文档库 最新最全的文档下载
当前位置:文档库 › 活性氧_线粒体通透性转换与细胞凋亡_马淇

活性氧_线粒体通透性转换与细胞凋亡_马淇

生物物理学报2012年7月第28卷第7期:ACTA BIOPHYSICA SINICA Vol.28No.7Jul.2012:523-536

523-536

活性氧、线粒体通透性转换与细胞凋亡

马淇1,2,

刘垒1,

佺1

1.中国科学院动物研究所,生物膜与膜生物学国家重点实验室,北京100101;

2.宾夕法尼亚大学,费城儿童医院,美国宾州19104收稿日期:2012-06-20;接受日期:2012-07-02

通讯作者:马淇,电话:+1(215)8086619,E-mail :maqi1983@https://www.wendangku.net/doc/d01026062.html, 陈佺,电话:(010)64807321,E-mail :chenq@https://www.wendangku.net/doc/d01026062.html,

摘要:线粒体是真核细胞中非常重要的细胞器,细胞中的活性氧等自由基主要来源于此,线粒体膜的通透性转换(mitochondrial permeability transition ,MPT )及其孔道(mitochondrial

permeability transition pore ,MPTP )更是在内源性细胞凋亡中发挥了关键作用。持续性的线粒

体膜通透性转换在凋亡的效应阶段起决定性作用,可介导细胞色素c 等促凋亡因子从线粒体释放到胞浆中,进一步激活下游的信号通路,导致细胞不可逆地走向凋亡。瞬时性的线粒体膜通透性转换及其偶联的线粒体局部的活性氧爆发同样具有促凋亡的作用。线粒体通透性孔道的开放释放出大量活性氧,这些活性氧又能够进一步激活该孔道,以正反馈的形式进一步加剧孔道的打开,放大凋亡信号。活性氧、线粒体通透性转换与细胞凋亡之间具有密不可分的联系,本文根据已知的研究结果集中讨论了这三者的关系,并着重论述了该领域中的最新发现和成果。

关键词:线粒体;线粒体通透性转换;线粒体通透性转换孔道;细胞凋亡中图分类号:Q73

DOI :10.3724/SP.J.1260.2012.20103

引言

线粒体在细胞中扮演着多种重要的角色,它不仅通过氧化磷酸化为细胞提供能量,还

是细胞内活性氧产生的最主要场所,同时也是凋亡信号的调节器和放大器。一直以来,在活性氧与细胞凋亡的研究领域中存在着很多争议,特别是对这二者之间关系的认识还不清楚。究竟活性氧是引起细胞凋亡的原因,还是凋亡发生以后伴随的现象仍然没有定论。本文将对活性氧与细胞凋亡的关系,以及这一过程中起决定作用的线粒体膜通透性转换做一论述。

活性氧

活性氧(reactive oxygen species ,ROS )属于自由基,是一大类分子的统称,它们都含有氧原子并且具有极强的氧化能力。生物机体内的ROS 包括超氧阴离子(superoxide anion ,

O 2·-)、过氧化氢(hydrogen peroxide ,H 2O 2)、羟自由基(hydroxyl radical ,

·OH )、单线态氧523

ACTA BIOPHYSICA SINICA |Vol.28No.7|Jul.2012

图3线粒体ETC 产生O 2·-

的主要部位线粒体内膜ETC 上的复合物Ⅰ和复合物Ⅲ是ROS 产生的最主要场所

Fig.3Production of primary ROS in mitochondria Complex Ⅰand Ⅲare the main resource of intracellular

O 2

·-generation Inter membrane space Matrix

H +

H +

H +

H +

e

e e

e

O 2

O 2

O 2

·-

O 2

·-

Inner membrane 在线粒体呼吸代谢的氧化磷酸化与电子传递过程中,有1%~2%的电子会从ETC 上泄

露[5],与氧分子结合形成O 2

·-。O 2·-是线粒体产生ROS 的前体(primary )形式。在正常生理情况下,线粒体中消耗的氧分子中有大约0.2%用于生成O 2·-[6]

。在线粒体内膜呼吸链的5个复合物中,复合物Ⅰ和复合物Ⅲ是O 2·-产生的最主要位点(图3)。复合物Ⅰ(NADH 脱氢酶,即NADH-辅酶Q 还原酶)产生约20%的O 2·-

,复合物Ⅲ(辅酶Q-细胞色素c 还原酶)产生约80%的O 2

·-[7,8]

。图2线粒体ETC 的组分及电子传递的顺序图中箭头所示为氧化磷酸化过程中电子从底物经ETC 组

分传递到氧分子的途径

Fig.2Components of ETC in the inner mitochondrial membrane Arrows show electron

transportation during the progress of respiration

Succinate NADH

FMN

FAD

FeS FeS

CoQ

Cyt b 562

Cyt c 1

Cyt b 556

FeS

Cyt c

Cyt a

Cyt a 3

O 2

ⅣFig.1Three isoforms of ROS generated during the reduction of O 2to H 2O

O 2

O 2

·-H 2O 2

·

OH H 2O

细胞内有许多产生ROS 的场所,包括线粒体和细胞膜表面的NAD(P)H 氧化酶

(NADPH oxidase )、胞浆中的过氧化物酶体(peroxisome )、细胞色素P450(cytochrome P450)、黄嘌呤氧化酶(xanthine oxidase )、环氧合酶(cyclooxygenase )和脂氧化酶(lipooxygenase )等[2,3]。这其中,线粒体内膜上的电子传递链(electron transport chain ,ETC ),即呼吸链(respiratory chain ),是细胞内ROS 产生的最主要部位。正常细胞产生的ROS 中有95%来源于此[4](图2)。

e

524

https://www.wendangku.net/doc/d01026062.html, |ACTA BIOPHYSICA SINICA

表1不同种类ROS 的功能

Table 1Distinguishing functions of different isoforms of ROS ROS

主要功能

O 2·-参与多种生化反应,调控某些癌基因的表达·OH

最活泼的自由基,可攻击任何生物靶分子

l

O 2

易转化为O 2

·-

H 2O 2激活第二信使,可转化为·OH

低浓度的ROS 具有有益的生理功能,其通过激活胞浆内的第二信使[10],参与细胞内的信号转导、细胞应答,以及生物发育分化、损伤修复、代谢、免疫、细胞死亡等过程[2,11,12]。自被发现以来,ROS 一直被认为是一类细胞内毒性物质,直到上世纪70年代ROS 被证明能够激活胞浆内的第二信使鸟苷酸环化酶(cGMP )[10],ROS 在细胞信号转导过程中发挥的作用才受到人们的重视。ROS 作为信号分子,通过氧化还原反应产生氧化还原信号(redox signaling ),从而参与细胞信号转导调控。细胞可以通过抗氧化系统调节氧化还原状态,调控氧化还原信号,并最终实现对信号转导的调控。ROS 通过氧化修饰信号转导中的激酶等分子,调控多种信号通路,包括:转录因子AP-1和NF-kB 、Src 家族激酶、JNK 、MAPK 、胰岛素受体激酶和钙信号通路等[2]。H 2O 2仍然是调控信号转导的最主要的ROS ,可以调控基因表达、细胞凋亡等。

相反,高浓度的ROS 具有有害的病理功能,可触发细胞内的氧化应激(oxidative stress ),直接作用于蛋白质、脂类和DNA ,造成氧化损伤(oxidative damage ),引起癌症、糖尿病、心脑血管疾病、神经退行性疾病和衰老等[2,3,13~15]。H 2O 2是ROS 中最稳定的一种形式,且扩散能力很强,能够透过膜,也是引发氧化损伤最主要的ROS 形式。ROS 中的羟自由基可以直接与DNA 组分反应,破坏碱基及DNA 骨架[3],对细胞内的遗传物质造成永久性的氧化损伤,引起突变、衰老及癌症等。ROS 还能与磷脂的多聚不饱和脂肪酸残基反应,造成脂质的损伤。ROS 可与蛋白质侧链的半胱氨酸、甲硫氨酸残基反应,并且能氧化巯基,形成二硫键,改变蛋白的结构和功能[16](表1)。除了对脂质和蛋白质的直接破坏,ROS 还能影响亚细胞器的功能。ROS 造成的氧化应激可以对膜上的磷脂和蛋白质进行过氧化修饰,造成膜的通透性改变、膜脂质双分子层的破坏,以及多种蛋白的功能修饰。ROS 作用于内质网和肌浆网的细胞器膜,可影响钙释放通道的调控。ROS 还可以通过改变线粒体膜的通透性而引起线粒体的损伤。然而,ROS 的过量产生与某些病理过程之间的因果关系还存在着很大的争议。

线粒体膜通透性转换

线粒体是细胞内具有双层膜结构的细胞器,其外膜具有较好的通透性。由于外膜上存在膜整合蛋白家族(Porin ,VDAC ),可以形成非特异性的膜孔道,允许分子量小于5kDa 的分子或离子通过(图4)。而线粒体内膜的通透性较差,对于质子以及大多数的分子、离子都是不通透的,所有需要通过线粒体内膜的物质都要通过内膜上的特异性载体完成转运。

525

ACTA BIOPHYSICA SINICA |Vol.28No.7|Jul.

2012

粒体内膜的非特异的通透性变大。早在上世纪60年代,这一现象就已经被发现。利用Ca 2+处理体外分离的线粒体,发现线粒体的光散射度降低、线粒体肿胀(swelling )[17,18],说明线粒体的通透性发生了转变。而使用螯合剂清除Ca 2+可以提高线粒体的光散射度,使线粒体的肿胀消除[19]。此后,越来越多的实验证据表明,线粒体上存在着一种非特异孔道,即线粒体膜通透性转换孔道(mitochondrial permeability transition pore ,MPTP ),当这种孔道被打开后,线粒体内膜的通透性会非特异性增大,线粒体发生MPT [20~23]。更多的研究发现,MPTP 的开放只能允许分子量在1.5kDa 以下的分子和离子通过[24,25]。

当MPTP 开放程度低时,它引发的是暂时(transient )且可逆的(reversible )MPT (transient MPT ,tMPT )。tMPT 可以传递钙信号和电信号,还参与线粒体跨膜电位的调节[26]。然而,当MPTP 开放程度高时,可引发持续(consistent )且不可逆的(irreversible )MPT (irreversible MPT ,iMPT ),这时,线粒体的内膜通透性非特异性地增大,内膜两侧的质子梯度消失,线粒体膜电位降低,呼吸链上的氧化磷酸化脱偶联,ATP 合成受到抑制[24,27]。同时,离子的自由通透造成线粒体内膜两侧离子浓度差的消失,破坏了线粒体和胞浆之间的Na +、K +、Ca 2+代谢。由于线粒体基质的蛋白浓度高于线粒体内外膜间隙及胞浆内的蛋白浓度,胶体渗透压导致线粒体肿胀。由于线粒体内膜有嵴的存在,外膜会先于内膜胀破,内外膜间隙里的内容物也都释放到胞浆中,引发多种级联反应,包括激活细胞凋亡信号通路等。

此外,MPTP 对于选择性的线粒体清除(selective mitochondrial clearance ),即线粒体质量控制(quality control ),以及线粒体自噬(mitophagy )也具有重要的作用。在衰老或损伤的线粒体中,MPT 造成膜电势降低,细胞内的自吞系统会识别并选择性地降解膜电位丢失的线粒体[28]。然而,MPTP 在正常线粒体上的生理功能还不是很清楚。

虽然对MPTP 的研究已经进行了很多年,但是,关于该孔道的具体组分还不是很清楚。现有研究MPTP 组分的最重要方法是构建某个基因的敲除小鼠,体外分离其线粒体,检测相应分子缺失后线粒体膜通透性的转换,以判断该分子是否为MPTP 的组成成分。

传统观点认为MPTP 是一个贯穿胞浆、线粒体内膜和外膜、膜间隙及基质的蛋白复合体,由元件分子和调节分子共同组成。MPTP 的元件分子包括:线粒体外膜蛋白电压依赖的离子通道(voltage-dependent anion channel ,VDAC )、线粒体内膜蛋白腺苷酸转运酶(adenine nucleotide translocase ,ANT )、线粒体基质蛋白cyclophilin D (CypD )。MPTP 的调节分子包括:胞浆蛋白己糖激酶(hexokinase ,HK )、膜间隙蛋白肌酸激酶(creatine kinase ,CK )(图4)。

这其中,得到充分证实的组分是CypD 。CypD 位于线粒体基质,分子量18kDa ,由ppif 基因编码,属于肽链脯氨酸异构酶家族[29]。早期的众多体外实验发现,多种CypD 的抑制剂能抑制体外分离的线粒体的MPT ,因此推断CypD 可能是MPTP 的一个重要组分[30~32]。CypD 小鼠体内敲除实验进一步证实了这一推测。CypD 敲除的小鼠,其肝脏线粒体能够抵

526

https://www.wendangku.net/doc/d01026062.html, |ACTA BIOPHYSICA SINICA

图4MPTP 组分构成的假想模型

Fig.4The molecular composition of MPTP

Cytosol

Outer membrane

Inter membrane space

Inner membrane

Matrix

pH~7.4

pH~7.4

pH~8.0

CK

HK

VDAC VDAC

抗钙离子和氧化应激诱导的MPT 和线粒体肿胀,成纤维细胞能够抵抗钙离子和氧化应激诱导的细胞死亡。在这些CypD 缺失的细胞中重新表达野生型的CypD ,能够使线粒体再次恢复MPT ,而表达失活的CypD 突变体则不能恢复MPT [33~36]。这些证据均表明CypD 是MPTP 的一个重要组成成分,是调控MPT 所必需的。另外,CypD 缺失的小鼠心脏对缺血复灌损伤有抵抗作用,提示MPTP 在氧化损伤中发挥功能。

ANT 是除CypD 之外另一个比较确定的MPTP 组分。ANT 家族蛋白是线粒体内膜跨膜蛋白,负责将ATP 运出线粒体,并将ADP 输送进线粒体。ANT 家族有4个成员,ANT1主要在心肌和骨骼肌中表达;ANT2在全身广谱表达;ANT3也是全身表达,但只在人类中有发现;ANT4只在睾丸中表达,且只在小鼠中有发现[37~39]。体外分离实验表明,ANT 的抑制剂能够特异性地抑制线粒体发生MPT ,说明ANT 的构象转换是MPTP 开放所必需的[40~43]。通过体外重组实验发现,ANT 和CypD 的复合物在人工脂质体上能产生类似MPTP 的孔道,同时,大多数的数据都倾向于表明ANT1而非ANT2是MPT 所必需的[44~46]。另外,在ANT1、ANT2双敲除的小鼠模型中,线粒体虽然仍然存在MPT 现象,但对于钙刺激的反应下降,对于腺苷酸的刺激完全抵抗[47]。这些都表明ANT 很可能是MPTP 的组分,且对于调控MPT 有着重要作用。

存在比较大争议的是VDAC 。VDAC 位于线粒体外膜,是线粒体外膜上含量最丰富的蛋白,对线粒体外膜的通透性起着关键作用,各种离子可以选择性地透过VDAC 形成的孔道[48~51]。研究发现,VDAC 开放时可允许分子量小于5kDa 的物质通过,而当VDAC 处于关闭状态时,也能通过分子量小于1.5kDa 的分子[52,53]。VDAC 家族有4个成员,VDAC1、VDAC2和VDAC3具有65%~70%的一级序列同源性,VDAC4只在人类中有发现[32,54]。VDAC 蛋白的N 端为α螺旋,位于胞浆一侧,其后是16个β折叠组成的跨膜区,几个环

527

ACTA BIOPHYSICA SINICA |Vol.28No.7|Jul.

2012

图5MPTP 的调节

Fig.5Regulation of the complex of MPTP

Ca 2+,ROS,OH -,PiC

Trifluoperazine

GSH,NAD(P)H

Mg 2+,Sr 2+,Mn 2+

Cytosol

Inter membrane space

Matrix

Cyclosporin A

Bongkrekic A

ADP/ATP Inner membrane

Outer membrane

体外分离的线粒体发生MPT [59~61]。然而,VDAC 是MPTP 组成成分的证据并不能完全令人信服,因为在去除外膜之后的线粒体上仍然能够观察到MPT [62]。另外,在VDAC1单敲除和VDAC1、VDAC3双敲除的小鼠线粒体上也能发现MPT 现象。因此,现有的证据都倾向于认为VDAC 可能不是MPTP 的主要组分。由于VDAC2敲除的小鼠胚胎致死,所以,关于VDAC 在MPT 调控中的作用还有待进一步研究[63~66]。从已有数据来看,VDAC 并不是MPTP 的关键组成成分,很可能只是参与调控了MPT 。

近些年,随着对MPTP 研究的深入,有一些可能参与构成MPTP 的新分子被发现。这其中包括:磷酸转运体(phosphate carrier ,PiC )、天冬氨酸-谷氨酸转运体(aspartate-glutamate carrier ,AGC )、鸟氨酸-瓜氨酸转运体(ornithine-citrulline carrier ,OCC )、ETC 上的线粒体复合物I 等[67,68]。基于体外实验的研究发现,在人工构建的脂质体模型上,这些蛋白可以单独形成功能类似于MPTP 的孔道,且它们的抑制剂能够抑制线粒体的MPT [28,39,69~74]。然而,要想确证这些分子对MPTP 的贡献,还需要进一步的证据。

能够调控MPTP 活性的分子很多,相对于MPTP 的组分研究来说,对MPTP 活性调控的研究要更为透彻,这些调控分子分为抑制剂和激活剂两大类(图5)。钙离子是诱导MPTP 开放最有效的分子之一。在高剂量时,Ca 2+单独作用就可以诱导线粒体的MPT ,即使是在低剂量时,Ca 2+也能辅助其它信号诱导MPTP 的开放。此外,还原型NAD(P)H 的减少、ADP/ATP 的消耗、线粒体膜电位的降低、ETC 受抑制、氧化磷酸化解偶联、线粒体基质的

528

MPT[76]。不过,由于具有磷酸酯酶calcineurin的抑制效果,CsA对于细胞的毒性较大[77]。

ANT的特异性抑制剂BA(bongkrekic acid)能够显著降低MPTP对钙离子的敏感性[40]。此

外,药物Trifluoperazine以及很多二价金属阳离子,如Mg2+、Sr2+、Mn2+等,都可以抑制

MPTP的开放[78~80]。线粒体基质的酸性化和ADP/ATP也可以抑制MPTP的开放[22,81,82]。

细胞凋亡

细胞凋亡(apoptosis),又称程序性细胞死亡(programmed cell death),是生物体内一种

主动性的细胞死亡,在线虫、果蝇、斑马鱼、小鼠、人等动物中都是高度保守的。哺乳动

物在生长、发育和受到外来刺激时,会利用细胞凋亡清除多余、衰老和受损伤的细胞,以

保持机体的内环境平衡,维持正常生理活动。一旦凋亡发生失衡就可能引起癌症、自身免

疫性疾病、神经退行性疾病和糖尿病等[83~86]多种疾病的发生。也正因如此,细胞凋亡与肿

瘤学、发育生物学、神经生物学和免疫学都有着不可分割的关系。从上世纪70年代细胞凋

亡的概念被提出[87]以来的几十年间,凋亡研究一直是生命科学领域中非常受关注的部分。

凋亡是在严密的基因调控网络控制下进行的主动性的细胞死亡,不同的凋亡刺激信号引发

不同的凋亡信号转导通路。根据凋亡信号的来源,可以将细胞凋亡信号转导通路分成:外

源(extrinsic)通路(死亡受体通路)和内源(intrinsic)通路,其中,内源通路又分为线粒体

途径内源通路和内质网途径内源通路[88]。

线粒体对细胞凋亡具有重要的调节作用,它不仅是内源凋亡通路的感应器,还是凋亡

信号的放大器,可使细胞凋亡快速高效地进行。线粒体途径凋亡是受到细胞内信号通路严

密调控的。这一过程可分为三个不同的阶段:启动(initiation)阶段、效应(commitment)阶

段和执行(execution)阶段[89]。在启动阶段,线粒体接受不同的凋亡刺激信号;在效应阶段,

线粒体对凋亡信号进行处理、整合,并决定细胞是否发生凋亡,一旦做出凋亡的决定,细

胞凋亡就会不可逆地发生。当决定发生凋亡后,线粒体通过释放内外膜间隙里的一些促凋

亡因子,如细胞色素c(Cytochrom c,Cyt c)等,进一步激活下游凋亡通路。在执行阶段,

被Cyt c等激活的Caspase发挥作用,能够直接引起细胞内蛋白和DNA的降解,细胞发生

典型的形态学改变。

实验表明,Cyt c从线粒体内、外膜间隙释放到胞浆是细胞凋亡的关键步骤(图6)。而

在Cyt c释放的过程中,线粒体外膜的Bcl-2家族蛋白和线粒体通透性转换起决定作用。

Bcl-2家族成员根据结构和功能的不同可分为三大类。第一类是抑凋亡蛋白亚家族

(anti-apoptotic subset),包括Bcl-2、Bcl-xL、Bcl-w、Bcl2A1、Bcl-B和Mcl-1等,它们都含

有四个Bcl-2同源结构域(BH domain):BH1、BH2、BH3和BH4。第二类是促凋亡蛋白亚

家族(pro-apoptotic subset),包括Bax、Bak和Bok等,它们含有BH1、BH2和BH3三个

结构域。第三类是BH3-only亚家族(BH3-only subset),包括Bid、Bim、Bik、Bad、Noxa、

Puma、BMF和HRK等,它们只含有BH3结构域。BH3结构域对于Bcl-2家族蛋白的功能

529

https://www.wendangku.net/doc/d01026062.html,|ACTA BIOPHYSICA SINICA

ACTA BIOPHYSICA SINICA |Vol.28No.7|Jul.2012

图6介导细胞色素c 释放的两种模式

(A)Bax 、Bak 在线粒体外膜

形成大孔道介导MPT 和Cyt c 的释放;(B)iMPT 介导线粒体外膜结构损坏和Cyt c 释放

Fig.6Signaling pathways mediating Cyt c release (A)Mega-pore formed with Bax/Bak releases Cyt c ;(B)Irreversible mitochondrial permeability transition (iMPT)triggers mitochondrial swelling and Cyt c release

Apoptotic signals

H 2O

Ca ,ROS

Cyt c

Bax Bak Bcl-2MPTP

Apoptosis

Caspase activation

ROS ↑△ψ↓

Swelling

上,直接寡聚化或与Bak 、MPTP 相互作

用,在线粒体的外膜形成大的孔道,引起Cyt c 的释放。与Bax 不同,Bak 定位在线粒体上,凋亡发生时,Bak 构象会发生

变化而协助Bax 形成大孔道,引起Cyt c 等的释放。Bcl-2位于线粒体外膜上,可以通过抑制Bax 孔道的形成抑制凋亡。BH3-only 蛋白本身并不能引起细胞凋亡,它们可能通过激活Bax/Bak 而发挥促凋亡作用,也有观点认为BH3-only 蛋白通过抑制Bcl-2的抑凋亡作用而促进凋亡发生。在癌症细胞中,抑凋亡蛋白(Bcl-2)的高表达及促凋亡蛋白(Bax 、Bak )的缺

失或突变,大大降低了癌细胞对各种凋亡刺激的敏感性,是肿瘤治疗中产生耐药性的一个重要原因。

除Bcl-2家族蛋白外,MPTP 也是调控Cyt c 释放的一个重要元件。当细胞受到ROS 等凋亡信号刺激时,MPTP 孔道将持续不可逆地开放。由于线粒体基质的高渗性,胶体渗透压导致水从MPTP 孔道不可逆地进入线粒体,线粒体吸水发生肿胀(swelling )(图6)。与外膜相比,线粒体的内膜折叠形成许多嵴,具有更大的表面积,因此随着基质容积的逐渐增大,最终导致外膜的首先破裂,引起内外膜间隙中的促凋亡蛋白(如Cyt c 等)由线粒体外膜的破裂处释放到细胞质中,并激活下游的凋亡反应。在线粒体发生肿胀的过程中,氧化呼吸作用受到破坏,质子跨膜运势被抑制,线粒体膜电位丢失,ROS 大量爆发,Ca 2+外流,这些又进一步加剧了MPTP 孔道的开放。

Bcl-2家族蛋白除了可以直接引起Cyt c 释放外,还能够通过调控MPTP 孔道的开放影响Cyt c 的释放。Bax 被证实与MPTP 孔道组分有直接的相互作用,高表达Bax 能够引起MPTP 孔道的打开。相反,Bcl-2抑凋亡蛋白(如Bcl-2、Bcl-xL 等)能够抑制MPTP 孔道的开放。

活性氧、MPT 与线粒体途径的细胞凋亡

如上文所述,活性氧、线粒体通透性转换孔道及线粒体途径的细胞凋亡(mitochondrial apoptosis )之间存在着紧密的联系,这三者组成了一个密不可分的有机整体。它们之间的相

530

https://www.wendangku.net/doc/d01026062.html, |ACTA BIOPHYSICA SINICA

图7ROS 、MPT 与线粒体途径的细胞凋亡Fig.7ROS,MPT and mitochondrial apoptosis

MPT

Apoptosis

4)MPT mediates Cyt c release

3)Bcl-2family proteins regulate MPT

1)R O S

a c t i v a t e s

M P T P

o p e n i n g

2)M P T P

o p

e n i n g

r e l e a s e s R O S

5)A p o p t o s i s r e s u l t s i n R O S b u r s t 6)

O x

i d a t i

v e s t r e s s i n d u c e s a p o p t o s i s 体内超氧阴离子爆发(即超氧炫形成)的同时,伴随着MPTP 孔道的瞬时可逆开放,二者相互偶联[90~92]。2)在凋亡的效应(commitment )阶段,

MPTP 孔道持续不可逆地开放,引发线粒体内膜的通透性非特异地增大,内膜两侧的质子梯度消失,线粒体膜电位降低,呼吸链上的氧化磷酸化脱偶联,ATP 合成受到抑制,ROS 大量爆发[93]。3)Bcl-2家族蛋白对MPTP 有重要的调节作用。Bax 过量表达可以促进MPTP 的开放。与之相反,Bcl-2能够抑制MPTP 孔道的持续开放[94]。而且,最新的证据证实,Bcl-2的高表达还能通过抑制MPTP 的瞬时开放,抑制氧化应激型的细胞凋亡[92]。除Bcl-2家族蛋白外,有实验证明Caspase 也可以作用于MPTP ,诱导它开放,在即将凋亡的细胞中形成一个线粒体-Caspase-线粒体的正反馈放大回路,可以放大凋亡信号[95,96]。4)我们的工作发现,在氧化应激型凋亡的启动(initiation )阶段,MPTP 的瞬时可逆开放大量增加,

并通过释放O 2·-

达到ROS 的累积,对细胞造成损伤[92]。在凋亡的效应(commitment )阶段,

MPTP 孔道持续不可逆地开放,引起线粒体吸水肿胀(图6)。由于线粒体内膜折叠形成许多嵴,相对于外膜具有更大的表面积,所以外膜最先胀破,内外膜间的促凋亡蛋白(如Cyt c 等)释放到细胞质中,并激活下游的凋亡反应[97]。此外,MPTP 还可以与Bax 协同作用,增强Bax/Bak 孔道介导的Cyt c 释放[93,98]。但是,MPTP 的开放本身并不能引起Cyt c 的释放[92],这可能是由于MPTP 通道的口径不足以让Cyt c 通过。5)在细胞凋亡的晚期,由于线粒体和胞浆中的抗氧化系统紊乱,产生的ROS 无法得到有效的清除,细胞内的ROS 水平会显著升高[99]。6)高浓度的ROS 会触发细胞内的氧化应激(oxidative stress ),造成氧化损伤(oxidative damage ),导致线粒体功能的丧失,并最终引发细胞凋亡[100,101]。我们之前的

工作还发现,O 2·-和H 2O 2等形式的ROS 可以直接氧化修饰Bax 蛋白上62位和126位的半

胱氨酸残基,激活Bax 并使其向线粒体转位,引发后续的凋亡[102,103]。

531

ACTA BIOPHYSICA SINICA |Vol.28No.7|Jul.

2012

mitoquinone.Med Sci Monit ,2007,13:RA132~1452.Droge W.Free radicals in the physiological control of cell function.Physiol Rev ,2002,82:47~95

3.

Valko M,Leibfritz D,Moncol J,Cronin MT,Mazur M,Telser

J.

Free

radicals

and

antioxidants

in

normal

physiological functions and human disease.Int J Biochem

Cell Biol ,2007,39:44~844.Turrens JF.Superoxide production by the mitochondrial respiratory chain.Biosci Rep ,1997,17:3~8

5.

Boveris A,Chance B.The mitochondrial generation of

hydrogen

peroxide.

General

properties

and

effect

of

hyperbaric oxygen.Biochem J ,1973,134:707~7166.Nohl H,Gille L,Staniek K.The mystery of reactive oxygen

species derived from cell respiration.Acta Biochim Pol ,2004,51:223~2297.

Liu SS.Cooperation of a "reactive oxygen cycle"with the Q cycle and the proton cycle in the respiratory chain —Superoxide generating

and

cycling

mechanisms

in

mitochondria.J Bioenerg Biomembr ,1999,31:367~3768.

Gerschman R,Gilbert DL,Nye SW,Dwyer P,Fenn WO.Oxygen poisoning and x-irradiation:A mechanism

in

common.Science ,1954,119:623~6269.

Commoner B,Townsend J,Pake GE.Free radicals in biological materials.Nature ,1954,174:689~691

10.Mittal CK,Murad F.Activation of guanylate cyclase by

superoxide dismutase and hydroxyl radical:A physiological regulator of guanosine 3',5'-monophosphate formation.Proc

Natl Acad Sci USA ,1977,74:4360~4364

11.Owusu-Ansah E,Banerjee U.Reactive oxygen species

prime

drosophila

haematopoietic

progenitors

for

differentiation.Nature ,2009,461:537~541

12.Niethammer P,Grabher C,Look AT,Mitchison TJ.A

tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish.Nature ,2009,459:996~99913.

Houstis N,

Rosen ED,

Lander ES.

Reactive oxygen

species have a causal role in multiple forms of insulin resistance.Nature ,2006,440:944~948

14.Bedard K,Krause KH.The nox family of ROS-generating

NADPH oxidases:Physiology and pathophysiology.Physiol

Rev ,2007,87:245-31315.

Griendling KK,

FitzGerald GA.

Oxidative stress and

cardiovascular injury:Part ⅱ:Animal and human studies.

Circulation ,2003,108:2034~2040

16.Stadtman ER.Role of oxidant species in aging.Curr Med

Chem ,2004,11:1105~1112

17.Chappell JB,Crofts AR.Calcium ion accumulation and

volume changes of isolated liver mitochondria.

Calcium

ion-induced swelling.Biochem J ,1965,95:378~38618.Crofts AR,Chappell JB.Calcium ion accumulation and

volume changes of isolated liver mitochondria.Reversal of calcium ion-induced swelling.

Biochem J ,1965,95:

transport calcium.Am J Physiol ,1990,58:C755~78620.

Hunter DR,

Haworth RA.

The Ca 2+-induced membrane

transition in mitochondria.I.The protective mechanisms.

Arch Biochem Biophys ,1979,195:453~45921.

Hunter DR,

Haworth RA.

The Ca 2+-induced membrane

transition in mitochondria.ⅲ.Transitional Ca 2+release.

Arch Biochem Biophys ,1979,195:468~47722.

Haworth RA,

Hunter DR.

The Ca 2+-induced membrane

transition in mitochondria.ⅱ.Nature of the Ca 2+trigger site.Arch Biochem Biophys ,1979,195:460~467

23.Crompton M,Costi A,Hayat L.Evidence for the presence

of a reversible Ca 2+-dependent pore activated by oxidative stress in heart mitochondria.Biochem J ,1987,245:

915~91824.

Halestrap AP,

Kerr PM,

Javadov S,

Woodfield KY.

Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart.Biochim Biophys Acta ,1998,1366:79~94

25.Bernardi P.Mitochondrial transport of cations:Channels,

exchangers,and permeability transition.Physiol Rev ,1999,79:1127~1155

26.Susin SA,Daugas E,Ravagnan L,Samejima K,Zamzami

N,

Loeffler M,

Costantini P,

Ferri KF,

Irinopoulou T,

Prevost MC,Brothers G,Mak TW,Penninger J,Earnshaw WC,Kroemer G.Two distinct pathways leading to nuclear apoptosis.J Exp Med ,2000,192:571~58027.

Halestrap AP,Clarke SJ,

Javadov SA.Mitochondrial permeability

transition

pore

opening

during

myocardial

reperfusion ———A target for cardioprotection.Cardiovasc

Res ,2004,61:372~38528.

Rodriguez-Enriquez S,

He L,

Lemasters JJ.

Role of

mitochondrial permeability transition pores in mitochondrial autophagy.Int J Biochem Cell Biol ,2004,36:2463~247229.Wang P,Heitman J.The cyclophilins.Genome Biol ,2005,

6:226

30.Clarke SJ,McStay GP,Halestrap AP.Sanglifehrin A acts

as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-d at a different site from cyclosporin A.J Biol

Chem ,2002,277:34793~3479931.

Hausenloy DJ,Duchen MR,

Yellon DM.

Inhibiting

mitochondrial

permeability

transition

pore

opening

at

reperfusion protects against ischaemia-reperfusion injury.

Cardiovasc Res ,2003,60:617~62532.

Reutenauer J,

Dorchies OM,

Patthey-Vuadens O,

Vuagniaux G,Ruegg UT.Investigation of Debio 025,a cyclophilin inhibitor,in the dystrophic mdx mouse,a model for duchenne muscular dystrophy.Br J Pharmacol ,2008,155:574~584

33.Baines CP,Kaiser RA,Purcell NH,Blair NS,Osinska H,

Hambleton MA,Brunskill EW,Sayen MR,Gottlieb RA,

532

K,Yamagata H,Inohara H,Kubo T,Tsujimoto Y.

Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death.

Nature,2005,434:652~658

35.Schinzel AC,Takeuchi O,Huang Z,Fisher JK,Zhou Z,

Rubens J,Hetz C,Danial NN,Moskowitz MA,Korsmeyer SJ.Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia.Proc Natl Acad Sci USA, 2005,102:12005~12010

36.Basso E,Fante L,Fowlkes J,Petronilli V,Forte MA,

Bernardi P.Properties of the permeability transition pore in mitochondria devoid of cyclophilin D.J Biol Chem,2005, 280:18558~18561

37.Gottlob K,Majewski N,Kennedy S,Kandel E,Robey RB,

Hay N.Inhibition of early apoptotic events by AKt/PKb is dependent on the first committed step of glycolysis and mitochondrial hexokinase.Genes Dev,2001,15: 1406~1418

38.Fiore C,Trezeguet V,Le Saux A,Roux P,Schwimmer C,

Dianoux AC,Noel F,Lauquin GJ,Brandolin G,Vignais PV.The mitochondrial ADP/ATP carrier:Structural, physiological and pathological aspects.Biochimie,1998,80: 137~150

39.Palmieri F.The mitochondrial transporter family(slc25):

Physiological and pathological implications.Pflugers Arch, 2004,447:689~709

40.Halestrap AP,Davidson AM.Inhibition of Ca(2+)-induced

large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl Cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase.Biochem J,1990,268:153~160

41.Haworth RA,Hunter DR.Control of the mitochondrial

permeability transition pore by high-affinity ADP binding at the ADP/ATP translocase in permeabilized mitochondria.J Bioenerg Biomembr,2000,32:91~96

42.Xu M,Wang Y,Hirai K,Ayub A,Ashraf M.Calcium

preconditioning inhibits mitochondrial permeability transition and apoptosis.Am J Physiol Heart Circ Physiol,2001, 280:H899~908

43.De Macedo DV,Nepomuceno ME,Pereira-da-Silva L.

Involvement of the ADP/ATP carrier in permeabilization processes of the inner mitochondrial membrane.Eur J Biochem,1993,215:595~600

44.Crompton M,Virji S,Ward JM.Cyclophilin-D binds strongly

to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore.Eur J Biochem,1998,258:729~735

45.Woodfield K,Ruck A,Brdiczka D,Halestrap AP.Direct

demonstration of a specific interaction between cyclophilin-d

Zorov DB,Brdiczka D.Adenine nucleotide translocator isoforms1and2are differently distributed in the mitochondrial inner membrane and have distinct affinities to cyclophilin D.Biochem J,2001,358:349~358

47.Kokoszka JE,Waymire KG,Levy SE,Sligh JE,Cai J,

Jones DP,MacGregor GR,Wallace DC.The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore.Nature,2004,427:461~465 48.Benz R.Permeation of hydrophilic solutes through

mitochondrial outer membranes:Review on mitochondrial porins.Biochim Biophys Acta,1994,1197:167~196

49.Benz R,Brdiczka D.The cation-selective substate of the

mitochondrial outer membrane pore:Single-channel conductance and influence on intermembrane and peripheral kinases.J Bioenerg Biomembr,1992,24:33~39 50.Colombini M.Voltage gating in the mitochondrial channel,

VDAC.J Membr Biol,1989,111:103~111

51.Colombini M,Blachly-Dyson E,Forte M.VDAC,a channel

in the outer mitochondrial membrane.Ion Channels,1996, 4:169~202

52.Rostovtseva TK,Tan W,Colombini M.On the role of

VDAC in apoptosis:Fact and fiction.J Bioenerg Biomembr, 2005,37:129~142

53.Tan W,Colombini M.VDAC closure increases calcium ion

flux.Biochim Biophys Acta,2007,1768:2510~2515

54.Blachly-Dyson E,Baldini A,Litt M,McCabe ER,Forte M.

Human genes encoding the voltage-dependent anion channel(VDAC)of the outer mitochondrial membrane: Mapping and identification of two new isoforms.Genomics, 1994,20:62~67

55.Casadio R,Jacoboni I,Messina A,De Pinto V.A3D

model of the voltage-dependent anion channel(VDAC).

FEBS Lett,2002,520:1~7

56.Shimizu S,Matsuoka Y,Shinohara Y,Yoneda Y,Tsujimoto

Y.Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells.J Cell Biol, 2001,152:237~250

57.De Pinto V,Prezioso G,Thinnes F,Link TA,Palmieri F.

Peptide-specific antibodies and proteases as probes of the transmembrane topology of the bovine heart mitochondrial porin.Biochemistry,1991,30:10191~10200

58.Holden MJ,Colombini M.The outer mitochondrial

membrane channel,VDAC,is modulated by a protein localized in the intermembrane space.Biochim Biophys Acta,1993,1144:396~402

59.Szabo I,De Pinto V,Zoratti M.The mitochondrial

permeability transition pore may comprise VDAC molecules.

ⅱ.The electrophysiological properties of VDAC are com-patible with those of the mitochondrial megachannel.FEBS Lett,1993,330:206~210

60.Szabo I,Zoratti M.The mitochondrial permeability transition

533

https://www.wendangku.net/doc/d01026062.html,|ACTA BIOPHYSICA SINICA

ACTA BIOPHYSICA SINICA |Vol.28No.7|Jul.

2012

A,Langen H,Polcic P,Forte MA,Bernardi P,Kemp JA.The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore.J Biol Chem ,2003,278:49812~4981862.Zhang D,Lu C,Whiteman M,Chance B,Armstrong JS.

The

mitochondrial

permeability

transition

regulates

cytochrome c release for apoptosis during endoplasmic reticulum stress by remodeling the cristae junction.J Biol

Chem ,2008,283:3476~3486

63.Krauskopf A,Eriksson O,Craigen WJ,Forte MA,Bernardi

P.Properties of the permeability transition in VDAC1(-/-)mitochondria.Biochim Biophys Acta ,2006,1757:590~59564.Baines CP,Kaiser RA,Sheiko T,Craigen WJ,Molkentin

JD.Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death.Nat Cell Biol ,2007,9:550~555

65.Weeber EJ,Levy M,Sampson MJ,Anflous K,Armstrong

DL,

Brown SE,

Sweatt JD,

Craigen WJ.

The role of

mitochondrial porins and the permeability transition pore in learning and synaptic plasticity.J Biol Chem ,2002,277:18891~18897

66.Cheng EH,Sheiko TV,Fisher JK,Craigen WJ,Korsmeyer

SJ.

VDAC2inhibits Bak activation and mitochondrial apoptosis.Science ,2003,301:513~517

67.Fontaine E,Eriksson O,Ichas F,Bernardi P.Regulation of

the

permeability

transition

pore

in

skeletal

muscle mitochondria.Modulation by electron flow through the

respiratory chain complex I.J Biol Chem ,1998,

273:

12662~12668

68.Chauvin C,De Oliveira F,Ronot X,Mousseau M,Leverve

X,

Fontaine

E.

Rotenone

inhibits

the

mitochondrial

permeability transition-induced cell death in U937and kb cells.J Biol Chem ,2001,276:41394~4139869.

Schroers A,

Kramer R,

Wohlrab H.

The reversible

antiport-uniport conversion of the phosphate carrier from yeast mitochondria depends on the presence of a single cysteine.J Biol Chem ,1997,272:10558~1056470.

Leung AW,

Varanyuwatana P,

Halestrap AP.

The

mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition.J

Biol Chem ,2008,283:26312~2632371.

Kroemer G,Galluzzi L,

Brenner C.

Mitochondrial

membrane permeabilization in cell death.

Physiol Rev ,2007,87:99~163

72.Del Arco A,Satrustegui J.Molecular cloning of aralar,a

new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain.

J Biol Chem ,1998,273:23327~23334

73.Dierks T,Salentin A,Kramer R.Pore-like and carrier-like

properties of the mitochondrial aspartate/glutamate carrier after modification by sh-reagents:Evidence for a performed

Effects on the transport activity and transition from carrier to pore-like function.Biochim Biophys Acta ,2003,1611:123~13075.Bernardi P.

Modulation of the mitochondrial cyclosporin

a-sensitive

permeability

transition

pore

by

the

proton

electrochemical gradient.Evidence that the pore can be opened by membrane depolarization.J Biol Chem ,1992,267:8834~8839

76.Connern CP,Halestrap AP.Purification and N-terminal

sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin.Biochem J ,1992,284(Pt 2):381~38577.

Wilkins BJ,

Molkentin JD.

Calcineurin and cardiac

hypertrophy:Where have we been?Where are we going?

J Physiol ,2002,541:1~878.

Petronilli V,Cola C,

Bernardi P.

Modulation of the

mitochondrial cyclosporin a-sensitive permeability transition

pore.

ⅱ.The minimal requirements for pore induction

underscore

a

key

role

for

transmembrane

electrical

potential,matrix pH,and matrix Ca 2+.J Biol Chem ,1993,268:1011~1016

79.Bernardi P,Veronese P,Petronilli V.Modulation of the

mitochondrial cyclosporin a-sensitive permeability transition pore.I.Evidence for two separate Me 2+binding sites with opposing effects on the pore open probability.

J Biol

Chem ,1993,268:1005~1010

80.Halestrap AP,McStay GP,Clarke SJ.The permeability

transition pore complex:Another view.Biochimie ,2002,84:153~166

81.Bernardi P,Vassanelli S,Veronese P,Colonna R,Szabo I,

Zoratti M.

Modulation of the mitochondrial permeability

transition pore.Effect of protons and divalent cations.J

Biol Chem ,1992,267:2934~2939

82.Halestrap AP.Calcium-dependent opening of a non-specific

pore in the mitochondrial inner membrane is inhibited at pH values below 7.Implications for the protective effect of low pH against chemical and

hypoxic

cell damage.

Biochem J ,1991,278(Pt 3):715~719

83.Green DR.Apoptotic pathways:The roads to ruin.Cell ,

1998,94:695~698

84.Evan G,Littlewood T.A matter of life and cell death.

Science ,1998,281:1317~1322

85.Meier P,Finch A,Evan G.Apoptosis in development.

Nature ,2000,407:796-801

86.Yuan J,Yankner BA.Apoptosis in the nervous system.

Nature ,2000,407:802~80987.

Kerr JF,

Wyllie AH,

Currie AR.

Apoptosis:

A basic

biological phenomenon with wide-ranging implications in tissue kinetics.Br J Cancer ,1972,26:239~257

88.Fadeel B,Orrenius S,Zhivotovsky B.Apoptosis in human

534

Acta,1998,1366:151~165

90.Wang W,Fang H,Groom L,Cheng A,Zhang W,Liu J,

Wang X,Li K,Han P,Zheng M,Yin J,Mattson MP,Kao JP,Lakatta EG,Sheu SS,Ouyang K,Chen J,Dirksen RT,Cheng H.Superoxide flashes in single mitochondria.

Cell,2008,134:279~290

91.Fang H,Chen M,Ding Y,Shang W,Xu J,Zhang X,

Zhang W,Li K,Xiao Y,Gao F,Shang S,Li JC,Tian XL, Wang SQ,Zhou J,Weisleder N,Ma J,Ouyang K,Chen J,Wang X,Zheng M,Wang W,Cheng H.Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals.Cell Res,2011,21: 1295~1304

92.Ma Q,Fang H,Shang W,Liu L,Xu Z,Ye T,Wang X,

Zheng M,Chen Q,Cheng H.Superoxide flashes:Early mitochondrial signals for oxidative stress-induced apoptosis.

J Biol Chem,2011,286:27573~27581

93.Yang J,Liu X,Bhalla K,Kim CN,Ibrado AM,Cai J,Peng

TI,Jones DP,Wang X.Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked.

Science,1997,275:1129~1132

94.Tsujimoto Y,Shimizu S.Bcl-2family:Life-or-death switch.

FEBS Lett,2000,466:6~10

95.Chen Q,Gong B,Almasan A.Distinct stages of

cytochrome c release from mitochondria:Evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosis.Cell Death Differ,2000,7:227~233

96.Marzo I,Susin SA,Petit PX,Ravagnan L,Brenner C,

Spahr C,Luban J,Kroemer RT,Giordanetto F,Garrido C, Penninger JM,Kroemer G.Aif and cyclophilin A cooperate in apoptosis-associated chromatinolysis.Oncogene,2004, 23:1514~1521

98.Wang SQ,Song LS,Lakatta EG,Cheng H.Ca2+signalling

between single l-type Ca2+channels and ryanodine receptors in heart cells.Nature,2001,410:592~596

99.Chen Q,Chai YC,Mazumder S,Jiang C,Macklis RM,

Chisolm GM,Almasan A.The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release,caspase activation,and mitochondrial dysfunction.Cell Death Differ,2003,10: 323~334

100.Lin MT,Beal MF.Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases.Nature,2006,443: 787~795

101.Stowe DF,Camara AK.Mitochondrial reactive oxygen species production in excitable cells:Modulators of mitochondrial and cell function.Antioxid Redox Signal, 2009,11:1373~1414

102.Nie C,Tian C,Zhao L,Petit PX,Mehrpour M,Chen Q.

Cysteine62of Bax is critical for its conformational activation and its proapoptotic activity in response to H2O2-induced apoptosis.J Biol Chem,2008,283: 15359~15369

103.Huang F,Nie C,Yang Y,Yue W,Ren Y,Shang Y, Wang X,Jin H,Xu C,Chen Q.Selenite induces redox-dependent Bax activation and apoptosis in colorectal cancer cells.Free Radic Biol Med,2009,46:1186~1196

535

https://www.wendangku.net/doc/d01026062.html,|ACTA BIOPHYSICA SINICA

ACTA BIOPHYSICA SINICA |Vol.28No.7|Jul.

2012

Transition and Apoptosis

MA Qi 1,2,LIU Lei 1,CHEN Quan 1

1.State Key Laboratory of Biomembrane and Membrane Biotechnology,Institute of Zoology,Chinese Academy of Sciences,Beijing 100101,China;

2.Children's Hospital of Philadelphia,University of Pennsylvania,Philadelphia,PA 19104,USA Received:Jun 20,2012

Accepted:Jul 2,2012

Corresponding author:MA Qi,Tel :+1(215)8086619,E-mail:maqi1983@https://www.wendangku.net/doc/d01026062.html, CHEN Quan,Tel :+86(10)64807321,E-mail:chenq@https://www.wendangku.net/doc/d01026062.html,

Abstract:Mitochondria constitute the main source of reactive oxygen species (ROS)in eukaryotic cells and

it has been well-established that oxidative stress triggers cell death.The mitochondrial permeability transition (MPT)is crucial to many forms of apoptosis,which is also known as programmed cell death.Through integration of diverse intracellular signals,the MPT serves as a logic gate that,once switched-on,commits the cell to death.Specifically,the irreversible MPT (iMPT)causes massive release of cytochrome c and other apoptosis-inducing factors from the mitochondria into the cytoplasm,accompanied by an intense burst of ROS production.Besides this,transient MPT (tMPT)due to flickering opening of the mitochondrial permeability transition pore (MPTP)also acts as early mitochondrial signals mediating the apoptotic response during oxidative stress.

Key Words:Mitochondria;Mitochondrial permeability transition;Mitochondrial permeability transition pore;

Apoptosis

DOI:10.3724/SP.J.1260.2012.20103

536

相关文档