文档库 最新最全的文档下载
当前位置:文档库 › 近十年壳聚糖在医药上的应用研究进展

近十年壳聚糖在医药上的应用研究进展

近十年壳聚糖在医药上的应用研究进展
近十年壳聚糖在医药上的应用研究进展

本科生课程论文

论文题目近十年壳聚糖在医药上的应用研究进展课程名称专业文献检索

学生姓名吴伟平

所在学院理学院

所在专业制药工程

所在班级制药1091

指导教师李思东职称教授

学号200911931124

近十年壳聚糖在医药上的应用研究进展

吴伟平

(广东海洋大学,广东湛江524088)

摘要:壳聚糖是天然多糖甲壳素的脱乙酰基产物,是一种含有游离氨基的碱性多糖,其相对分子质量从数十万到数百万不等,具有多种生理功能。经降解和化学修饰后的壳聚糖,在某些方面具有比壳聚糖更好的生物活性。壳聚糖及其降解物和修饰物安全性良好,且具有可降解性和组织相容性,在医药应用领域具有很高的应用价值。多年来,壳聚糖及其衍生物一直是医药研发领域的热点之一[1].本文根据国内外的参考文献,对壳聚糖及其衍生物近十年在医药上的应用研究进展进行综述。

关键词:壳聚糖;衍生物;应用;研究进展

前言:

壳聚糖是甲壳素N-脱乙酰基的产物,一般而言,N一乙酰基脱去55%以上的就可称之为壳聚糖,或者说,能在1%乙酸或1%盐酸中溶解1%的脱乙酰甲壳素,这种脱乙酰甲壳素被称之为壳聚糖。化学名为β-(1→4)-2-氨基-2-脱氧-D-葡萄糖。在自然界中,壳聚糖通常以甲壳素的形式存在,纤维素、甲壳素和壳聚糖的结构非常相似,不同之处是每个纤维素葡萄糖单元二号碳原子上的一OH基团相应地换成了一NHCOCH 或一NH 基团[2]。目前已知壳聚糖及其衍生物具有抗微生物、增强免疫、调节血脂、抑制肿瘤等药理活性[3]。另外,由于壳聚糖及其衍生物安全性良好,且具有可降解性和组织相容性,因此在药物传递系统中也得到广泛应用。本文从药理作用和药物方面的应用对壳聚糖及其衍生物近十年的研究进展进行综述。

一.药理作用:

1.抗菌消炎作用:已有大量的研究证实壳聚糖及其衍生物具有广谱的抗菌活性,对金黄色葡萄球菌、大肠杆菌、铜绿假单胞菌、枯草杆菌、八叠球菌、放线菌和热带白色念珠菌等均具有抑制作用。壳聚糖的抗菌作用主要有以下2种机制:大分子壳聚糖通过自身所带的正电荷与微生物细胞膜所携带的负电荷相互作用,破坏细菌细胞壁原有结构,造成细胞成分的泄漏而起到抗菌作用;小分子壳聚糖,通过渗透进入细胞内,与带有阴离子的生物大分子发生类似“絮凝”作用,扰乱细胞的正常生理功能,从而抑制细菌的繁殖和生长[4]。段静芸等[5] 利用不同浓度、不同溶解性的壳聚糖,以及不同气体配比的气调包装对冷却肉进行保鲜处理,结果发现,壳聚糖在鲜猪肉中有明显的保鲜作用,且浓度越高,保鲜效果越好。2. 抗凝血作用:肝素是应用最广的血液抗凝剂,但价格昂贵,甲壳索及壳聚糖经硫酸酯化后,其结构与肝素相似,同样具有抗凝血活性,因此被称为类肝索药物,作为新型抗凝血活性物质。壳聚糖是自然界中唯一含有氨基的阳离子多糖,能吸引带负电荷的血小板和红细胞。由于氨基的亲水性,能够增加纤维蛋白原的吸附数量,从而增加血小板粘附和血栓形成[6]。蒋珍菊等人[7]对不同反应条件下制备的不同壳聚糖类肝素衍生物的全血凝血时间、活化部分凝血活酶时间进行考察,比较了其抗凝血性能,结果发现,当衍生物的分子量与肝素相近时,其抗凝血活性最强;脱乙酰度对抗凝作用有较大影响。

3. 降低血清胆固醇和抗高血压活性: 胆固醇在肠道内被胆固醇酶催化变为胆固醇酯,然后被肠道吸收,胆汁酸是胆固醇酶催化所必需的物质。壳聚糖能够阻碍胆固醇在体内的吸收、能够和带负电的胆汁酸结合,并将其排除体外[8]。壳聚糖阻碍脂类物质的吸收,胆汁酸盐将脂肪中大油滴变为小的乳糜微粒,增加了脂肪

酶与脂肪的接触面积,促进脂肪消化,由于胆汁酸盐的缺乏,脂肪就不能消化,从而减少身体对脂肪和胆固醇的吸收,达到降低血脂的作用[9]。口服在胃的酸性条件下溶解成为聚阳离子,入血后能吸收血液中的c1 ,将其排除体外,从而降低体内c1浓度,使血管紧张素转化酶(ACE)活性受到抑制,从而起到降低血压的作用。另外,小肠上部的碱性条件也可将聚阳离子中和,使其带水凝聚,将分泌出来的胆汁酸和氯离子包围,形成脂质混合胶团,从粪便中排出,起到降低血清胆固醇值、抑制血压上升的作用[10]。

4. 抗肿瘤作用:壳聚糖大分子上分布着许多活泼的羟基、氨基,可以通过化学改性形成衍生物来改善壳聚糖溶解性能,进而提高其抗肿瘤性能。壳聚糖有直接抑制肿瘤细胞的作用,在有lxl0 个癌细胞的溶液中,hn.z.o 5mg/ml的壳聚糖,24tl后癌细胞全部死亡[11]。通过羧基化、酰基化、季胺化及形成金属配合物等方式得到的壳聚糖衍生物与壳聚糖相比,其物理、化学性质均得到优化,具有水溶性、成膜性及极强的重金属螯合作用,在抑制肿瘤生长和延长存活期方面起到了积极作用[12]。

5. 其他药理作用: 人体衰老的自由基理论指出,人体内产生过多的自由基,如果不能即使清除,便会导致衰老. 壳聚糖能够清除人体内过多的自由基,起到延缓衰老的作用.壳聚糖还具有抗艾滋病AIDS的活性,AIDS是由于感染HIV一1病毒而引起的,有学者研究过壳聚糖对HIV一1病毒复制有潜在的抑制作用,N一羧甲基壳聚糖一N一0一硫酸盐(NCM—CS)能通过结合HIV一1的吸收和反转录,并观察到的药物具有剂量依赖性,而且应用中未发现有明显毒性[13]。

二.药物方面的应用:

1. 壳聚糖急救止血装置:此装置具有两层结构,上层为壳聚糖止血层,下层是聚

丙烯酸接枝壳聚糖垫层。本实用新型采用课生物降解的壳聚糖止血层和聚丙烯接枝壳聚糖垫层组成的层状结构。其中,聚丙烯酸接枝壳聚糖垫层可提供强大的高分子吸水力,提高止血效果。此外,该聚丙烯酸接枝壳聚糖层还可附着一药物层,该药物层药物可以是抗菌药、止痛药和促进组织修复因子等,在止血的同时,预防和控制感染,减轻疼痛,加快创面组织的修复[14]。

2.一种药物缓释: 一种药物缓释用壳聚糖/凹土复合材料的制备方法,将有机改性后的凹土分散于水溶液中制成一定浓度的悬浮液,将此悬浮液缓慢滴入一定浓度的壳聚糖醋酸溶液中,在一定温度下复合得到复合物浆料;在复合物浆料中加入交联剂固化得交联产物;将所得交联产物抽滤、水洗后,浸泡于1mol/L的盐酸溶液中,水洗至中性,醇洗后真空干燥得复合缓释材料。本发明克服了因壳聚糖溶液的粘度而造成的复合物分离困难及由此带来的原料浪费,所得缓释材料对药物的释放速度可控,可直接用于压片制备药物缓释片[15]。

3.生产保健食品:壳聚糖具有提升免疫力、改善消化机能、降低胆固醇、调节人体酸碱平衡、吸附和排除体内有害重金属、减肥等多种保健功能[16],随着对壳聚糖研究的深入,人们开始注意到壳聚糖的营养保健功能。壳聚糖被认为是继维他命丸、卵磷脂以及螺旋藻之后的第二代保健食品。可用于生产降血压、降血脂、降胆固醇、减肥、延缓衰老、改善胃肠道功能、排毒等功能的保健食品与药品[17]。4.纳米粒:将壳聚糖应用于纳米载体的研究,是20世纪90年代末逐渐发展起来的新兴研究领域。载药壳聚糖纳米粒的制备方法包括离子凝胶化法、复凝聚法、共价交联法、乳滴聚结法等。目前壳聚糖纳米粒主要应用于基因治疗的载体、药物的缓释和靶向制剂、蛋白质和多肽的特殊制剂[18]。

5.作为靶向载体:利用壳聚糖及其衍生物在不同酸性环境中具有不同的药物释

放速率的特性,制成具有吸收部位特异性的消化道制剂,可起到靶向作用。如在众多的结肠靶向药物传递系统中,以壳聚糖

及其衍生物作为辅料的生物高分子药物传递系统可被结肠部位的微生物所降解,是一种优良的结肠靶向的传递系统,因而具有广泛的应用前景[19]。

6.壳聚糖微囊/微球:微球按制备材料分可分为淀粉微球、明胶微球、白蛋白微球、聚酣类微球、壳聚糖微球、聚乳酸微球等。微球是目前作为缓控制剂研究的热点,常见的制备壳聚糖微球的方法有:乳化化学交联法、pH调节法、喷雾干燥、溶剂蒸发法、膜乳化一两步固化学法等,其中以乳化交联法最为常见,即药物分散于壳聚糖醋酸水溶液中,与表面活性剂的甘油相混合处理后,再与戊二醛、甲醛环氧氯丙烷等乳化交联便可制成[20]。这类微球不仅具有缓释功能,还具有载药量大,性能稳定的特点,更可靶向分布于肿瘤组织,加强药物的穿透性和滞留性,提高药物的稳定性及生物利用度,降低全身血液浓度,减少毒副反应。

7.水凝胶材料:水凝胶所特有的柔软性能可以促使其与伤口更有效接触,且能为伤口提供一个良好的湿润环境,对促进伤口愈合有很好的效果。甲壳素和壳聚糖很容易通过交联反应制成水凝胶[21]。

三.小结与展望:壳聚糖是一类具有良好生物相容性的生物材料,在药物、保健品和药物载体开发领域有着广阔的应用前景和市场空间。壳聚糖及其衍生物作为天然可再生的资源,因其具有良好的生物活性、生物可降解性、生物可相容性以及无毒性等特性受起了人们的极大关注,随着对壳聚糖及其衍生物研发水平的不断提高和应用范围的逐渐扩大,其开发应用领域日益广阔,已被广泛地应用于食品、医药、纺织、化工等领域。壳聚糖作为一种可再生、高附加值的产品,使用过程中没有二次污染,相信随着研究的不断深入,这资源的利用价值会越来越大。

参考文献:

[1] 凌沛学, 荣晓花, 张天民. 壳聚糖及其衍生物的医药研究进展[J]. 食品与药品,2008,10(09):69

[2] 王传芬.壳聚糖及其衍生物在造纸工业中的应用[J].黑龙江造纸,2009(3):32—33

[3] Seyfanh F,Schliemann S,Elsner P,et a1.Antifungal effect of high and low molecular weight chitosan hydrochloride,carboxymethyl chitosan,chitosan oligosaccharide and N —acetyl—D—glucosamine against Candida albicans,Candidakrusei and Candida glabrata[J].1nt J Pharm,2008,353(1—2):l 39一l48

[4]陈威,吴清平,张菊梅.壳聚糖抑菌机制的初步研究.微生物学报,2008,48(2):164—168

[5] 段静云,徐幸莲,周光宏.壳聚糖和气调包装在冷却肉保鲜中的应用[J].食品科学,2002,23(2):138—141

[6] AnvikulW ,Uppanan P,Thavornyutikarn B.In vitro comparative hemostatic studies of chitin, chitosan and their derivatives.Journal ofApplied Polymer Science,2OO6,(102):445—451

[7] 蒋珍菊,王周玉,胡星琪.壳聚糖类肝素衍生物抗凝血性能研究

[J].化学与生物工程,2008,25(12):57—59

[8] 王富花,刘中阳,张占军.壳聚糖的研究进展及其在食品医药工业中的应用[J]. 广州化工, 2010,38(10):46

[9] 罗哗,唐大川,罗海燕,等.壳聚糖在医药领域的应用研究[J].海峡药学,

2009:21(5):12—17

[10] 潘雪龙,彭湘红.甲壳素/壳聚糖及其衍生物在医药工业中的应用[J].湖北化工,2000,(2):3-5

[11] 陈峰,谭炯,杨学军. 壳聚糖及其衍生物的应用[J]. 西南民族学院学报·自然科学版,2002,28(1):41

[12] 王晓霁,杨靖亚,刘建文.壳聚糖衍生物在抗肿瘤方面的研究进展[J].中国临床药理学与治疗学,2008,13(8):952—956

[13] 罗哗,唐大川,罗海燕,等.壳聚糖在医药领域的应用研究[J].海峡药学,2009:21(5):12—17

[14]郭希民,晓桦,文奎.壳聚糖急救止血装置:中国,201120046396.5[P].2011

[15] 吴洁,熊清平,李东,等. 一种药物缓释用壳聚糖/凹土复合材料的制备方法:中国,CN201010251789.X[P].2010

[16] 刘峥颢,吴广臣,王庭欣.壳聚糖保鲜食品的机理及其应用的研究[J].食品科学,2005,26(8):533—537

[17] 李艳欢.壳聚糖的生物活性及其在保健食品中的研究进展[J].食品研究与开发,2009,3o(4):186—192

[18] 凌沛学,荣晓花,张天民.壳聚糖及其衍生物的医药研究进展[J].食品与药品,2008,10(9):69—71

[19] 王银松,李英霞,宋妮.壳聚糖及其衍生物在口服制剂中的应用[J].中国海洋杂志,2003,91(1):51—54

[20] 陈新梅.壳聚糖微球研究进展[J].药学进展,2009:12(6):734—73

[21] 段林楠. 壳聚糖在医药中的应用[J]. 医药化工,2006,(6):39

壳聚糖的应用研究进展(综述性论文)

绿色原料——壳聚糖的应用研究进展 09化学1班 XXX 指导老师:沈友教授 (惠州学院化学工程系,广东,惠州,516007) 摘要:本文综述了绿色原料壳聚糖的应用研究进展,着重介绍了壳聚糖在食品,水处理,生物药用,造纸业等方面的应用。 关键词:壳聚糖应用食品水处理 前言 原料在化学品的合成中非常重要,其可以成为影响一个化学品的制造、加工与使用的最大因素之一。如果一个化学品的原料对环境有负面的影响,则该化学品也很可能对环境具有净的负面影响。要实现绿色化学,在选择原料时应尽量使用对人体和环境无害的材料,避免使用枯竭或稀有的材料,尽量采用回收再生的原材料,采用易于提取、可循环利用的原材料,使用环境可降解的原材料。 自然界的有机物,数量最大的是纤维素,其次是蛋白质,排在第三位的是甲壳素,估计每年生物合成甲壳素100 亿t。甲壳素N-脱乙酰基的产物壳聚糖就是一种重要的绿色原料。 壳聚糖化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖,壳聚糖的外观为白色或淡黄色半透明状固体, 略有珍珠光泽, 可溶于大多数稀酸如盐酸、醋酸、苯甲酸等溶液, 且溶于酸后,分子中氨基可与质子相结合, 而使自身带正电荷。自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。壳聚糖无毒无害,具有良好的保湿性、润湿性,能防止静电; 化学稳定性良好, 但吸湿性较强, 遇水易分解。对壳聚糖进行化学改性, 得到的壳聚糖衍生物在许多物化性质方面都得到改善,其应用也更加受到关注。本文着重介绍了壳聚糖在食品,医药,水处理方面的应用进展。

中药药代动力学研究进展

中药药代动力学研究进展 摘要:近年来,为了全面阐述中药吸收、分布、代谢、排泄的体内过程,推动中药现代化,研究者们在生物效应法和药物浓度法等经典药代动力学研究方法的基础上提出了一些新方法、新思路,大大推进了中药药代动力学研究的发展。在查阅通过近年来中药药代动力学相关研究的文献,并对其中新方法新思路进行总结,综述了中药药代动力学近年来的研究现况和前沿进展。 关键词:药代动力学,药代标记物,指征药代动力学,方法学 前言:药代动力学是应用动力学原理与数学处理方法,定量地描述药物通过各种途径 (如静脉注射液、静脉滴注、口服给药等)进入体内的吸收、分布、代谢、排泄过程的“量时”变化或“血药浓度经时”变化动态规律的一门科学,已经在生物药剂学、临床药剂学、药物治疗学、分析化学、药理学等学科领域中得到了广泛应用。在中药学研究中,药代动力学被广泛的应用于揭示中药作用机制及设计优化的研究,并衍生出了中药药代动力学这门新兴学科。中药药代动力学基于动力学原理研究中草药活性成分、组分、中药单方和复方体内吸收、分布、代谢和排泄(ADME)的动态变化规律及其体内时量-时效关系,并用数学函数对其加以定量描述。 1.中药药代动力学研究方法 1.1生物效应法 药效的变化取决于体内药量的变化,可以通过测定药效的经时过程来反映体内药量动态变化。生物效应法从整体观点出发研究中药的药代动力学特征,更符合中医药理论。该法包括药理效应法、药物累计法,微生物指标法。 1.1.1药理效应法 药理效应法是一种以药理效应为指标研究药代动力学的方法。该法己越来越广泛地用于中药及其复方,特别是有效成分不明的中草药及其复方的药代动力学研究。肇丽梅[1]采用小鼠热板致痛模型,以镇痛效应为指标,测定黄芩苷及清热合剂的药物动力学参数,结果黄芩苷及清热合剂口服给药后体存药量的表观动力学过程符合一室开放模型,中药复方清热合剂的达峰时间明显慢于单方黄芩苷。李成洪[2]等以血清一氧化氮变化为药理效应指标,研究了中药复方制剂禽病康在免疫抑制雏鸡体内的药代动力学特征。以时间标本存量进行数学模型拟合,符合一级吸收二室模型,禽病康药代动力学结果表明其口服后吸收较快,分布也快,而消除较慢,体内存留时间长,药效维持时间长。宋丽

壳聚糖在国内外食品中的发展现状及其应用前景

壳聚糖在国内外食品中的发展现状及其应 用前景 摘要: 壳聚糖是一种可被生物体降解而对人体无毒的物质,不仅在食品领域有广泛的应用,在饲料行业、医药行业、以及环境保护等许多领域都有广泛的应用。本文主要概述了壳聚糖在国内外食品中的发展现状,并介绍了壳聚糖的性质、在食品中的应用及其化学改性,阐明了壳聚糖在食品开发方面的广阔前景。 关键词:壳聚糖,添加剂,改性,复合纳米粒子 Chitosan in the development situation of food at home and abroad and its application prospects Ma Zhengran Class 0804, School of Food of Science and Technology, Jiangnan University; 010******* Abstract: Chitosan is a biodegradable and non-toxic substances on the human body. It's not only widely use d in food industry, but also in feed industry, pharmaceutical industry, environmental protection a nd many other areas. This article is mainly about chitosan in the development situation of food at home and abroad,and describes the nature of chitosan, the application in food industry and che mical modification of chitosan and set out the broad development prospects of chitosan. Key words:chitosan; additives; modification; composite nanoparticles 引言 壳聚糖是自然界中唯一带正电荷、阳离子的膳食纤维,被称为挽救人类健康的神奇“电粉”。作为天然的可再生资源,壳聚糖具有广谱抗菌性、吸附性、成膜性、保湿性、生物可降解性、生物可相容性、无毒性以及极好的螯合能力,且能加速伤口愈合。大量应用实例证明,壳聚糖对人体的各项生理功能具有良好的调节作用,并显示出许多生命特征,如改善代谢内分泌功能,调节免疫功能;改善消化机能,降低胆固醇;调节人体酸碱平衡吸附,排除体内有害重金属;活化细胞,增强人体生命活力,延缓衰老等。近年来,随着食品工业的不断发展,国内外研究人员对壳聚糖的关注和重视也不断加强。本文主要论述壳聚糖在国内外食品工业中的各种研究应用及其发展前景。 1、壳聚糖的简介 甲壳素是一种带正电的碱性多糖,广泛存在于虾、蟹、昆虫的甲壳,以及真菌(酵母、霉菌)的细胞壁和植物(如蘑菇)的细胞壁中,是自然界中仅次于纤维素的第二大天然高分子化合物,是存在于自然界中唯一能够被生物降解的阳离子高分子材料。甲壳素经浓碱处理,脱去分子中的乙酰基后,转化为可溶性的脱乙酰甲壳素,又称壳聚糖(Chitosan),学名:几丁聚糖。其化学结构是由大部分氨基葡萄糖和少量的N一乙酰基葡萄糖通过β一1,4糖苷键连接起来的直链多糖。 分子式为:(C6H11NO4)n 结构: 2、壳聚糖在食品中的应用 2.1 抗菌剂

壳聚糖的结构、性质及其应用--综述

壳聚糖的结构、性质及其应用 张洁海洋药学0844130 摘要:生物相容性好、可降解、对组织和细胞无毒副作用的生物材料一直是生物医学领域研究的热点。壳聚糖(α(1-4)2-氨基2-去氧β-D葡聚糖)是甲壳素脱乙酰得到的天然多糖中惟一的碱性多糖,具有很多优良的特性。本文就壳聚糖的结构、性质及其应用进行综述。 关键词:壳聚糖,结构,性质,应用 壳聚糖(Chitosan,简称CTS),壳聚糖是由N-乙酰糖胺组成,其中糖胺的含量超过90%,具有黏多糖相似的结构特点,而黏多糖在组织中分布广泛,是细胞膜有机组成成分之一,故壳聚糖具有优异的生物相容性⑴~⑵。表现为无毒、无刺激、无免疫抗原、无热原反应、不溶血,有抗菌消炎、促进伤口愈合,抗酸、抗溃疡、降脂和降低胆固醇的作用⑶~⑸。而且具有直接抑制肿瘤细胞的作用,并可通过活化免疫系统显示抗癌活性,与现有的抗癌药合用可增强抗癌效果,近年来其作为药物微球材料的研究也受到了极大的重视⑹,是一种安全可靠的天然生物活性多糖。本文就壳聚糖的结构、性质及其应用进行综述。 一.壳聚糖的结构与性质 1.壳聚糖的来源—甲壳素 壳聚糖来源于一种自然资源十分丰富的线性聚合物一甲壳素,是甲壳素经脱乙酰化反应后得到的一种生物高分子Ⅲ。甲壳素是一种天然多糖类生物高分子聚合物,在自然界中广泛存在于低等生物菌类、藻类的细胞,节支动物虾、蟹、昆虫的外壳,软体动物(如鱿鱼、乌贼)的内壳和软骨,高等植物的细胞壁等,将甲壳动物的外壳通过酸碱处理,脱去钙盐和蛋白质,即可得到甲壳素。甲壳素化学名为[(1,4)一2一乙酰胺基一2一脱氧一B—D-葡萄糖],分子式为(C8H13N05)。,单体之间以B(1-4)糖苷键连接,分子量一般在lO6左右,理论胺含量为6.9%。甲壳素的化学结构与植物中广泛存在的纤维素结构非常相似(见图l),故又称为动物纤维素。 (a)甲壳素(b)纤维素 图1甲壳素和纤维素的结构

固定化酶的研究进展

固定化酶的研究进展 固定化酶是20世纪60年代发展起来的一项新技术。最初主要是将水溶性酶与不溶性体结合起来,成为不溶于水的酶衍生物,所以曾叫过“水不溶酶”和“固相酶”。但是,后来发现,也可以将酶包埋在凝胶内或置于超滤装置中,高分子底物与酶在超滤膜一边,而反应产物可以透过膜逸出。在这种情况下,酶本身仍是可溶的,只不过被固定在一个有限的空间内不能再自由流动。因此,用水不溶酶或固相酶的名称就不再恰当。在1971年第一届国际酶工程会议上,正式建议采用“固定化酶”的名称[1]。 一固定化酶的发展历程[1] 酶参与体内各种代谢反应,而且反应后其数量和性质不发生变换。作为一种生物催化剂,酶可以在常温常压等温和条件下高效地催化反应,一些难以进行的化学反应在酶的催化作用下也可顺利地进行反应,而且反应底物专一性强、副反应少等优点大大促进了人们对酶的应用和酶技术的研究。近年来,酶被人们广泛应用于食品生产与检测、生物传感器、医药工程、环保技术、生物技术等领域。 1916年美国科学家NELSON和GRIFFIN最先发现了酶的固定化现象;直到20世纪50年代,酶固定化技术的研究才真正有效地开展;1953年,德国科学家GRUB-HOFER 和SCHLEITH首先将聚氨基苯乙烯树脂重氮化,然后将淀粉酶、胃蛋白酶、羧肽酶和核糖核酸酶等与上述载体结合制备固定化酶;到20世纪60年代,固定化技术迅速发展;1969年日本千畑一郎利用固定化氨基酰胺酶从DL-氨基酸生产L-氨基酸,是世界上固定化酶大规模应用的首例;在1971年的第一届国际酶工程会议上,正式建议使用固定化酶(mimobilizedenzyme)这个名称。我国的固定化酶研究开始于1970年,首先是中国科学院微生物所和上海生化所的酶学工作者同时开始了固定化酶的研究工作 二固定化酶的特点[2] [3] 固定化酶具有许多优点:极易将固定化酶与底物、产物分开;可以在较长时间内进行分批反应和装柱连续反应;在大多数情况下,可以提高酶的稳定性;酶反应过程能够加以严格控制;产物溶液中没有酶的残留,简化了提取工艺;较水溶性酶更适合于多酶反应;可以增加产物的收率,提高产物的质量;酶的使用效率提高,成本降低。但是,固定化酶也有其不足之处,如固定化时,酶活力有损失;增加了固定化的成本,工厂开始投资大;只能用于水溶性底物,而且较适用于小分子。 三固定化酶固定化方法[3] [4] 由于所固定的酶或细胞的不同,或者固定的目的及固定用的载体的不同,使固定化方法大相径庭。根据固定的一般机理,可将之分为如下几种方法。酶的固定化方法有:

生物技术药物的药代动力学研究进展

生物技术药物的药代动力学研究进展 摘要:本文介绍了生物技术药物药代动力学的特点和基本机制,概述了生物技术药物药代动力学的研究方法。 关键词:生物技术药物药代动力学方法学 1.简介 近年来,生物技术药物飞速发展,为了正确评价各种生物制品在人体内的疗效及安全性,必须研究生物因子在动物体内和人体内的吸收、分布、代谢和排泄的规律。而与传统的药物相比生物技术药物具有种族特异性、免疫原性和非预期的多向活性等特点,使得其在体内的药代动力学的研究受到诸多因素的限制。蛋白多肽类药物因其生理活性强、疗效高,而日益受到人们的重视。对于蛋白质类药物来说,最重要的一个特性是,这类药物蛋白质与内源性的蛋白质结构相似,由共同的氨基酸组成,微量的需要被测定的生物因子及蛋白质存在于大量的内源性蛋白质中。蛋白多肽类药物的药动学有其特征,吸收方面来看,一般而言,小分子肽的吸收是由被动扩散或载体转运完成的,脂溶性多肽可通过膜脂扩散,高度亲脂性的药物则能通过淋巴系统被吸收;水溶性分子则可通过水合孔和/或细胞间隙扩散,通过内吞或胞饮过程摄取入细胞,还有一些细胞转运肽(cell penetrating peptide)可通过非耗能途径穿过真核细胞的质膜,这些多肽已被成功地用于在细胞内转运比自身的相对分子质量大许多倍的大分子物质。由于大多数蛋白多肽类药物具有相对分子质量大和水溶性的特点,若无主动的转运或消除机制,它们大多保留在细胞间隙。蛋白多肽类药物的主要代谢途径是体内广泛存在的蛋白多肽酶使其失活。不同的给药途径、给药方案、体内蛋白结合、种属特异性、内源性物质等对蛋白多肽类药物的体内药物动力学有至关重要的影响。 因此, 设计合适的实验方案、选择正确的药代动力学研究方法和可靠的测定方法至关重要。 2.药代动力学的研究方法 2.1 同位素示踪法 同位素示踪法是通过目标蛋白质多肽上标记同位素,从而鉴别目标蛋白质和内源性多肽的方法。所使用的同位素有H3、C14、S32、I125等,I125其因比放射性高、半衰期适宜、标记制备简单而最为常用。标记方法有两种,一是内标法,即把含有同位素的氨基酸加入生长细胞或合成体系,该法对生物活性的影响可能较小,但由于制备复杂而限制了其广泛应用;二是外标法,常用的化学方法如氯胺T或Lodogen法将I125连接于大分子上,其标记的样品比放射性高,制备容易半衰期短,成为现在最常用的生物技术药物标记物。姚文兵等运用同位素示踪法I125标记来研究聚已二醇修饰干扰素а2b的药代动力学,赵宁等用碘标法研究重组人肿瘤坏死因子在小鼠体内药代动力学和组织分布,都证明了同位素示踪法的灵敏度高,省时省力的特点,特别是对研究基因工程产品在动物体内的组织分布具有与其它方法相比有不可比的优越性。关于标记位点的选择,理论上任何部位均可被标记,但需考虑是否存在标记氨基酸被机体再利用合成新的蛋白质而影响检测结果的问题。当然,如果生物技术药物含有非天然氨基酸(如D氨基酸),标记位点的选择就不必再担心这样的问题了。

壳聚糖的制备方法及研究进展

龙源期刊网 https://www.wendangku.net/doc/d9826114.html, 壳聚糖的制备方法及研究进展 作者:张立英 来源:《山东工业技术》2018年第02期 摘要:壳聚糖作为一种碱性多糖被广泛应用于食品、生物、化工、医疗等领域。本文重点介绍了壳聚糖的制备方法及其研究进展,并对其发展趋势进行了展望。 关键词:壳聚糖;碱性多糖;制备方法 DOI:10.16640/https://www.wendangku.net/doc/d9826114.html,ki.37-1222/t.2018.02.016 壳聚糖本身的分子结构类似于纤维素,因其多了一个带正电荷的胺基,使其化学性质较为活泼。目前壳聚糖正因其优良的生理活性在食品、化妆品、医药、化工、污水处理等方面展现出广阔的应用前景,近十年来国内外对于壳聚糖的开发研究热度一直持续不减,各种新颖的制备方法也是层出不穷。 1壳聚糖的来源 壳聚糖通常是由甲壳素(又名几丁质)经脱乙酰基作用获得,甲壳素在自然界中广泛存在于高等真菌以及节肢动物(虾、蟹、昆虫等)的外壳中,其中虾壳、蟹壳是工业生产壳聚糖的主要原料。由于大分子间的氢键作用,天然存在的甲壳素构造坚固,化学性质稳定,不溶于水、酸碱和一般的有机溶剂,这也使得甲壳素的应用范围非常有限,因此甲壳素只有经脱乙酰基处理成壳聚糖才能获得广泛应用。 2壳聚糖的制备方法 (1)化学降解法。传统的壳聚糖生产多采用化学降解法。作为壳聚糖工业生产最常用的制备方法,化学降解法简便易行,效率高,整个生产过程容易控制,但该法环境污染较为严重,对周边环境具有一定的破坏性。欧阳涟等从蟹壳中获取甲壳素,并通过脱乙酰反应制备出了壳聚糖。试验探究了影响产物壳聚糖脱乙酰反应的各种因素,如反应温度、碱液含量及反应时间等,最终确定制备高脱乙酰度壳聚糖的条件为反应温度70℃,碱液质量分数47%,反应时间10 h。 (2)微生物培养法。微生物发酵法生产壳聚糖起源于美国,我国从上世纪90年代开始研究。其主要原理是利用微生物自身生产的酶进行催化,从而脱去甲壳素中的乙酰基,进而制备壳聚糖。目前该领域研究重点主要集中在优良菌株的选育和培养基的优化上。 贺淹才等首先采用电解法从培养的黑曲霉湿菌体中制得甲壳素,然后采用碱提取法从培养的黑曲霉湿菌体中制备壳聚糖。试验基于黑曲霉细胞壁的主要成分为蛋白质与甲壳素,而蛋白质带有可电离的基团,于溶液中可形成带电荷的阳离子和阴离子,在外加电场作用下发生迁

壳聚糖的应用及发展

壳聚糖的应用及发展 单位:贵阳中医学院姓名:代奎学号;s20085311019 摘要:高分子缓控释材料因其原材料来源广泛药剂应用能力强受环境影响因素多而成为调节药物释放载体材料的研究重点,极具发展前景分类祥述了壳聚糖的性质,生物活性,抗菌性,衍生物以及它们的性能特点和应用,并简明介绍了壳聚糖的研究价值与动向。 关键词:壳聚糖;降解;抗菌性;缓释材料;衍生物 壳聚糖(chitosan)又名β-1,4聚葡萄糖胺,是迄今为止发现的唯一天然碱性多糖,具有良好成膜性、安全性、生物降解性,在化工、食品、农业等领域有着广泛的用途。壳聚糖是一种新型的天然医用生物材料虾蟹类作为壳聚糖的原料,在我国具有分布量大,资源丰富的特点,从环保经济可持续发展的角度来考虑,1)壳聚糖作为一种天然的材料不仅无毒无污染,而且还具有很好的生物降解性和相容性因此非常有必要加大对壳聚糖的研究,以开发更多的产品本文综述了壳聚糖的结构性质制备体内降解过程及其在生物医用材料的应用等方面。 一、壳聚糖的生物活性 壳聚糖是一种天然无毒可生物降解的化合物,与机体之间有良好的生物相容性主要壳聚糖的研究进展物活性有:(1)壳聚糖属天然高分子化合物,其分子链上的游离氨基在弱酸溶中结合一个质子,生成阳离子聚合体,有很强的吸附能力,是一种良好的絮凝剂(2)带有正电荷的壳聚糖与带有负电荷的粘多糖蛋白多糖等相互发生静电作用,这一特性是相当有意义的,因为大量的细胞浆和生长因子的移动都和粘多糖有关,特别是对于肝磷脂和类肝素硫酸盐,包含有壳聚糖和粘多糖的支架借助于细胞繁殖可以维持和促进生长因子分泌(3)壳聚糖可以做成不同的几何结构,例如容易形成多孔结构,多孔支架可用于体内细胞生长和骨重建(4)壳聚糖具有抗菌性,研究表明它可以减缓实验白兔金葡萄球菌引起的骨髓炎感染壳聚糖在细菌细胞膜表面可以抑制生物合成,破坏穿过细菌细胞膜的能量传输,加快细菌的死亡此外,壳聚糖还可作为药物释放载体,如与羟基磷灰石等复合能够持续释放万古霉素和磷霉素,在骨科感染疗程中发挥作用2) 二、壳聚糖的抗菌性 壳聚糖具有广泛抗菌性, 对几十种细菌和霉菌生长都有明显的抑制作用。大分子壳聚糖通过正负电荷的相互作用吸附在细胞表面, 破坏细胞壁原有结构,造成细胞代谢混乱,从而起到抑菌杀菌的作用。小分子壳聚糖通过渗透进入细胞内, 与带有阴离子的生物大分子发生絮凝!的作用,扰乱细胞的正常生物功能, 改变核酸代谢,阻断DNA的生物合成,从而抑制细菌的繁殖。此外,甲壳素能诱导微生物产生甲壳素酶, 促使细胞分解, 从而抑制细胞生长。 三、壳聚糖及其衍生物的应用 1、促进凝血和伤口愈合 壳聚糖是一种新型天然高分子材料,生物兼容性好且可降解吸收, 有促进创 面愈合的作用。壳聚糖具有很强的可塑性, 可形成多种不同形式的止血材料。壳聚糖还具有抗菌、促进伤口愈合、防止腹膜粘连等一系列作用, 可用于伤口填料物质,具有灭菌、促进伤口愈合、吸收伤口渗出物、不易脱水收缩等作用。 2、作为药物的缓释基质 壳聚糖能被生物体内的溶菌酶降解生成天然的代谢物,具有无毒、能被生物体完全吸收的特点, 因此用它作药物缓释剂具有较大的优越性。国际上已有以壳聚糖作

壳聚糖特性及其应用

壳聚糖特性及其应用 作者简介:孔佳琦,女,本科,西北民族大学化工学院,专业:制药工程。 力芬,女,本科,西北民族大学化工学院,专业:环境工程。 摘要:壳聚糖是自然界中储量丰富天然高分子化合物,壳聚糖及其衍生物具有各种优良的性质,本文主要介绍了壳聚糖的特性以及其在不同方面的应用情况,为壳聚糖的研究发展提供依据和思路。 关键词:壳聚糖;特性;应用 壳聚糖(chitosan)又称脱乙酰甲壳素,是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。纯甲壳素和纯壳聚糖都是一种白色或灰白色透明的片状或粉状固体,无味、无臭、无毒性,纯壳聚糖略带珍珠光泽。在特定的条件下,壳聚糖能发生水解、烷基化、酰基化、羧甲基化、磺化、硝化、卤化、氧化、还原、缩合和络合等化学反应,可生成各种具有不同性能的壳聚糖衍生物,从而扩大了壳聚糖的应用围。本文就壳聚糖的特性和应用进行阐述,为其研究和发展提供依据和思路。

1.特性 1.1抗菌性。壳聚糖是唯一一种天然的弱碱性多糖在弱酸溶剂中易于溶解,溶解后的溶液中含有氨基(NH2+),这些氨基通过结合负电子来抑制细菌。壳聚糖的抗菌性会随着其浓度的增加而增强。壳聚糖对大肠杆菌、金黄色葡萄球菌等有较强的抑制作用。 1.2吸附性。壳聚糖具有很强的吸附功能,特别是对重金属离子的吸附如对铜、汞、铅等离子的吸收。壳聚糖的吸附活性可以有选择地发挥作用。当然还可以吸附胆固醇、甘油三酯、胆酸、油脂[1]等。 1.3保湿性。壳聚糖衍生物分子中有许多活泼的亲水极性基团如-OH、-COOH及-NH2,这些基团可以使其显示出保湿性。对于羧基化壳聚糖,其羟基的含量远大于其他衍生物,且羧基的亲水性所以能够结合更多的水分。因此羧基化壳聚糖的吸湿、保湿性也就明显高于其他类型的壳聚糖衍生物。 1.4成膜性。壳聚糖是线性高分子聚合物,理化性能稳定,可生物降解,粘合性好,成纤成膜性能优良。吴国杰[2]等人研究了壳聚糖膜的制备方法和性能,探讨了壳聚糖溶液成膜的最佳工艺条件。 1.5调节作用。壳聚糖可激活体具有免疫功能的淋巴细胞,使其能分辨正常细胞和癌细胞,并杀死癌细胞。还能调

壳聚糖降解研究进展

技术进展 Technology Progre ss 壳聚糖降解研究进展 李 治 刘晓非 杨冬芝 管云林 姚康德 (天津大学材料科学与工程学院,天津,300072) 提 要 壳聚糖已被广泛应用于化工、环保、医药等众多领域,将壳聚糖降解到需要的分子量是其应用的前提。 本文介绍并评述了化学降解、物理降解和生物降解等壳聚糖降解方法的研究进展。 关键词 壳聚糖,降解,分子量,低聚物 壳聚糖是甲壳素的脱乙酰化产物,在自然界中的储量非常丰富,广泛存在于虾、蟹和昆虫的外壳及藻类、菌类的细胞壁之中,是年产量仅次于纤维素的第二大天然高分子,也是迄今为止发现的唯一天然碱性多糖。壳聚糖是分子链由β2(104)222乙酰胺基2 D2葡糖单元和β2(104)222氨基2D2葡糖单元组成的共聚物,以分子量和脱乙酰化度来表征。 近年来随着研究的深入,壳聚糖在化工、 环 图1 壳聚糖 保、食品、印染、纺织、生物医药等方面展现出广 泛而独特的应用价值:可用作微量金属离子提取 剂、纸张添加剂、胶卷增感剂、废水处理中的高效 絮凝剂、化妆品中的保湿剂、食品添加剂和保藏剂 以及印染固色剂[1~4];可用于制造催化功能膜和各 种形式的能量转换膜,可提高巨噬细胞的吞噬功 能,抑制肿瘤生长[5~7];是肠道有益细菌双歧杆菌 的增殖因子,能降低胆固醇和血脂[8];可用于制造 药物可控释放膜、可吸收的手术缝合线以及人工透 析膜等等[9~11]。 但是,一般由甲壳素脱乙酰化制得的壳聚糖分 子量很大,并且有紧密的晶体结构,不溶于普通溶 剂,只能在某些酸性介质中溶解,这使壳聚糖的应 用受到极大限制;另外,研究表明分子量对壳聚糖 的性质有很大影响,不同分子量的壳聚糖性质差异 很大,有时甚至表现出截然相反的特性[12,13],而 壳聚糖的许多独特功能只有在分子量降低到一定程 度时才表现出来。因此,选择适当的方法对壳聚糖 进行降解就显得尤为重要。目前,国内外学者提出 的降解方法主要有化学降解、物理降解和生物降解 三大类。 1 化学降解 111 用N a N O2降解 将壳聚糖溶解于质量分数为10%乙酸溶液中, 在搅拌下缓慢滴入一定量的NaNO2溶液,于4℃下 静置一段时间,使—NH2发生重氮化反应,脱去一 分子N2,引起分子内重排使大分子链断裂,再用 NaBH4还原端基,完成降解反应[13]。反应过程如 图2所示。 这是传统的化学降解方法,降解产物的分子量 可以通过改变NaNO2的加入量和反应时间来控制, 国内常用此法降解壳聚糖并提取产物中的单糖组 分。该法的主要缺陷在于:(1)产品的分子量分布 太宽,均一性差;(2)降解过程中破坏了氨基,理 论上加入1摩尔NaNO2就要消耗1摩尔氨基,而壳 聚糖良好的生物相容性主要由氨基提供[14],同时 分子链上存在足够数量的氨基也是壳聚糖进行进一 步改性的重要前提,氨基数量的减少将会使壳聚糖 的应用受到限制;(3)生产的三废污染严重。 国家自然科学基金资助项目,N o.59773002。

改性壳聚糖的研究进展

改性壳聚糖的研究进展 1壳聚糖的理化性质 壳聚糖(chitosan,(1,4)-2-氨基-2-脱氧-β-D-葡聚糖)是甲壳素(chitin,(1,4)-2-乙酰氨基-2-脱氧-β-D-葡聚糖)部分脱乙酰化的产物。甲壳素广泛存在于蟹、虾以及藻类、真菌等低等动植物中,含量极其丰富,自然界每年产量约在100亿吨,是仅次于纤维素的第二大多糖。它是由葡萄糖结构单元组成的直链多糖,此多糖中含有数千个乙酰己糖胺残基,因此在分子间形成很强的氢键,导致其不溶于水和普通有机溶剂,这就大大限制了其应用范围。 将甲壳素在碱性条件下加热,脱去N-乙酰基后可生成壳聚糖。人们常将N-脱乙酰度和粘度(平均相对分子质量)作为衡量壳聚糖性能的两项指标。N-脱乙酰度是判定壳聚糖溶解性的依据,脱乙酰度越高,分子链上的游离氨基就越多,在酸中的溶解性就越好;而壳聚糖相对分子质量越大,分子之间的缠绕程度就越大,溶解度就越小。壳聚糖是自然界中唯一的一种碱性多糖,它一般是白色无定型、半透明、略有珍珠光泽的固体。壳聚糖可溶于大多数稀酸,如盐酸、醋酸、苯甲酸溶液,且溶于酸后分子中氨基可与质子结合,使自身带上正电荷。甲壳素及壳聚糖的结构式如图1所示:

图1壳寡糖与壳聚糖的结构式 甲壳素和壳聚糖在自然界可以被各种微生物降解。微生物中的甲壳素酶(chitinase)可以随机地水解甲壳素的N-乙酰-β-(1-4)糖苷键。而壳聚糖可以被多种酶水解,包括壳聚糖酶(chitosanase)、麦芽糖酶、脂肪酶、以及各种来源的蛋白酶。在人体内甲壳素酶和壳聚糖酶并非普遍存在,通过测定显示N-乙酰壳聚糖在人血清中可以被人体内普遍存在的溶菌酶(lysozyme)降解。 壳聚糖的主链结构中引入了2-氨基,化学性质区别于3,6-羟基,与甲壳素相比增加了反应选择性的功能基团。由于C6-OH是一级羟基,C3-OH是二级羟基,空间位阻不同反应活性也不同,再加上C2-NH2,壳聚糖就具有三个活性不同的可供修饰的基团。根据不同的需要,被修饰的壳聚糖作为一种功能大分子广泛用于各种领域。由于壳聚糖只在酸性水溶液中溶解,而在中性或碱性水溶液中以及多数有机溶剂中不溶,限制了它的应用范围,因此科学家们采用衍生化的方法对壳聚糖进行改性获得了多种水溶性和可溶解于某些有机溶剂的衍生物,大大扩展了壳聚糖的应用范围。其中包括对壳聚糖进行N-,O-酰化,含氧无机酸酯化,醚化,N-烷基化,C6-OH和C3-OH的氧化,以及鳌合、交联等,在此过程中获得了许多性能良好,甚至是

浅谈壳聚糖的发展概况

浅谈壳聚糖的发展概况 关键词:壳聚糖;壳聚糖制备;壳聚糖应用 引语:本文介绍了壳聚糖的性质、制备以及着重介绍了壳聚糖在水处理、分析化学、纺织工业、膜材料、液晶材料、医学材料方面的应用。 1壳聚糖 壳聚糖(chitosan)又称脱乙酰甲壳素,是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。针对患者,壳聚糖降血脂、降血糖的作用已有研究报告。同时,壳聚糖被作为增稠剂、被膜剂列入国家食品添加剂使用标准GB-2760。[1] 1.1物理属性 纯甲壳素和纯壳聚糖都是一种白色或灰白色半透明的片状或粉状固体,无味、无臭、无毒性,纯壳聚糖略带珍珠光泽。生物体中甲壳素的相对分子质量为1×106~2×106,经提取后甲壳素的相对分子质量约为3×105~7×105,由甲壳素制取壳聚糖相对分子质量则更低,约2×105~5×105。在制造过程中甲壳素与壳聚糖相对分子质量的大小,一般用粘度高低的数值来表示。商品壳聚糖视其用途不同有三种不同的粘度,即高粘度产品为0.7~1Pa·s、中粘度产品为0.25~0.65Pa·s、低粘度产品<0.25Pa·s。制造纤维产品必须采用高粘度的甲壳素或壳聚糖。[2] 1.2化学性质 化学名:β-(1→4)-2-氨基-2-脱氧-D- 葡萄糖 分子式:(C6H11NO4)N

壳聚糖的功用详解

壳聚糖的功用详解,每位卫康家人必备的资料 壳聚糖的应用 1、食道癌——壳聚糖兑水,虫草兑水喷。每小时交替使用。 2、降压——壳聚糖每天6粒。 3、拉肚子——孩子1粒壳聚糖抖在饭里。 4、孩子长的过快——肌肉裂断,加壳聚糖。 5、癌症——每天50粒,可以活命。 6、身上所有包块——均需壳聚糖。 7、肾衰竭——壳聚糖加虫草。 8、减肥——壳聚糖加银兰。 9、肠胃不好,便秘——壳聚糖。 10、白癜风——壳聚糖,虫草,金苓,五个月。 11、糖尿病——壳聚糖加虫草。 12、脑血栓——壳聚糖,银兰,虫草。 壳聚糖溶液的作用 2粒壳聚糖+纯净水35毫升+白醋2毫升——壳聚糖啫喱水 一、浓度:加200毫升纯净水 1、去角质,每天2-3次 2、足,手上的白癣 3、伤口愈合,淡化瘢痕 4、喂鱼5-10毫升 二、浓度:1000毫升

1、皮肤过敏 2、黑斑,汗斑,湿疹,皮炎 3、香港脚,富贵手 4、代替洗发精 三、浓度:2000毫升 1、面疮,颜面白癣 2、荨麻疹 3、基础化妆 4、男士剃须后使用 壳聚糖的妙用 1、外伤:有外伤、烧伤烫伤、溃疡时可以将产品直接敷于伤口处,有止血止疼、止痒、杀菌、消炎之功效,且愈后不留疤痕。 2、治带状疱疹:用白醋把产品调成稠糊状,涂抹于患处,3-7天可痊愈。 3、治褥疮:将伤处清理消毒后,把产品直接敷于患处,1-3天可结痂愈合。 4、治口腔、食道溃疡:将产品直接倒入口中含放2-3次/日,1-2天可痊愈。 5、治红斑狼疮:内服:每日3次,每次4-6粒;外涂:把产品用白醋调匀,涂抹于患处,一个疗程可痊愈。 6、治面瘫:每天3次,每次3-4粒,2-7天(麻痹的面部神经修复)痊愈。 7、治便秘:早晚服2-4粒/次,饭前服用,多喝水。多吃水果蔬菜效果明显。对肠胃炎和痔疮有奇效!8、治脚气:将产品直接敷于患处,2-3天痊愈不复发。用白醋调和以后,涂抹于手脚表面可预防、治疗脚气、手脚发痒、脱皮。 9、治疗湿疹:用白醋把产品调匀,涂于患处2-4天可痊愈。此法对治疗男女阴部瘙痒、阴湿、湿疹有奇效!2-3次可痊愈。 10、减肥:早晚服用,每次6-10粒,饭前服用,配合晚餐少吃主食效果显著。

纳米药物的药代动力学研究进展

第16卷第7期中国现代医学杂志 Vol.16No.72006年4月 ChinaJournalofModernMedicine Apr.2006 收稿日期:2006-01-20 本文就国内近年来纳米药物药动学研究的动向及成果加以概述。 1纳米药物药代动力学的研究方法 纳米药代动力学的研究方法与化学药品的药代 动力学研究没有本质区别,其方法分为血药浓度法和生物效应法。1.1血药浓度法 血药浓度法是药动学研究的经典方法,主要研究纳米药物中有效成分明确者,也是计算药代动力学最常用最准确的一种方法。常采用分光光度法、原子吸收光谱法、薄层层析法、薄层扫描法、高效液相色谱法、气相色谱法、放射性同位素法和放射性免疫法等方法进行测定。如张阳德等[1]利用荧光分光光度法建立了半乳糖化白蛋白磁性阿霉素纳米粒在大鼠体的研究。刘炜等[2]建立高效液相色谱法测定小鼠血浆中丝裂霉素C聚氰基丙烯酸正丁酯磁性纳米球浓度的方法。 1.2 生物效应法 纳米中药复方成分复杂,干扰因素多,难以用常 规的血药浓度的方法测定其药代参数。80年代产生 了以药效为指标进行药代动力学研究的的理论和方法。 1.2.1药理效应法药理效应法是以药物的效应强度,包括量效关系,时效关系为基础的研究药代动力学的方法。目前,该法已越来越广泛地用于纳米中药及其复方,尤其是有效成分不明的中草药药代动力学研究。薛焰等[3]用药理效应法测定药动学,比较了超细粉马钱子和普通粉马钱子的药动学参数。1.2.2微生物指标法其原理主要是含有试验菌株的琼脂平板中抗菌药扩散产生的抑菌圈直径大小与抗菌药浓度的对数呈线性关系。选择适宜的敏感菌株测定体液中抗菌中草药的浓度,然后按照药代动力学原理确定房室模型,并计算其药代动力学参数。如陈鹏,毛天球等[4]以抑菌效应为指标,测定纳米羟基磷灰石复合胶原材料药动学参数。 文章编号:1005-8982(2006)07-1028-04 ?综述? 纳米药物的药代动力学研究进展 张阳德1,赵志坚1,张浩伟2,张彦琼3 (1.中国卫生部肝胆肠外科研究中心,湖南长沙410008;2.美国加州医疗中心, 加利弗尼亚州文图拉CA93003;3.中南大学生物医学工程研究院,湖南长沙410008) 摘要:纳米药物载体在近年研究已取得飞跃的发展。该文从药物代谢动力学的角度综述了纳米药物的吸收、分布和转化的研究进展。 关键词:纳米药物;药代动力学中图分类号:R318文献标识码:A Newdevelopmentofpharmacokineticofnano-drug ZHANGYang-de1,ZHAOZhi-jian1,ZHANGHao-wei2,ZHANGYan-qiong3 (1.NationalHepatobiliary&EntericSurgeryResearchCenter,MinistryofHealth,Changsha,Hunan410008,P.R.China;2.MedicalCenterofCalifornia,CaliforniaCA93003,USA;3.Biomedicaland EngineeringInstituteofCentralSouthUniversity,Changsha,Hunan410008,P.R.China) Abstract:Theresearchofnano-drug-loadedcarrierhasmadefastprogressaspotentialdrugdeliverysystems.Fromthepointofpharmacokinetic,thispaperreviewsthepresentstateoftheabsorpation,distributionandinvertionofnano-drugs. Keywords:nano-drug;pharmacokinetic

甲壳素和壳聚糖的性质及应用

附件1:外文资料翻译译文 甲壳素和壳聚糖的性质及应用 摘要甲壳素主要存在于海洋中的甲壳类,虾和蟹中,是世界上第二种最重要的天然聚合物。甲壳素在碱性的固态中,利用选定好的应用方法进行表征和化学改性来评鉴多糖是比较难的。P.Austin,S.Tokura和S.Hirano,他们在甲壳素应用方面贡献很突出,尤其是在纤维形态方面。壳聚糖是甲壳素最重要的衍生物,下面我们对壳聚糖在表征方法和使用中遇到的主要问题进行概括。壳聚糖可溶于酸性的水溶液中,应用于许多领域(食品,化妆品,生物医学和药学)。我们简要的描述一下,在某些领域壳聚糖的化学改性已经被初步提出,但在工业方面却尚未开发。近几年的论文都着重评论了高附加值的材料在医药和化妆品上的应用。 关键词甲壳素结构壳聚糖结构壳聚糖衍生物生物材料壳聚糖基材料化妆品 1 引言 甲壳素,其化学名称(β-(1-4)-N-乙酰基-D-氨基葡萄糖),是一种重要的天然多糖,其在1884年首次被发现(图1)。这种聚合物是由大量的活性有机体合成,并且在世界上每年的产量都很大的,它的产量仅次于纤维素。甲壳素在自然界中存在于节肢动物的外壳中或真菌和酵母的细胞壁中,并以有序的微纤维晶体形式出现。它也存在一些低等的植物界和动物界中,同时许多功能上还需要强化。

图1 (a)甲壳素的化学结构,化学式是N-乙酰-β-D-氨基葡萄糖,(b)是壳聚糖,化学式是D-氨基葡萄糖,(c)是部分乙酰化的壳聚糖,其特征是在于,它的DA共聚物的平均乙酰化程度。 尽管甲壳素的存在范围广泛,但到目前为止甲壳素最主要的商业来源是虾和蟹的外壳。在工业加工方面,甲壳素是从甲壳类动物中提取出来的,经酸处理溶解于碳酸钙中,再经碱萃取溶解,从而得到蛋白质。此外,脱色工序往往是去除残留的颜料,而得到无色的产品。由于原料的超微结构存在差异,所以,这些处理方式必须适合于每种甲壳素的来源。(甲壳素的提取和预处理不在这篇论文的描述)。对于进一步利用时,所产生的剩余的蛋白质和剩余的色素,可能会导致问题,因此人们在纯度和颜色方面对甲壳素进行分级,特别是生物医药产品。在应用方面甲壳素在碱性条件下脱乙酰基,获得壳聚糖,它是最重要的甲壳素衍生物。 这篇论文的目的是介绍在当今技术的水平上认识甲壳素和壳聚糖的形态,并且提出在溶液或固态中表征的最佳方法。过去十年的发展以及甲壳素的扩大利用,在化学改性方法上给予研究。 2 甲壳素 2.1 甲壳素在固态中的结构 根据甲壳素的来源,甲壳素以两种结晶多型异构体的形式出现,即α形式和β形式[1,2],它们可以通过红外光谱、固相核磁共振光谱和X射线衍射加以区分。经过详细的分析,人们也发现第三种异构体γ-甲壳素[1,3],它只是α-甲壳素的另一种形式[4]。α-甲壳素是最为丰富,它存在于真菌和酵母菌的细胞壁中、磷虾,龙虾和螃蟹肌腱和壳中、虾壳中、以及昆虫的表皮中。它也分布或存在于各种海洋生物中。在这方面,例如圆锥形钉螺[5]、脊椎前部的耳石[6~8]、海藻喷射出的丝状物[9]等。自从证明了α-甲壳素的特殊结构,与具有丰富甲壳素的节肢动物相比,其中一些结构呈现出非常高的结晶度连有较高的纯度[10]。除了天然的甲壳素以外,α-甲壳素的体系由溶液中析出的晶体[11~12]、体外生物合成[13~14]或酶促聚合[15]这三个方面形成的。 β-甲壳素较罕见,其分布在乌贼的顶骨内[1,3]和管状虫的交联蛋白质中,通过蠕虫蠕动而合成[16~17]。它也存在于北美豹蝶的刚毛中[18]以及在海藻或原生动物的兜

壳聚糖抗菌剂研究进展

Bioprocess 生物过程, 2017, 7(4), 41-48 Published Online December 2017 in Hans. https://www.wendangku.net/doc/d9826114.html,/journal/bp https://https://www.wendangku.net/doc/d9826114.html,/10.12677/bp.2017.74006 Research Progress on Chitosan Antimicrobial Maotao Wu SunRui Marine Environment Engineering Co., ltd, Qingdao Shandong Received: Nov. 20th, 2017; accepted: Dec. 1st, 2017; published: Dec. 7th, 2017 Abstract Chitosan is a nature macromolecule. With the investigation, its applications are broad. The article summarizes the research and application of chitosan as an antimicrobial, the mechanism and the infective factors, and the development foreground of the chitosan antimicrobial is prospected. Keywords Chitosan, Antimicrobial, Mechanism, Prospect 壳聚糖抗菌剂研究进展 吴茂涛 青岛双瑞海洋环境工程股份有限公司,山东青岛 收稿日期:2017年11月20日;录用日期:2017年12月1日;发布日期:2017年12月7日 摘要 壳聚糖是一种天然的高分子,随着研究的深入发展,应用范围越来越广泛。本文概述了壳聚糖在抗菌剂领域的研究应用情况,归纳总结了其抗菌机理及其影响因素,同时展望了壳聚糖抗菌剂的发展前景。 关键词 壳聚糖,抗菌剂,机理,展望

甲壳素_壳聚糖的制备与应用

甲壳素/壳聚糖的制备与应用 郭建民1,徐晓军2,李林1 (1.宁波市环境保护科学研究设计院,浙江宁波315010; 2.青岛建筑工程学院,山东青岛266000) [摘要]甲壳素/壳聚糖是一种资源丰富、用途广泛的天然高分子。简介了其物理化学性质及 常见的制备方法;详细介绍了功能化甲壳素/壳聚糖近期的研究状况;综述了甲壳素/壳聚糖的应用;展望了我国甲壳素/壳聚糖资源的开发利用趋势。[关键词]甲壳素;壳聚糖;制备;功能化;应用 [中图分类号]TQ282 [文献标识码]A [文章编号]1006-1878(2004)07-0126-03 甲壳素(chitin )学名为无水-N -乙酰基-D -氨基葡聚糖,是一种重要的天然高分子,其结构与纤维素相似,通常分子量为几百万,是多糖化合物中最重要的一种聚氨基葡萄糖。甲壳素因主要来源于节肢动物如虾、蟹等的甲壳而得名。它也广泛存在于低等植物如真菌、藻类的细胞壁中。据统计,自然界中每年甲壳素的生物合成量在1000kt 以上,可见其自然界储量之丰富。 壳聚糖(chitosan )是甲壳素脱乙酰化而得到的一种生物高分子。由于壳聚糖分子中有大量游离氨的存在,其溶解性大大优于甲壳素,兼具有甲壳素的天然、无毒、生物相容性好与易于降解等优点,所以壳聚糖有十分良好的经济应用价值。人们对壳聚糖的研究十分活跃,其应用领域也不断拓宽。 我国有着丰富的甲壳素资源。充分利用现有资源,结合区域优势,加强对甲壳素的开发研究及产业化是我国甲壳素化学工业发展的必然趋势。 1 甲壳素的提取 目前,甲壳素主要还是从工业废弃的虾、蟹壳中 提取。把甲壳中的甲壳素,蛋白质和无机物质分离开,最后再进行脱色,获得纯净的甲壳素,其工艺流程为:虾蟹壳—水洗—酸浸(6%HCl )—碱煮(10% NaOH )—脱色(KMnO 4)—干燥—甲壳素成品。可见甲壳素的制备过程主要由简单的酸碱处理 工艺组成,技术难度不大。但是以这种传统的工艺制得的甲壳素存在着一些不足,如溶解度不高,溶液过滤性差等。近年来又提出了一些新的方法,使传统工艺得到了改进。如采用浓度递减,循环酸浸以及脱蛋白质交叉工艺制取的甲壳素可以获得较高的粘度。但是在甲壳素的制取过程中,对于动物壳中 的蛋白质和有机肥料的综合利用程度低及工艺过程中排放的废水量大等缺点,仍然是甲壳素制备工艺中需要改进的问题。此外,从蚕蛹壳、蝉和蝇蛹中提取甲壳素都有过系统的报道。 由于壳聚糖还是真菌细胞壁的常见组成部分,因此以微生物发酵来制取壳聚糖也有着巨大的环保意义。陈忻等采用生物发酵放射毛霉为原料制备了壳聚糖。研究表明,在反应温度为28℃,摇床转速为250r/min ,p H 为7.4~7.6,培养时间为45h 的条件下,壳聚糖对菌丝体产率为15.68%,脱乙酰度85%~90%。谭天伟等提出了以发酵工业废菌丝体为原料生产壳聚糖的新工艺。该工艺成本低廉,经济效益可观。 2 甲壳素的功能化改性 活性侧基的存在,赋予甲壳素较之其他多糖更强的功能性,而通过化学修饰在高聚物骨架上引入其他基团,从而改变高分子的物理化学性质,赋予其新的功能,即高分子的功能化。它已经成为甲壳素应用研究的一个热点。甲壳素/壳聚糖的功能化主要是利用分子结构中的羟基/氨基等活性基团,通过对其进行酰化、酯化、交联、醚化等反应来完成。功能化后的甲壳素/壳聚糖的物化性质得到了改善而具有优异的功能。2.1 交联反应 为了使壳聚糖得到很好的应用,需要把它制成[收稿日期]2003-12-18;[修订日期]2004-02-12 [作者简介]郭建民(1977— )男,河北省宣化市人,宁波市环境保护科学研究设计院工程师,硕士,主要从事环保药剂的开发与三废处理技术研究。 ? 621?2004年第24卷 化 工 环 保 ENV IRONMEN TAL PRO TECTION OF CHEMICAL INDUSTR Y

相关文档