文档库 最新最全的文档下载
当前位置:文档库 › 空调水系统介绍【精】

空调水系统介绍【精】

空调水系统介绍【精】
空调水系统介绍【精】

空调水系统介绍

空调水系统的作用,就是以水作为介质在空调建筑物之间和建筑物内部传递冷量或热量。正确合理地设计空调水系统是整个空调系统正常运行的重要保证,同时也能有效地节省电能消耗。

就空调工程的整体而言,空调水系统包括冷热水系统、冷却水系统和冷凝水系统。

冷热水系统是指由冷水机组(或换热器)制备出的冷水(或热水)的供水,由冷水(或热水)循环泵,通过供水管路输送至空调末端设备,释放出冷量(或热量)后的冷水(或热水)的回水,经回水管路返回冷水机组(或换热器)。对于高层建筑,该系统通常为闭式循环环路,除循环泵外,还设有膨胀水箱、分水器和集水器、自动排气阀、除污器和水过滤器、水量调节阀及控制仪表等。对于冷水水质要求较高的冷水机组,还应设软化水制备装置、补水水箱和补水泵等。

冷却水系统是指利用冷却塔向冷水机组的冷凝器供给循环冷却水的系统。

冷凝水系统是指空调末端装置在夏季工况时用来排出冷凝水的管路系统。

空调冷热水系统的形式

空调冷热水系统,可按以下方式进行分类:①按循环方式,可分为开式循环和闭式循环;②按供、回水制式(管数),可分为两管制水系统、四管制水系统和分区两管制水系统;③按供、回水管路

的布置方式,可分为同程式系统和异程式系统;④按运行调节的方法,可分为定流量系统和变流量系统;⑤按系统中循环泵的配置方式,可分为一次泵系统和二次泵系统。

1.1 开式循环系统和闭式循环系统

1.开式循环系统

开式循环系统的下部设有水箱(或蓄冷水池),它的末端管路是与大气相通的。空调冷水流经末端设备(例如,风机盘管等)释放出冷量后,回水靠重力作用集中进入回水箱或蓄冷水池,再由循环泵将回水打入冷水机组的蒸发器,经重新冷却后的冷水被输送至整个相通。例如采用蓄冷水池方案,或空气处理机组采用喷水室处理空气的,其水系统是开式的。

开式循环系统的特点是:①水泵扬程高(除克服环路阻力外,还要提供几何提升高度和末端资用压头),输送耗电量大;②循环水易受污染,水中总含氧量高,管路和设备易受腐蚀;③管路容易引起水锤现象;④该系统与蓄冷水池连接比较简单(当然蓄冷水池本身存在无效

耗冷量)。(图9-01)

2.闭式循环系统

闭式循环系统的冷水在系统内进行闭式循环(书上用“密闭”这个词不合适,也不能说不与大气接触,),因为膨胀水箱是开式的,它与大气相通,在系统的最高点设膨胀水箱(其功能是接纳水体积膨胀量,对系统进行定压和补水)。

闭式循环系统的特点是:①水泵扬程低,仅需克服环路阻力,与建筑物总高度无关,故输送耗电量小;②循环水不易受污染,管路腐蚀程

度轻;③不用设回水池,制冷机房占地面积减小,但需设膨胀水箱;

④系统本身几乎不具备蓄冷能力,若与蓄冷水池连接,则系统比较复

杂。(图9-02)

1.2 两管制、四管制及分区两管制水系统

1.两管制水系统

《采暖通风与空气调节设计规范》(GB 50019-2003)指出:“全年运行的空气调节系统,仅要求按季节进行供冷与供热转换时,应采用两管制水系统”。我国高层建筑特别是高层旅馆建筑大量建设的实践表明,从我国的国情出发,两管制系统能满足绝大部分

旅馆的空调要求,同时也是多层或高层民用建筑广泛采用的空调水系统方式。(图9-03)

2.四管制水系统

四管制系统的优点是,①各末端设备可随时自由选择供热或供冷的运行模式,相互没有干扰,所服务的空调区域均能独立控制温度等参数;②节省能量,系统中所有能耗均可按末端的要求提供,不像三管制系统那样存在冷、热抵的问题。

四管制系统的缺点是,①投资较大,运行管理相对复杂②由于管路较多,系统设计变得较为复杂,管道占用空间较大。由于这些缺点,使该系统的使用受到一些限制。

《公共建筑节能设计标准》(GB 50189—2005)规定:全年运行过程中,供冷和供热工况频繁交替转换或需同时使用的空气调节系统,宜采用四管制水系统。因此,它较适合于内区较大,或建筑空调使用标准较高且投资允许的建筑中。(图9-04)

3. 分区两管制水系统

《公共建筑节能设计标准》(GB 50189—2005)规定:当建筑物内有些空气调节区需全年供冷水,有些空气调节区则冷、热水定期交替供应时,宜采用分区两管制水系统。(图9-05)这种系统具有两管制和四管制的一些特点,其调节性能介于四管制和两管制之间。因为从调节范围来看。四管制系统是每台末端设备独立调节,两管制系统只能整个系统一起进行冷、热转换,而分区两管制系统则可实现不同区域的独立控制。分区两管制系统设计的关键在于合理分区:如分区得当,可较好地满足不同区域的空气要求,其调节性能可接近四管制系统。关于分区数量,分区越多,可实现独立控制的区域的数量就越多,但管路系统也就越复杂,不仅投资相应增多,管理起来也复杂了,因此设计时要认真分析负荷变化特点,一般情况下分两个区就可以满足需要了。如果在一个建筑里,因内、外区和朝向引起的负荷差异都比较明显,也可以考虑分三个区。

Tip:

分区两管制系统与现行两管制系统相比,其初投资和

占用建筑空间与两管制系统相近,在分区合理的情况下调节性能与四管制系统相近,是一种既能有效提高空调标准,又不明显增加投资的方案,其设计与相关空调新技术相结合,可以使空调系统更加经济合理。

1.3 同程式与异程式系统

1. 同程式系统

水流通过各末端设备时的路程都相同(或基本相等)的相同称为同程式相同。同程式相同各末端环路的水流阻力较为接近,有利于水力平衡,因此相同的水力稳定性好,流量分配均匀。但这种相同管路布置较为复杂,管路长,初投资相对较大。

一般来说,当末端设备支环路的阻力较小,而负荷侧干管环路较长,且阻力所占的比例较大时,应采用同程式。

垂直(竖向)同程的管路布置(图9-06)

水平同程的管路布置(图9-07)

垂直同程和水平同程的管路布置(图9-08)

2. 异程式系统(图9-09)

异程式相同中,水流经每个末端设备的路程是不相同的。采用这种相同的主要优点是管路配置简单,管路长度短,初投资低。由于各环路的管路总长度不相等,故各环路的阻力不平衡,从而导致了流量分配不均匀的可能性。在支管上安装流量调节装置,增大并联支管的阻力,可使流量分配不均匀的程度得以改善。

1.4 定流量与变流量系统

1. 定流量系统

所谓定流量水系统是指系统中循环水量保持不变,当空调负荷变化时,通过改变供、回水的温差来适应。

2. 变流量系统

所谓变流量系统是指系统中供、回水温差保持不变,当空调负荷变化时,通过改变供水量来适应。

《采暖通风与空气调节设计规范》(GB 50019-2003)指出,“设置2台或2台以上冷水机组和循环泵的空气调节水系统,应能适应负荷变化改变系统流量”。也就是说,负荷侧环路应按照变流量运行,为此,该系统必须设置相应的自控设施。

3.负荷侧空调末端设备的能量调节方法

利用电动三通阀进行机组能量调节的原理

利用电动两通阀进行机组能量调节的原理图

1.5 一次泵系统与二次泵系统

在冷源侧和负荷侧合用一组循环泵的称为一次泵或称单式泵)系统;在冷源侧和负荷侧分别配置循环泵的称为二次泵(或称复式泵)系统。

1. 一次泵系统

(1)一次泵定流量系统(图9-12)

(2)一次泵变流量系统(图9-13)

冷水机组与循环水泵一一对应布置,并将冷水机组设在循环泵的压出口,使得冷水机组和水泵的工作较为稳定。只要建筑高度不太高(<100m),这样布置是可行的,也是目前用得较多的一种方式。如果建筑高度高(>100m),系统静压大,则将循环泵设在冷水机组蒸发器出口,以降低蒸发器的工作压力。

当空调负荷减小到相当的程度,通过旁通管路的水量基本达到一台循环泵的流量时,就可停止一台冷水机组的工作,从而达到节能的目的。旁通管上电动两通阀的最大设计水流量应是一台循环泵的流量,旁通管的管径按一台冷水机组的冷水量确定。

一次泵变流量系统的控制方法

压差旁通控制法

空调冷冻水系统及冷却水系统的调试方案

空调冷冻水系统及冷却水系统的调试方案 空调冷冻水系统及冷却水系统的调试方案 一、系统概况 本工程空调冷冻水系统主要设备包括2台冷水机组、1台风冷热泵机组、6台冷冻水循环泵、自动补水定压排气装置,以及设置在各功能区的AHU空调机组。冷却水系统主要设备包括2台冷却塔和3台冷却水循环泵。 在地下室设备的就位方案中已经阐述了地下室设备的进场、验收、吊装就位等方案。本章节主要阐述上述设备的单机运转和联动调试。 二、调试前准备 1、详细的调试方案已经得到监理单位批准。 2、空调冷冻水、冷却水系统所有设备已经安装完毕,设备支架、框架、减震装置已检查确认完毕。符合设计要求。 3、系统各压力表、温度计、排气阀已设置完毕,标示正确。符合设计要求。 4、管道系统已经试压、清洗完毕(冷水机组、AHU机组不得参与管道系统压力试验、清洗),管道支架设置正确、牢固,管道色标、流向指示正确,各止回阀、切断阀开启灵活、设置正确。符合设计要求。 5、给水系统、地下室排水系统可以正常工作。发现故障后可及时将系统内的水排出。 6、各设备电气系统接线正确、电气仪表读数正确稳定、设备接地系统牢固可靠。 7、BA系统各压力、温度传感器接线检查完毕,通讯正常、中控室内各显示正确。 三、调试顺序 本商场空调水系统按如下顺序调试: 1、冷却水系统:系统检查(查设计漏项、查工程质量及隐患、查未完工程量,对检

查出来的问题定任务、定人员、定时间、定措施,限期完成“三查四定”)、系统注水排气、冷却水泵单机试运转、冷却塔风机试运转、冷却系统水量平衡调整,冷却水系统空载水循环。 2、冷冻水系统:系统检查、系统注水排气、冷冻水泵单机试运转、冷冻水系统空载水循环。 3、冷却水、冷冻水系统联动试运转 四、水泵的单机试运转 1、水泵在试运转前,电动机的转向应符合泵的转向;各紧固连接部位不应松动;泵的附属系统的管路应冲洗干净,保持通畅、安全;保护装置应灵敏、可靠;盘车应灵活、正常。 2、水泵启动前,泵的入口阀门全开,出口阀门全闭,其余阀门全开。 3、泵的试运转应在各独立的附属系统试运转正常后进行。 4、泵的启动和停止必须符合设计要求,泵在设计负荷下连续运转不应少于2小时。检查记录电动机的电流、电压、温度等数据,检查记录泵进出口压力。 5、泵启动后缓慢开启泵出口阀门,直至达到电动机额定电流。观察记录各泵的电压、电流、电动机温度 6、填写《水泵单机试运转记录》 五、冷却塔调试及冷却系统水量平衡 1、点动冷却塔风机,确认风机转向是否正确。 2、启动冷却塔风机,连续运转2小时,检查机记录风机的电压、电流、电动机温度等各项数据。 3、打开冷却塔补水管阀门,向系统内注水。水位到达冷却塔水槽内设计水位时开启单台冷却水循环泵,并注意查看冷却塔回水管集水口内水流情况,发现水量不够时,

空调水系统常用组成部件介绍

水系统常用组成部件介绍 ●空调水系统常用管材和管径 ●管道连接件 ●管道保温 ●压力表 ●温度计 ●水流开关(流量控制器) ●除污器和水过滤器 ●膨胀水箱 ●排气阀 ●集气罐 ●水泵 ●冷却塔 ●阀门 ●玻璃液位计 1,空调水系统常用管材和管径: 空调水系统常用的管材是水、煤气输送钢管和无缝钢管。 1)、水、煤气输送钢管一般采用碳素软钢制成,俗称熟铁管,它可以分成镀锌管(白铁管)和不镀锌管(黑铁管),按压力分可以分为普通管(公称压力为1Mpa)和加厚管.一般采用公称直径(如DN50)进行表示。 2)、无缝钢管:生产检验标准为《无缝钢管》(YB231-70)。材质一般为普通碳素钢、优质碳素钢。习惯用英文字母D后续外径乘以壁厚表示(如D108x4),常用规格请参见表1。

3)管道内过高的流速会带来很大的压力损失,为此需要控制管内水流速,在一 2,管道连接件 管道连接方法有螺纹接,法兰接和焊接三种,应按所选管材和最大工作压力选定。当选择与设备(或阀件)相连接的法兰时,应按设备和阀件的公称压力(注:对于空调工程范畴的水管,最大工作压力可以当作公称压力考虑来选择,否则会造成所选择的法兰与设备(或阀件)上的法兰尺寸不相符合的情况。当采用凹凸式或榫槽式法兰连接时,在一般情况下,设备和阀件上的法兰制成凹面或槽面,而配制得法兰制成凸面或榫面。在选用法兰时应优先选用标准法兰,非标准法兰是要自行设计的。我国现行法兰技术标准的公称压力(Pg)系列为0.1,0.25,0.6,1.0,1.6,2.5,4.0,6.4[Mpa]时,一般应按1.6[Mpa]等级选用。 3,管道保温 为了减少管道的能量损失,防止冷水管道表面结露以及保证进入空调设备和末端空调机组的供水温度,管道及其附件均应采用保温措施,保温层的经济厚度的确定与很多因素有关,如材料的若物理特性,材料和保温结构的投资及其偿还年限、能价(还应包括上涨率因素)、系统的运行小时数等,需要详细计算时可以查阅有关技术资料。一般情况下可以参考表2选用。 度一般取25[mm]。 目前,空调工程中常用的保温材料及其主要技术特性列于表3。 保温结构的设计和施工质量直接影响到保温效果、投资费用和使用寿命,应与重视。 管道和设备的保温结构一般由保温层和保护层组成。对于敷设在地沟内的管道和和输送低温水的管道还需加防潮层。 管道保温结构的施工应在管道系统试压和涂漆合格后进行。在施工前应先清除管子表面的脏物和铁锈,涂上防锈漆两道,要保护管道外表面的清洁并使其干燥。在冬、雨季进行室外管道施工时应有防冻和防雨的措施。

空调冷却冷冻水管道系统详细施工方案设计

空调冷却冷冻水管道系统详细施工方案 1、管道安装流程 2、管道安装设计要求 空调水系统中管道系统的最低点,应配置DN25泄水管并安装同口径闸阀。管道系统的最高点应配置E121型自动排气阀,口径为DN20并配同口径闸阀。 每台水泵的进水管上应安装闸阀或碟阀,压力表和Y型过滤器,出水管上应安装缓闭式止回阀,闸阀或碟阀,压力表及后带护套的角型水银温度计,另外,与水泵相连接的进出水管上还应安装减震软接头。 所有阀门的位置,应设置在便于操作与维修的部位,主管上、下部的阀门,务必安装在平顶下和地面上便于操作维修处。

安装调节阀,碟阀等调节配件时,应注意将操作手柄配置在便于操作的部位。 空调及热水系统管道上的调节阀,管径小于等于DN40采用截止阀或球阀;管径大于DN40的采用蝶阀。 空调水系统管道上须设置必要的支、托、吊架,具体形式由安装单位根据现场实际情况确定,做法参见国标05R417-1。 管道的支、吊、托架应设置于保温层的外部,在穿过支、吊、托架处,应镶以垫木。 空调水系统管道对于长度超过40m的直管段,要加装波纹补偿伸缩器。每隔40m设置一个。波纹补偿伸缩器为轴向内压式波纹补偿器。 冷水管道在穿越墙身和楼板时,保温层不应间断,在墙体或楼板的两侧应设置夹板,中间空间以玻璃棉填充。 空调水管道穿过防火墙时,在管道穿过处固定管道,并用防火材料填充。 穿越沉降或变形缝处的水管应设置金属软管连接。 空调立管穿楼板时,应设套管。安装在楼板内的套管,其顶部应高出装饰地面20mm;安装在卫生间及厨房内的套管,其顶部应高出装饰地面50mm,底部应与楼板底面相平;套管与管道之间缝隙应用阻燃密实材料和防水油膏填实,端面光滑。 管道穿钢筋混凝土墙和楼板、梁时,应根据图中所注管道标高、位置配合土建工种预留孔洞或预埋套管;管道穿地下室外墙时、水池壁时,应预埋刚性防水套管。 除地下一层车库部分管道明装外,所有管道暗装设于吊顶内。 空调及热水供回水支管以的向下坡度坡向立管(主干管除外),且最高点设自动排气阀,最低点设泄水装置。并同时在立管顶部旁通设置手动排气阀。 冷凝水管最小以的下降坡度坡向凝水立管。

暖通空调系统介绍

【tips】本文由李雪梅老师精心收编,值得借鉴。此处文字可以修改。 暖通空调系统介绍 好的工作环境,要求室内温度适宜,湿度恰当,空气洁净。暖通空调系统 就是为了营造良好的工作环境,并对大厦大量暖通空调设备进行全面管理 而实施的监控。暖通空调系统的监控内容如下:空调系统的监控 1)新风机组的监控新风机组中空气水换热器,夏季通入冷水对新风降温 除湿,冬季通入热水对空气加热,干蒸汽加湿器用于冬季对新风加湿。对 新风机组进行监控的要求如下: (1)检测功能:监视风机电机的运行/停止状态;监测风机出口空气温、 湿度参数;监测新风过滤器两侧压差,以了解过滤器是否需要更换;监视 新风阀打开/关闭状态; (2)控制功能:控制风机启动/停止;控制空气热水换热器水侧调节阀, 使风机出口温度达到设定值;控制干蒸汽加湿器阀门,使冬季风机出口空 气湿度达到设定值。 (3)保护功能:冬季当某种原因造成热水温度降低或热水停供时,应停止风机,并关闭新风阀门,以防机组内温度过低冻裂空气水换热器;当热水 恢复正常供热时,应能启动风机,打开新风阀,恢复机组正常工作。 (4)集中管理功能:智能大楼各机组附近的DDC控制装置通过现场总线与相应的中央管理机相连,于是可以显示各机组启/停状态,送风温、湿度、各阀门状态值;发出任一机组的启/停控制信号,修改送风参数设定值;任一新风机组工作出现异常时,发出报警信号。 2)空调机组的监控空调机组的调节对象是相应区域的温、湿度,因此送入装置的输入信号还包括被调区域内的温湿度信号。当被调区域较大时,应 安装几组温、湿度测点,以各点测量信号的平均值或重要位置的测量只值 作为反馈信号;若被调区域与空调机组DDC 装置安装现场距离较远时,可

整理版空调冷却水系统

空调冷却水系统空调冷却水系统设计默认分类 2010-01-21 15:17:46 阅读7 评论0 字号:大中小 摘要:空调制冷的冷却水系统一般是开式系统,相对比较简单,因而,经常不被设计人员所重视。本文就冷却水系统的承压、水泵扬程的确定、多台冷却塔的并联、系统的启停顺序、节能控制等问题谈谈自己的观点,供大家参考。 关键词:冷却水承压扬程冷却塔并联变频控制 空调冷却水系统设计问题的探讨 摘要:空调制冷的冷却水系统一般是开式系统,相对比较简单,因而,经常不被设计人员所重视。本文就冷却水系统的承压、水泵扬程的确定、多台冷却塔的并联、系统的启停顺序、节能控制等问题谈谈自己的观点,供大家参考。 关键词:冷却水承压扬程冷却塔并联变频控制 一、冷却塔的位置要考虑系统设备承压要求: 冷却水系统形式主要有两种:水泵前置式和水泵后置式,如图1、2。确定时要考虑水系统的承压能力。水系统的承压能力最大的地方是水泵出口,如图中的A点,系统承压有以下三种情况:系统停止运行时,水泵出口压力为系统静水压力h=Z;系统瞬时启动,但动压尚未形成时,水泵出口压力为系统静水压力和水泵全压之和h=Z+HP;正常运行时,水泵出口压力为该点静水压力与水泵静压之和h= Z+HP-v2/2g。冷水机组冷凝器耐压,目前国产机组一般为981KPa。水泵壳体的耐压取决于轴封的形式,水泵吸入侧压力在981KPa以上时,要使用机械密封。

冷却塔如果设在高层建筑主楼屋面,产生的压力高于机组的承压能力时,冷却水泵宜设在冷水机组的冷凝器出口,以降低冷凝器工作压力。有人会提出疑问:水泵入口负压过大,会产生气蚀。事实上, 冷却塔与冷水机组之间的高差,远大于管路阻力和冷凝器阻力,并且水泵还有一个容许吸上真空高度。 笔者的同学曾经设计一个工程,机房在地下,裙房屋顶为人员活动空间,业主要求在120米高的屋面安装冷却塔,系统最大承压要超过1.2MPa与水泵全压之和。这就造成产生的静压太高,冷凝器不能承受,同时对水泵轴封和软接头提出了更高要求。 解决方法一:选用能承受高静压的设备和管道配件,这将大大增加工程造价。 解决方法二:如图3,设两个冷却水箱、两套冷却水泵。一个高温冷却水箱、一个低温冷却水箱,一套冷却水泵从低温水箱抽水进入冷凝器后进入高温水箱,另一套冷却水泵从高温水箱抽水送入冷却塔,然后回流到低温水箱。但要注意:冷却塔处要采取一定的措施,避免停泵时水全部流入低温水箱。水箱要满足冷却塔到机房的充注水量,水箱的水位也不好控制;这样水泵的扬程太高(图中h高度的扬程浪费了),这不是一个经济的做法。 解决方法三:加板式热交换器隔绝高压,但冷却塔选用要有余量,如图4。 笔者认为,对于某些建设方的不合理的要求,设计人员不要迁就。此类工程最好把冷却塔放在放在裙楼上。 二、冷却水泵扬程的确定

中央空调系统组成各部分介绍

中央空调系统组成各部分介绍 中央空调分为冷媒系统、水系统和风系统,其中风系统中央空调使用很少,冷媒系统和水系统较多,下面将重点介绍冷媒系统和水系统中央空调系统的组成,并对中央空调系统组成的各部分进行简单的说明。 冷媒系统中央空调系统的组成:主机+冷媒管道+分歧管+冷凝排水管道+内机;水系统中央空调系统的组成:主机+膨胀水箱(闭式膨胀罐)+循环水泵+冷冻水管(阀门)+水过滤器+内机+冷凝水排水管道。这两种中央空调系统组成部分设备一样。 中央空调系统的组成:主机 主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,主机也是中央空调系统组成最重要的部分,主机集成了中央空调的核心技术。 中央空调系统的组成:冷媒管道 冷媒管道主要是指内机和外机的连接管、用来走冷媒的、所以叫冷媒管也叫连接管,冷媒管道是中央空调系统组成的流体,如:水\氟利昂\氨\等。 中央空调系统的组成:分歧管 分歧管是小型中央空调组机与组机、组机与室内各风口单元的连接部分,把整个空调系统连接成树型结构。 中央空调系统的组成:内机 内机也是中央空调系统组成重要部分,属于中央空调系统的尾部设备,一般一套中央空调系统由多台内机组成,内机分为风管机、天井机、壁挂机、落地机。 中央空调系统的组成:膨胀水箱 膨胀水箱是中央空调水路系统中的重要部件,它的作用是收容和补偿系统中水的胀缩量。,一般都将膨胀水箱设在系统的最高点,通常都接在循环水泵(中央空调冷冻水循环水泵)吸水口附近的回水干管上。 中央空调系统的组成:循环水泵 循环水主要是向汽轮机凝汽器供给冷却水,用以冷却凝气轮机排汽,循环水泵还要向冷油器,冷风器,锅炉冲灰水等提供水源。每台泵对应有两台旋转滤网和一个外围水闸对泵吸入口处的水源进行垃圾清理。 中央空调系统的组成:水过滤器 水过滤器由简体、不锈钢滤网、排污部分、传动装置及电气控制部分组成。过滤机工

空调冷却循环水系统设计

空调冷却循环水系统设计 民用建筑空调冷却循环水系统相对于工业冷却循环水系统,设计具有一些特点:循环水量较小,设备为定型产品,水质要求较低,季节性运转等。加上民用建筑设计周期短,设计人员往往根据以往的经验,形成定式思维,对一些具体的细节问题,关注不够,造成冷却水系统水温降不下来,系统能耗过大,运转操作不便等问题。该文针对冷却循环水系统经常出现的问题,谈谈自己的设计体会,旨在引起大家的进一步讨论,达到共同认识共同提高的目的。 一、冷却循环水系统设备的合理选型 1.设计基础资料 为保证冷却塔的冷却效果,必须注重气象参数的收集,气象参数应包括空气干球温度θ(℃),空气湿球温度τ(℃),大气压力P(104Pa),夏季主导风向,风速或风压,冬季最低气温等。 根据《采暖通风与空气调节设计规范》和《建筑给水排水设计规范》,冷却塔设计计算所选用的空气干球温度和湿球温度,应与所服务的空调等系统的设计空气干球温度和湿球温度相吻合,应采用历年平均不保证50小时的干球温度和湿球温度。 2、冷却循环水量确定 确定冷却循环水量时,首先要清楚准确地了解空调负荷及空调设备要求的冷却循环水量,同时还要关注空调机的选型,一般可根据制冷量(美RT),估算冷却循环水量Q(m3/h),对于机械式制冷:离心式、螺杆式、往复式制冷机,Q= 0.8RT。对于热力式制冷:单、双效溴化锂吸收式制冷机,Q=(1.0~1.1)RT ;设计时,冷却循环水量一般是由空调专业根据制冷机样本中给出的冷却水量提出

的。需用指出的是,制冷机样本中给出的冷却水量往往比用负荷法计算值小,尤其是进口机,这主要是由于目前冷却塔本身的热工性能达不到进口设备的要求。

大型中央空调冷却水系统详解【最新版】

大型中央空调冷却水系统详解空调的最终目的:从房间内取热,向环境放热。 最终的散热方式有哪些呢?一种我们可以采用风冷式,就是说用风机把这个能量直接吹散;还有一种就是利用冷却水系统把从其产生的热量带到冷却塔再散发给环境。 由于水的比热要比空气大的,所以在中央空调内水冷式用的是比较多的。 先介绍一下冷却水系统组成。冷却水系统由冷凝器、冷却水泵、冷却塔、除污器、补水系统、压力表、温度计、阀门等附件组成。

冷却水系统的形式有哪些呢?首先我们可以设置直流式的供水系统,直流式供水系统的冷却水系统一般采用的是天然冷源,比如我们江河湖海的水,都可以作为我们的天然冷源。 天然能源的使用,一般会受到我们地理位置、环境能源特点的限制,所以常用的呢还是我们的循环式的供水系统。在循环式的供水系统中,我们用的水源是我们的城市供水,也就是我们的自来水。

在冷却水系统中,一个主要设备就是冷却塔。 冷却塔的工作原理和它的作用。在冷却塔中,高温冷却水由进水管进入,由喷嘴淋下,降温后落入地池(中间黑色部分);干燥空气由进风窗进入由下向上和水接触,由顶部风机排出,变为潮湿空气,并带走冷却水中热量。 冷却塔的类型一般有两种。第一种就是自然通风的冷却塔,那么自然通风的冷却塔是什么样子呢?我们看一下,这是一个喷泉,如果我们把这个喷泉和我们的空调系统连接,那么喷泉在喷水的过程中,就可以实现自然通风的降温。

但是,这种自然通风的降温的效果却并不是最好的,所以我们常用的冷却塔形式是机械通风的冷却塔,且通风的冷却塔它又分为逆流和横流。 逆流式的这个系统,一般它的汽水流动是逆向的交换,水从上部流下,空气从下部向上运动,然后从顶部的风机排出。由于汽水是逆向流动,那么他们的热式交换效果是比较好的。

基于MCGS中央空调冷却水循环系统(超详细)

目录 摘要 (2) 前言 (2) 1.设计准备 (3) 1.1设计内容与要求 (3) 1.2设计思路 (4) 1.3 具体设计及实现功能 (4) 2.系统报警记录与参数设置 (4) 2.1 报警定义设置 (4) 2.1.1 冷却塔储水容量的报警定义设置 (4) 2.1.2 冷却塔出水温度报警定义的设置 (5) 2.2报警显示的设置 (6) 2.3报警数据的设置 (7) 2.4报警参数设置 (9) 3.历史数据报表和历史曲线的设置 (10) 3.1历史数据报表的设置 (10) 3.2 历史曲线的设置 (11) 4.运行与调试 (14) 4.1 系统运行 (14) 4.2 系统调试 (14) 4.2.1调试中出现的问题 (14) 4.2.2 解决方案 (14) 5.设计总结 (15) 参考文献 (16) 答谢 (17) 附录 (18)

基于MCGS中央空调冷却水循环系统演示 摘要冷却水循环系统是中央空调系统中的重要组成部件,它直接影响到中央空调供冷、供热功能的实现效果,所以对它准确的测试与处理要求很高。 本设计研究了基于MCGS组态环境在中央空调冷却水循环系统中得应用。利用组态软件MCGS设计了冷却水循环系统监控界面,提供了直观、清晰、准确的冷却水循环系统的运行状态,进而为控制运行、维修和故障诊断提供了多方面的可能性,充分提高了系统的工作效率。 关键词中央空调、冷却水循环、MCGS Abstract The cooling water circulation system is a key component in the central air conditioning system, it directly affects the central air-conditioning cooling and heating function to achieve the effect, so it is accurate testing and demanding. This design study Based on MCGS environment have central air-conditioning cooling water circulation system applications. Configuration software MCGS design of the cooling water circulation system monitoring interface provides an intuitive, clear, accurate operational status of the cooling water circulation system, and thus provide a wide range of possibilities for the control of the operation, maintenance and troubleshooting to fully enhance the system efficiency. Key words central air conditioning, cooling water circulation, MCGS 前言

空调常用系统的介绍

PAU(Pre-Cooling Air Handling Unit)预冷空调箱。对室外新风进行预处理,在送至风机盘管(FCU)。 MAU(Make-up Air Unit)全新风机组。这个就不用说了。 AHU(Air Handle Unit)空调箱。主要是抽取室内空气(return air)和部份新风以控制出风温度和风量来并维持室内温度。 FCU是风机盘管 RCU是制冷剂循环系统空调 OAU一般是非洁净空调系统中的外气空调箱 空调系统中PAU、MAU、AHU、DCC、RCU、DDC的区别 2011年03月03日星期四11:48 PAU(Pre-Cooling Air Handling Unit)预冷空调箱。对室外新风进行预处理,在送至风机盘管(FCU)。 MAU(Make-up Air Unit)全新风机组。是提供新鲜空气的一种空气调节设备。功能上按使用环境的要求可以达到恒温恒湿或者单纯提供新 鲜空气。工作原理是在室外抽取新鲜的空气经过除尘、除湿(或加湿)、降温(或升温)等处理后通过风机送到 室内,在进入室内空间时替换室内原有的空气。当然以上所提到的功能得根据使用环境的需求来定,功能越齐全造 价越高。 AHU(Air Handle Unit)组合式空调箱。主要是抽取室内空气(return air)和部份新风以控制出风温度和风量来并维持室内温度。 RCU(Recycled airhandling unit)循环空调箱。 DCC (Dry Cooling Coil) 干式冷却盘管。(简称为干盘管或干冷盘管)是用来消除室内的显热的。 DDC : (Direct Digital Control ) 直接数控制 HEPA (High efficiency particulate air Filter),中文意思为高效过滤器,达到HEPA标准的过滤网,对于0.1微米和0.3微米的有效率达到 99.998%,HEPA网的特点是空气可以通过,但细小的微粒却无法通过。它对直径为0.3微米(头发直径1/200) 以上的微粒去除效率可达到99.7%以上,是烟雾、灰尘以及细菌等污染物最有效的过滤媒介。(抽烟产生的烟雾颗 粒直径为0.5微米)它是国际上公认的高效过滤材料。经广泛运用于手术室、动物实验室、晶体实验和航空等高洁净场所。

空调系统设备选型介绍

空调系统设备选型 1 水冷冷水机空调系统 ☆主要设备 (1)制冷主机(2)冷冻水泵(3)冷却水泵(4)冷却塔 (5)电子水处理仪(6)水过滤器(7)膨胀水箱 (8)末端装置(组合式空调机组、柜式空调机组、风机盘管等) 2 冷、热源的选择 1. 冷、热源系统设计选型注意的几个方面 1.1 各种冷、热源系统的能效特性 1.2 冷、热源系统的部分负荷性能 1.3 冷、热源系统的投资费用 1.4 冷、热源系统的运行费用 1.5 冷、热源系统的环境行为 2. 冷源设备选择 2.1 冷水机组的总装机容量 冷水机组的总装机容量应以正确的空调负荷计算为准,可不作任何附加,避免所选冷水机组的总装机容量偏大,造成大马拉小车或机组闲置的情况。 2.2 冷水机组台数选择 制冷机组一般以选用2?4台为宜,中小型规模宜选用2台,

较大型可选用3台,特大型可选用4 台。机组之间要考虑其互为

备用和切换使用的可能性。同一机房内可采用不同类型、不同容 量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至 少应选择一台自动化程度较高、调节性能较好、能保证部分负荷 下能高效运行的机组。 为保证运转的安全可靠性,当小型工程仅设 1 台时,应选用 调节性能优良、运行可靠的机型,如选择多台压缩机分路联控的 机组,即多机头联控型机组。 2.3 冷水机组机型选择 2.3.1水冷电动压缩式冷水机组的机型宜按制冷量范围,并经过性 能价格比进行选择。 2.3.2冷水机组机型选择 电机驱动压缩机的蒸气压缩循环冷水机组,在额定制冷工况 和规定条件下,性能系数(COP )不应低于以下规定。 水冷冷水机组机型 额定制冷量( kW ) 性能系数( W/W ) 活塞式 /涡旋式 <528 3.8 528~1163 4.0 >1163 冷水机组机型 冷量范围(kW ) 参考价格(元/kcal/h ) 往复活塞式 < 700 0.5~0.6 螺杆式 116~1758 0.6~0.7 离心式 > 1758 0.5~0.6 4.2 螺杆式 <528 4.10

空调系统水处理

空调系统水处理 一、空调系统循环水系统水处理目的 中央空调循环水系统包括冷却水系统、冷冻水系统和热水系统。如下图,冷却水系统是由热交换器、冷却水泵、管道、冷却塔、贮水池组成。冷冻水系统 由热交换器,冷冻水泵、管道、风机盘管、膨胀水箱组成。热水和冷冻水共用一 套管道系统。从中我们了解到,在中央空调循环体系中有大量的封闭(冷冻水系统)和半封闭(冷却水系统)的循环水体系。中央空调水在循环系统中反复循环使 用,由于水分的蒸发,外界环境(日晒、雨淋)带来的污染,会导致设备腐蚀、大 量沉积物附着以及微生物滋生。这不仅大大降低了热交换效率,缩短设备的使用寿命,甚至还对我们的安全造成了隐患。为了保证设备长期安全节能运行,必须对设备腐蚀,粘泥、污垢物等进行有效的控制。 应用最广的方法便是在循环体系中加入各类水处理药剂,来杀灭抑制菌类的滋生,减少设备的腐蚀,以及除去和降低水垢的产生。现在常用的水处理药剂有以下几种: (1) 粘泥剥离剂:剥离清洗时产生的泥垢,促进反应,一般由杀生剂、 渗透剂和稳定剂组成;

(2) 杀菌灭藻剂:杀灭循环水中菌类、藻类,抑制它们的滋生; (3) 清洗剂:清洗空调内的污物,包括以碳酸盐为主的水垢; (4) 预膜剂:快速与金属形成保护膜,减少设备被腐蚀情况的发生; (5) 缓蚀阻垢剂:阻止或干扰水垢的产生,减缓金属被腐蚀,维持循环体系的正常运行。 二、水质处理标准: 循环冷却水的水质标准表 项目单位要求和使用条件允许值 悬浮物Mg/L 根据生产工艺要求确定<20 换热设备为板式,翅片管式,螺旋板式<10 PH值根据药剂配方确定7-9.2 甲基橙碱 度 Mg/L根据药剂配方及工况条件确定<500钙离子Mg/L根据药剂配方及工况条件确定30-200 亚铁离子Mg/L<0.5 氯离子Mg/L 碳钢换热设备<1000 不锈钢换热设备<300硫酸根离 子 Mg/L 对系统中混凝土材质的要求按现行的< 岩土工程勘察规范>GB50021 94的规定执行 硫酸根离子与氯离子之和<1500硅酸Mg/L <175 镁离子与二氧化硅的乘积<15000游离氯Mg/L在回水总管处0.5-1.0石油类Mg/L <5 炼油企业<10注:甲基橙碱度以碳酸钙计;

空调水系统

空调水系统 第一章:空调水系统介绍: 空调水系统主要包括冷冻水系统、冷却水系统和热水系统,本篇主要讲冷冻水系统和冷却水系统。空调水系统可区分为开式和闭式,同程式和异程式,双水管、三水管和四水管水系统,上分式和下分式等;按运行调节方法可分为:定流量和变流量;按水泵供水方式可分为:单式水泵供水系统和复式水泵供水系统; 第一节:开式系统和闭式系统 从管路和设备的布局上分,空调水系统可分开式系统和闭式系统两种形式。它们的主要区别在于, 开式系统的末端水管路是与大气相通的,而闭式系统的管路并不是与大气相通。所以凡连接冷却塔、喷水室和水箱等设备的管路均构成开式系统,如图7-1、7-2所示。上例中的冷却水系统即为开式系统。图7-3中的水循环管路中没有开口处,所以它是闭式系统。上例中的冷冻水系统即为闭式系统。 由于开式系统的管路与大气相通,所以循环水中氧含量高,容易腐蚀管路和设备,而且空气中的污染物如烟尘、杂物、细菌、可溶性气体等易进入水循环,使微生物大量繁殖,形成生物污泥,所以管路容易堵塞并产生水锤现象。与闭式系统相比,开式系统中的水泵压头比较高,它不但要克服管路沿程的摩擦阻力损失和局部压头损失,还必须有一个把水提升高度z所需的压头(见图7.1图7.2所示)。因此,水泵的能耗大。此外,开式系统中的水箱或水池等设备不可避免的会造成无效的能量损耗。所以,近年来在空调工程领域,特别是冷冻水环路中,已经很少采用开式系统。 为了节约水泵的能耗,冷却水池最好紧接冷却塔,或者就采用如图7.1所示方式,不专门设水池,系统的管路直接与冷却塔出水口相接。 与开式系统相比,闭式系统的水泵能耗小,管路和设备的腐蚀可能性小,水处理费用便宜。但由于系统的补给水需要以及给予系统内的水在温度变化时有体积膨胀的余地等原因,所以闭式系统需设膨胀水箱。 第二节:同程式回水方式和异程式回水方式 在大型建筑物中,空调水系统的回水管布置方式可分为两类:同程式回水式和异程式回水方式。对于同程式回

空调冷却循环水系统存在的问题及解决方案

时间:2008年9月22日 一、中央空调冷却循环水系统的组成 中央空调冷却循环水系统主要由冷却塔、制冷机、冷凝器、循环水泵、控制阀门及相应管路组成。运行温度一般为30℃—40℃.敞开式运行。 二、冷却循环水系统设计规范及物理场水处理水质标准 1.《中华人民共和国国家标准工业循环冷却水处理设计规范》GB50050-951)1)冷却循环水系统中微生物控制指标 异养菌< 5×105 个/ml 2次/周 真菌< 10 个/ml 1次/周 硫酸盐还原菌< 50 个/ml 1次/月 铁细菌< 100 个/ml 1次/月 2)冷却循环水系统腐蚀速率 ★碳钢换热器管壁的腐蚀速度小于0.125 mm/a ★铜合金和不锈钢的腐蚀速度小于0.005 mm/a 3)冷却循环水系统污垢热阻

★敞开式:水侧管壁的年污垢热阻值为: 2×10-4 —4×10-4 m2hc/kcal ★密封式:水侧管壁的年污垢热阻值为: 1×10-4 m2hc/kcal 4)冷却循环水系统中粘泥量 <4 ml/m3 (生物过滤网法)1次/天 <1 ml/m3 (碘化钾法)1次/天 三、冷却循环水系统存在的问题 冷却循环水系统主要存在的问题是水垢、腐蚀、菌藻及污垢所形成的复合垢,影响制冷机冷凝器的换热效率及水质控制问题。 由于冷却循环水是一个敞开式的循环系统,水温一般在30℃-40℃之间,在系统正常运行时,由于受天气和环境的影响,空气中的灰尘、杂质和悬浮物通过冷却塔进入系统中,在冷凝器内沉积下来,形成污垢,影响机组的换热效率。 由于冷却循环水是一个敞开式的循环水系统,高温的冷却水通过冷却塔不断的向大气中蒸发,导致冷却水浓缩。在进入换热器热交换过程中,使水中的钙镁离子大量析出,形成水垢(CaCO3,MgCO3)粘附在热换器表面影响换热效果。

中央空调冷却水循环系统简介

中央空调冷却水循环系统简介 冷却水循环系统是中央空调系统的一种,它是指冷却水换热并经降温,再循环使用的给水系统,主要由冷却设备、水泵和管道组成,包括敞开式和密闭式两种类型。 冷却水循环系统-原理 以水作为冷却介质,并循环使用的一种冷却水系统。主要由冷却设备、水泵和管道组成。冷水流过需要降温的生产设备(常称换热设备,如换热器、冷凝器、反应器)后,温度上升,如果即行排放,冷水只用一次(称直流冷却水系统),使升温冷水流过冷却设备则水温回降,可用泵送回生产设备再次使用,冷水的用量大大降低,常可节约95%以上。冷却水占工业用水量的70%左右,因此,冷却水循环系统起了节约大量工业用水的作用。 冷却水循环系统-分类 冷却设备有敞开式和封闭式之分,因而冷却水循环系统也分为敞开式和封闭式两类。敞开式系统的设计和运行较为复杂。 1、敞开式 冷却设备有冷却池和冷却塔两类,都主要依靠水的蒸发降低水温。再者,冷却塔常用风机促进蒸发,冷却水常被吹失。故敞开式冷却水循环系统必须补给新鲜水。由于蒸发,循环水浓缩,浓缩过程将促进盐分结垢。补充水有稀释作用,其流量常根据循环水浓度限值确定。通常补充水量超过蒸发与风吹的损失水量,因此必须排放一些循环水(称排污水)以维持水量的平衡。冷却水循环系统在敞开式系统中,因水流与大气接触,灰尘、微生物等进入循环水;此外,二氧化碳的逸散和换热设备中物料的泄漏,也改变循环水的水质。为此,循环冷却水常需处理,包括沉积物控制、腐蚀控制和微生物控制。处理方法的确定常与补给水的水量和水质相关,与生产设备的性能也有关。当采用多种药剂时,要避免药剂间可能存在的化学反应。 2、封闭式 封闭式冷却水循环系统采用封闭式冷却设备,循环水在管中流动,管外通常用风散热。除换热设备的物料泄漏外,没有其他因素改变循环水的水质。为了防

空调系统的重要部件介绍(带图)

1、压缩机 压缩机是整个空调系统的核心,也是系统动力的源泉。整个空调的动力,全部由压缩机来提供,压缩机就相当于把一个实物由低势位搬到高势位地方去,在空调中它的目的就是把低温的气体通过压缩机压缩成高温的气体,最后气体在换热器中和其他的介质进行换热,所以说压缩机的好坏会直接影响到整个空调的效果。

2、换热器 根据在空调上的作用不同,可分为冷凝器和蒸发器。现在就冷凝器和蒸发器的分类和区别述说一下。 (1)冷凝器:冷凝器的作用是将压缩机排出的高温高压的制冷剂过热蒸汽冷却成液体或气液混合物。制冷剂在冷凝器种放出的热量由冷却介质(水或空气)带走。冷凝器按其冷却介质和冷却的方式,可以分为水冷式、空气冷却式、水和空气混合冷却式三种类型。

(2)蒸发器:蒸发器的作用是利用液态低温制冷剂在低压下易蒸发,转变为蒸气并吸收被冷却介质的热量,达到制冷目的。蒸发器的种类:蒸发器按冷却介质的不同,分为冷却液体载冷剂、冷却空气或其他气体的两大类型。 3、节流部件

节流部件是制冷系统不可缺少的四大部件之一。它的作用是使冷凝器出来的高压液体节流降压,使液态制冷剂在低压(低温)下汽化吸热。所以,它是维持冷凝器中为高压、蒸发器为低压的重要部件。 节流部件按形式,可分为毛细管和节流阀。前者,用在较小的制冷设备中,如电冰箱中装在冷凝器和蒸发器之间的毛细管即是节流机构的一种。后者用在较大的制冷设备中。在大、中型装置中应用的节流机构为节流阀,常用的节流阀有三种,即手动膨胀阀、浮球调节阀和热力膨胀阀,后两种为自动调节的节流阀。膨胀阀按膨胀的类型可分为电磁膨胀阀和热力膨胀阀等。

4、气液分离器(蒸发器与压缩机之间) 在蒸发器中,由于液体在蒸发器中蒸发,由液体变为气体的过程,由于考虑负荷的变化,可能会有一部分的制冷剂未全部蒸发,而会直接进入到压缩机。由于液体的不可压缩性,所以在未进入压缩机之前,首先要通过气液分离器,以确保进入压缩机全部为汽体,保证压缩机能正常的运转。气液分离器安装与压缩机的进口端,主要是防止返回压缩机的低压低温蒸汽携带过多的液滴,防止液体制冷剂进入压缩机气缸,分离器同时具有过滤、回油、贮液等功能。

空调冷却水系统设计的几个问题

空调冷却水系统设计中的几个问题 Several Problems in the Design of the Air-Conditioning Cooling Water System 摘要:冷却水系统是中央空调系统的重要组成部分,现结合有关工程实例阐明冷却水系统设计中在系统形式选择、循环水量确定、冷却塔选型、出水温度调节、冷却塔位置确定等方面应该注意的几个问题。 关键词:中央空调、冷却水系统设计、冷却塔 1.引言:各地对冷却水系统设计分工不同,有些地区是由暖通专业连同冷冻水系统一起完成,而浙江地区则通常由给排水专业来完成。由于空调冷却水系统组成相对简单,长期以来冷却水系统设计未受到应有的重视。现结合自己的工程实践谈谈其设计中应注意的几个重要问题。 2.系统形式选择:和空调冷冻水系统一样,按冷却水泵相对于制冷机组的位置,可分为水泵后置式(下图1所示)和水泵前置式(下图2所示)两种布置方式。后置式一般用于高层建筑以便减少制冷机冷凝器侧承压。 曾有一超高层建筑,由于用地红线十分紧张,建筑没有裙房,而室外也没有放置冷却塔的合适位置。冷却塔设在200米以上的主楼屋面,此时应该采用水泵后置式布置方式以便近可能减少制冷机冷凝器侧依然承压。另外一种情况刚好相反。某

西北国际会展中心,制冷机房在布置在地上一层。同时该建筑屋面为网架屋面,冷却塔又不能布置在屋面。因此冷却塔只有在室外地面考虑。此时应该采用水泵前置式布置。为了满足冷却水泵吸入口不发生汽蚀的要求,设计中将冷却塔在室外以钢支架架高处理并加大回水管道管径,采用阻力小的成品弯头等配件以尽量减少系统阻力,降低其安装高度,减少其对建筑景观的影响。其安装剖面如下图: 3.系统循环水量的确定:一些设备供应商习惯以制冷机制冷量乘以放大系数的方法来对冷却塔进行选型。这种估算方法其实是不确切的。对于不同类型的制冷机而言其相同制冷量下的冷却负荷是不同。对封闭式压缩机其冷凝器冷却负荷不仅包含制冷负荷还包括电机的冷却负荷。因此正确的方法应该是由选型确定的制冷机冷凝器所需冷却负荷和工程所确定的冷却水供回水温差来确定对应冷却水系统水量。 4.系统供回水温度的确定:现行冷却塔制造标准[1]中规定的冷却塔标准设计工况下进出水温度为37℃/32℃。这个参数对应的室外湿球温度为28℃。对于某些室外湿球

中央空调水系统群控逻辑控制说明

领地中心中央空调水系统群控逻辑控制说明

. 冷水系统描述:冷水机组:CH1-CH(6 6 台) 冷冻泵:CHP1-CHP6(a 7 台) 冷却泵:CWP1-CW(P77 台) 冷却塔:8 组(16 台) 在系统中冷水机组CH1至CH5与冷冻泵CHP1-CHP、冷却泵CWP1-CWP为串联,即其中任意一台冷机可对应冷冻泵CHP1-CHP和冷却泵CWP1-CW其中的任意一台,任意一台冷机可对应冷却塔CT2-CT8号7组中任意的一组冷却塔,当某一套机组中的任意设备出现故障,则此套设备均停止运行,系统将自动启动另一套运行时间相对较少的无故障设备。 另外系统中在过渡季节时优先启动主机CH6 CH6单独对应冷冻泵CHP6与CHP6a(备用)和冷却泵CWP以及CT1号组冷却塔。 1. 系统停止: 当系统启停被置为In active时,设备启动台数Number为0,系统处于停止状态。 2. 启停状态: 当系统启停被置为active,设备启动台数Number为1,启动冷冻站系统。系统会优先启动一台最小时间运行的机组。当把系统启停置为Inactive ,停止冷冻站系统,所有设备停止运行。 冷冻站的启动顺序为:

打开冷冻(冷却)水隔离阀、打开最小时间运行且无故障的冷却塔蝶阀(其中如果开启的主机为CH6则打开CT1的蝶阀)->状态返回后延时5秒,启动冷冻水泵->状态返回延时30秒,启动冷却水泵->状态返回后延时10分钟,启动冷水机组 冷冻站的停止顺序为: 停止冷水主机->延时60秒后停止冷却塔风扇,停止冷却水泵 ->延时30分钟后关闭冷冻水泵 ->延时32分钟后停止隔离阀 3. 计算设备可用的最大值: 当设备发生故障时,该设备不可用。设备的可用最大值要与设备可用的数量相等。 (1)运行加载UP: 当下列条件同时发生时,Number上升标志UP 被置为ON 当主机平均电流百分比负载大于90%并且主机加载温度设定值UP-TSP(9.0 C)低于冷冻水总出水温度(持续20分钟) 设备可启动台数Numbe小于设备可启动最大值当UP被置为ON在目前的Number基础上增加1台冷水机组,相应的水泵增加一台(根据现在实际情况调整)。 (2)运行减载down: 当下列条件同时发生时,Numbe讣降标志down被置为ON 当主机平均电流百分比负载小于40%并且主机加载温度设定值down-TSP (15.0 C)高于冷冻水总回水温度(持续20分钟) Number大于1 当down被置为ON在目前的Number基础上减少1台冷水机组,相应的水泵减少一台(根据现在实际情况调整)。

中央空调介绍

中央空调介绍 一、中央空调的分类及组成 中央空调系统有主机和末端系统。按负担室内热湿负荷所用的介质可分为全空气系统、全水系统、空气-水系统、制冷剂系统。按空气处理设备的集中程度可分为集中式和半集中式。按被处理空气的来源可分为封闭式、直流式、混合式(一次回风二次回风)。主要组成设备有空调主机(冷热源)、组合式空调机组(风柜)、风机盘管等等。 为了便于使用和维修,主机的冷、热煤管路上应设截至阀、止回阀、过滤器、平衡阀、压力表和温度计等。在蒸汽加热器的蒸汽管路上还要设蒸汽调节阀门和疏水器。为了保证表面式换热器正常工作,在水系统的最高点应设排空气装置(如立式和卧式排气阀),而在最低点应设泄水阀门和排污阀门。 二、中央空调工作原理 1.冷(热)水机组的基本工作过程是:室外的制冷(热)机组对冷(热)媒水进行制冷降温(或加热升温),然后由水泵将降温后的冷媒(热)水输送到安装在室内的风机盘管机组中,由风机盘管机组采取就地回风的方式与室内空气进行热交换实现对室内空气处理的目的。 2.风管(道)式机组的基本工作过程是:供冷时,室外的制冷机组吸收来自室内机组的制冷剂蒸气经压缩、冷凝后向各室内机组输送液体制冷剂。供热时,室外的制冷机组吸收来自冷凝器的制冷剂蒸气经压缩后向各室内机组输送汽体制冷剂,室内机组通过布置在天花板上的回风口将空气吸入,进行热交换后送入安装在室内各房间天花板中的风管(道)内,并通过出风口上的散流器向室内各房间输送空气。在风管(道)上设计有新风门和排风门,可以按一定比例置换空气,以保证室内空气的质量。

三、中央空调主要设备实物图 冷却塔

冷却泵冷冻泵 压缩机 冷水机组

空调水系统设计

空调水系统设计 空调水系统流速的确定 一般,当管径在DN100到DN250之间时,流速推荐值为1.5m/s左右,当管径小于DN100时,推荐流速应小于1.0m/s,管径大于DN250时,流速可再加大。进行计算是应该注意管径和推荐流速的对应。 目前管径的尺寸规格有: DN15、DN20、DN25、DN32、DN40、DN50、DN70、DN80、DN100、DN125、DN150、DN200、DN250、DN300、DN350、DN400、DN450、DN500、DN600 注意:一般,选择水泵时,水泵的进出口管径应比水泵所在管段的管径小一个型号。例如:水泵所在管段的管径为DN125,那么所选水泵的进出口管径应为DN100。 管内水流速推荐值(m/s) 水泵吸入口 1.2-2.1冷却水管 1.0-2.4 水泵压出口 2.4-3.6分水器 1.0-1.5 供回水干管 1.0-2.0集水器 1.0-1.5 供回水支管0.5-0.7排水管 1.2-2.0

供暖水流速度m/s 户式水机设计经验值 水管流速按1.8/S计算,流量计算公式为:管道截面积×1.8/s×3600(换算成小时) 空调水系统管件附件的安装1.水泵在系统的设计位置:

一般而言,冷冻水泵应设在冷水机组前端,从末端回来的冷冻水经过冷冻水泵打回冷水机组;冷却水泵设在冷却水进机组的水路上,从冷却塔出来的冷却水经冷却水泵打回机组;热水循环泵设在回水干管上,从末端回来的热水经过热水循环泵打回板式换热器。 2.冷却塔上的阀门设计: (1)冷却塔进水管上加电磁阀(不提倡使用手动阀) (2)管泄水阀应该设置于室内,(若放置在室外,由于管内有部分存水,冬天易冻) 3.水质处理 a水过滤:无论开式和闭式系统,水过滤器都是系统设计中必须考虑的。目前常用的水过滤器装置有金属网状、Y型管道式过滤器,直通式除污器等。一般设置在冷水机组、水泵、换热器、电动调节阀等设备的入口管道上 b闭式水系统:冷、热水系统中必须设置软化水处理设备及相应的补水系统。 电子水处理仪的安装位置:放置于水泵后面,主机前面。 4.水泵前后的阀门 1水泵进水管依次接:蝶阀-压力表-软接 2水泵出水管依次接:软接-压力表-止回阀-蝶阀 5.分\集水器 多于两路供应的空调水系统,宜设置集分水器。集分水器的直径应按总流量通过时的断面流速(0.5-1.0m/s)初选,并应大于最大接管开口直径的2倍;分汽缸﹑分水器和集水器直径D的确定: a按断面流速确定D分汽缸按断面流速8-12m/s计算;分水器和集水器按断面流速0.1m/s计算。 b按经验公式估算来确定D, D=(1.5-3)D MAX D MAX 支管最大直径 c分\集水器之间加电动压差旁通阀和旁通管(管径一般取DN50) d集水器的回水管上应设温度计. 6.各种仪表的位置 布置温度表,压力表及其他测量仪表应设于便于观察的地方,阀门高度一般离地1.2-1.5m,高于此高度时,应设置工作平台。 压力表:冷水机组、进出水管、水泵进出口及集分水器各分路阀门外的管道上,应设压力表;

相关文档