机驱动 的电力机车。 现代电力机车大都采用个别驱动方式,而很少再采用组合驱动。 车和多流制电力机车。 直流制电力机车:即直流电力机车,它是由直流电网供电,采用直流牵引电机驱动的电力机车。 交流制电力机车:可分为单相低频(25Hz或16 2/3Hz)电力机车和单相工频(50Hz)电力机 车。 交直传动电力机车:是由接触网引人单相工频交流电经机车内的变流装置供给直(脉)流牵引电动机来驱动的机车。 交流传动电力机车:是由接触网引人单相工频交流电经机车内的变流装置供给交流(同步或异步)牵引电动机来驱动的机车。

UPS不间断电源工作原理及应用说明

UPS不间断电源工作原理及应用说明 摘要:本文介绍了UPS电源系统的基本组成,原理及特点,并对如何对其全面、完善维护做了详细的阐述。 关键字:UPS 储能电池 Abstract: Basic composing,theory and characteristic of UPS power are introduced in this article.It particular explains how to excessive maintenance. Key words: UPS Saving battery 一、引言 保证任何情况下的正常供电,是冶金行业的重要基础。为此,除工业电网正常供电外,还需配备UPS供电系统。UPS电源是保障供电稳定和连续性的重要设备,因其主要机智能化程度高,储能器材采用免维护蓄电池,使得在运行中往往忽略了对该系统的维护与检修。其实维护的好坏,对电源的寿命和故障率有很大影响,下面根据我们使用中的具体情况和维护经验介绍UPS电源的使用注意事项和日常维护要求。 虽说各企业配置的UPS供电系统设备型号及系统容量有所不同,但其原理和主要功能基本相同。在UPS电源类型选择上各站都选择了在线式,这时因为在线式UPS电源系统具有对各类供电的零时间切换,自身供电时间的长短可选,并具有稳压、稳频、净化的特点。 当UPS电源系统本身出现故障时有自动旁路功能,当需要检修时可采用手动旁路,使检修、供电互不影响。在功率选择上,莱钢中小型棒材生产线选用了中功率系统。 二、UPS电源系统 UPS电源系统由4部分组成:整流、储能、变换和开关控制。其系统的稳压功能通常是由整流器完成的,整流器件采用可控硅或高频开关整流器,本身具有可根据外电的变化控制输出幅度的功能,从而当外电发生变化时(该变化应满足系统要求),输出幅度基本不变的整流电压。净化功能由储能电池来完成,由于整流器对瞬时脉冲干扰不能消除,整流后的电压仍存在干扰脉冲。储能电池除可存储直流直能的功能外,对整流器来说就象接了一只大容器电容器,其等效电容量的大小,与储能电池容量大小成正比。由于电容两端的电压是不能突变的,即利用了电容器对脉冲的平滑特性消除了脉冲干扰,起到了净化功能,也称对干扰的屏蔽。频率的稳定则由变换器来完成,频率稳定度取决于变换器的振荡频率的稳定程度。为方便UPS 电源系统的日常操作与维护,设计了系统工作开关,主机自检故障后的自动旁路开关,检修旁路开关等开关控制。 如图1所示,在电网电压工作正常时,给负载供电如所示,而且,同时给储能电池充电;当突发停电时,UPS电源开始工作,由储能电池工给负载所需电源,维持正常的生产(如粗黑→所示);当由于生产需要,负载严重过载时,由电网电压经整流直接给负载供电(如虚线所示)。 UPS电源系统主要分两大部分,主机和储能电池。额定输出功率的大小取决于主机部分,并与负载属那种性质有关,因为UPS电源对不同性能的负载驱动能力不同,通常负载功率应满足UPS电源70%的额定功率。储能电池容量的选取当负载功率确定后主要取决其后备时间的长短,这个时间因各企业情况不同而不同,主要由备用电源的接入时间来定,通常在几分钟或几个小时不等。莱钢中小型棒材生产线因生产需要不允许断电,因此,UPS电源系统在检测到电网电压中断后,可自行启动供电,且随着储能电池慢慢放电,储能电池的容量随着时间会逐渐降低,考虑到寿命终止时储能电池容量下降到50%并留有一定的余量,我厂UPS电源系统的工作时间当储能电池满容量时为2小时,半容量为1小时。 2.1电源工作原理 2.1.1 AC-DC变换:将电网来的交流电经自耦变压器降压、全波整流、滤波变为直流电压,供给逆变电路。AC-DC输入有软启动电路,可避免开机时对电网的冲击。

UPS不间断电源原理和维修技巧

UPS不间断电源原理和维修技巧 UPS的中文意思为“不间断电源”,是英语“Uninterruptible Power Supply”的缩写,它可以保障计算机系统在停电之后继续工作一段时间以使用户能够紧急存盘,使您不致因停电而影响工作或丢失数据。它在计算机系统和网络应用中,主要起到两个作用:一是应急使用,防止突然断电而影响正常工作,给计算机造成损害;二是消除市电上的电涌、瞬间高电压、瞬间低电压、电线噪声和频率偏移等“电源污染”,改善电源质量,为计算机系统提供高质量的电源。 从基本应用原理上讲,UPS是一种含有储能装置,以逆变器为主要元件,稳压稳频输出的电源保护设备。主要由整流器、蓄电池、逆变器和静态开关等几部分组成。 1)整流器:整流器是一个整流装置,简单的说就是将交流(AC)转化为直流(DC)的装置。它有两个主要功能:第一,将交流电(AC)变成直流电(DC),经滤波后供给负载,或者供给逆变器;第二,给蓄电池提供充电电压。因此,它同时又起到一个充电器的作用; 2)蓄电池:蓄电池是UPS用来作为储存电能的装置,它由若干个电池串联而成,其容量大小决定了其维持放电(供电)的时间。其主要功能是:1当市电正常时,将电能转换成化学能储存在电池内部。2当市电故障时,将化学能转换成电能提供给逆变器或负载; 3)逆变器:通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。它由逆变桥、控制逻辑和滤波电路组成; 4)静态开关:静态开关又称静止开关,它是一种无触点开关,是用两个可控硅(SCR)反向并联组成的一种交流开关,其闭合和断开由逻辑控制器控制。分为转换型和并机型两种。转换型开关主要用于两路电源供电的系统,其作用是实现从一路到另一路的自动切换;并机型开关主要用于并联逆变器与市电或多台逆变器。 目前,主流的UPS厂商有APC、山特等,都提供各种级别的UPS满足不同用户群的需要。 从原理上来说,UPS是一种集数字和模拟电路,自动控制逆变器与免维护贮能装置于一体的电力电子设备; 从功能上来说,UPS可以在市电出现异常时,有效地净化市电;还可以在市电突然中断时持续一定时间给电脑等设备供电,使你能有充裕的时间应付; 从用途上来说,随着信息化社会的来临,UPS广泛地应用于从信息采集、传送、处理、储存到应用的各个环节,其重要性是随着信息应用重要性的日益提高而增加的。————————————————————2.UPS分哪些种类? UPS按工作原理分成后备式、在线式与在线互动式三大类; 其中,我们最常用的是后备式UPS,如四通HO系列与SD系列,它具备了自动稳压、断电保护等UPS最基础也最重要的功能,虽然一般有10ms左右的转换时间,逆变输出的交流电是方波而非正弦波,但由于结构简单而具有价格便宜,可靠性高等优点,因此广泛应用于微机、外设、POS 机等领域; 在线式UPS结构较复杂,但性能完善,能解决所有电源问题,如四通PS系列,其显著特点是能够持续零中断地输出纯净正弦波交流电,能够解决尖峰、浪涌、频率漂移等全部的电源问题;由于需要较大的投资,通常应用在关键设备与网络中心等对电力要求苛刻的环境中;

相关文档
相关文档 最新文档