文档库 最新最全的文档下载
当前位置:文档库 › 用CP2200实现MCU的简易型以太网接口

用CP2200实现MCU的简易型以太网接口

用CP2200实现MCU的简易型以太网接口
用CP2200实现MCU的简易型以太网接口

用CP2200实现MCU的简易型以太网接口

时间:2007-12-12 10:10:00 来源:单片机及嵌入式系统应用作者:张瑞瑞马晨普摘要介绍基于新型独立控制芯片CP2200的以太网通信接口的软硬件设计方法;详细介绍CP2200的结构功能、外围接口电路,以及基于CP2200与单片机C805lF040的TCP/IP协议栈的实现。

关键词CP2200 以太网C805lF040 TCP/IP

引言

当前,嵌入式设计人员在为远程控制或监控设备提供以太网接入时,使用的以太网控制器(如RTL8019、DM9008、CS8900A等)都是专为个人计算机系统设计的。这些器件不仅接口电路复杂,体积较大,而且比较昂贵。CP2200是Silabs公司于近期推出的一款48引脚独立以太网控制器。它符合IEEE 802.3协议,支持10M以太网接入,而且仅需很少的外部电路连线就可满足绝大多数嵌入式以太嗣接口的设计要求,简化了嵌入式以太网接口的设计,减小了占板空间,降低了系统开发成本。

另外,该以太网控制器具有8位并行主机接口,可以为绝大多数微控制器或主处理器提供以太网通信功能。8位并行总线接口支持Intel和Motorola总线方式,可以使用复用或非复用方式寻址。这些功能加上相关处理器的TCP/IP协议栈,使得嵌入式应用系统的以太网接口实现变得十分简易。

1 CP2200的主要功能

◆符合IEEE 802.3协议:内置10Mbps以太网物理层器件PHY及媒介接入控制器MAC,可按业界标准的以太网协议可靠地收发信息包数据;具有可编程填充和CRC自动生成功能。

◆可编程过滤功能:特殊的过滤器,可自动评价、接收或拒收Magic Packet、单播(Unicast)、多播(Multicast)或广播(Broadcast)信息包,以减轻主控单片机的处理负荷。

◆30 Mbp5速率的并行主机接口:支持Intel和M0torola两种总线方式。

◆8 KB Flash存储器:8192字节非易失性数据存储空间,可对其进行灵活编程;工厂预编程的唯一48位MAC地址。

2 硬件电路设计

系统的硬件电路原理可参考图1。其中,要特别注意CP2200控制器与RJ-45的连接电路,因为这些参数对通信的可靠性影响很大。

CP2200的外围电路比较简单,主要考虑其复位引脚、晶振输入、并行接口和与以太网变压器的连接。

2.1 复位电路

CP2200具有上电复位功能。一旦VDD上升到某个门限值后,就会在片内产生上电复位脉冲。当VDD上升到足够器件上作时,器件会以初始化状态启动。CP2200支持软件复位,可以通过并口将复位寄存器置位来实现软件复位。

2.2 晶振电路

CP2200的工作频率为20MHz,晶振连接在XTAL1和XTAL2之间。CP2200也可由连接到XTAL1引脚的外部时钟源驱动。

2.3 I/O并行接口

CP2200的并行主机接口,支持Motorola和Intel两种总线方式,且支持地址数据复用和非复用方式。可以通过将MUXEN和MOTEN引脚接地或拉高电平来实现对主机接口总线方式的配置。

2.4 以太网变压器

要实现以太网接口,以太网变压器是不可缺少的。在差分接收引脚(RX+/RX-)上,需要1个专用于10BASE-T操作的l:1脉冲变压器;在差分发送引脚(TX+/TX-)上,需要外接1个带有中心抽头的l:2.5脉冲变压器。变压器应具有2 kV以上的电压隔离性能,以防止静电干扰。发送端需要2个8Ω(精度为1%)的电阻和1个560pF的电容与特定端相连,接收端需要1个100Ω电阻与特定端相连(具体连接方式见图1)。

按照CP2200的要求,笔者采用的是PRJ系列的PRJ-010型变压器。该变压器集成了RJ-45接头,在省去了不少连线的同时也提高了高频信号传输的可靠性。

2.5 其他电路

LINK和ACT引脚输出电平用于驱动LED,以指示网络的连接和活动状态。

所有电源引脚都必须与同一个外部3.3V电源相连。类似地,所有参考地都应在外部连接到相同的接地点。每个VDD和地之间都应连接一个0.1μF的陶瓷旁路电容,且尽可能靠近引脚。

需要特别说明的是,驱动双绞线接口需要相对高的电流,因此以太网的收发数据线应尽可能短,并且线径适当加大以减少电阻损耗(为了保证数据的可靠传输,笔者的PCB电路板选择了20mil的线径)。(注:100mil=2.54 mm。)

3 软件设计

TCP/IP协议种类繁多,相互之间交互作用复杂,在单片机上不可能实现所有协议,所以必须对协议栈进行裁剪。结合系统的具体通信要求,本系统最后只保留了TCP、UDP、IP、ICMP、ARP协议模块。在协议栈程序的整体设计上,考虑到单片机的单任务执行方式很难发挥TCP/IP协议的特点,采用了基于事件驱动机制的TCP/IP协议栈的实现方法。该机制的引入,使得系统在保证具有高效的汇编语言代码效率的同时,实时响应性也得到了大幅提高。下而将具体阐述事件驱动机制的原理、特点以及基于该机制的TCP/IP协议栈的实现。

3.1 事件驱动机制的原理

系统初始化完成后,进入事件循环体,不断查询C8051F040的事件队列是否有事什,一些事件队列非空,则读取事件标志字,判断事件类型,而后调用对应事件处理子程序。处理子程序执行完毕后,仍然返回到事件循环体中。事件标志字由中断直接或者间接驱动,当某个事件发生后,只需在中断服务程序中将状态字的对应位置位。中断不断向事件队列中添加事件,而C8051F040处理程序则不停地从事件队列中读取事件标志字,处理事件。

3.2 事件驱动机制的特点

①由于在中断处理程序中,仅执行了改变事件标志字这样的简单程序语句,把事件添加到

C8051F040的事件队列中后就立即返回,所以系统关闭中断的时间很短,从而增强了系统对中断处理的实时性。

②C805lF040根据当前读取的事件,进行相应事件处理或者向事件队列中添加进一步处理所需的事件。这实际上是对任务都进行了分步处理,在执行一步某一任务的同时,也可以执行一步其他任务。这样,在不影响主程序流程的情况下,提高了系统的实时性。

3.3 事件循环体的简要流程

事件循环体的简要流程如图2所示,下面具体介绍各事件的含义。

◆EVENT_ETH_ARRIVED:有待处理的以太网帧事件。检测到此事件,C8051F040会调用读CP2200接收缓冲区程序,然后对帧进行解包处理。

◆EVENT_TCP_RETRAN:TCP重传事件。若TCP定时器超时,则触发该事件。

◆EVENT_TCP_INACTIVITY:关断不话动连接事件。若某连接超过0.5s没有收发数据,则触发此事件。

◆EVENT_ARP_RETRAN:ARP请求数据包重传事件。若某一ARP请求在发出O.5s后没有相应,则触发该事件。若经两次重发都没回应,则将以该IP为目的地址的数据包丢弃。

◆EVENT-AGE_ARP_CACHE:更新ARP缓存事件。每60s触发该事件一次。

◆EVENT_COME_NEWDATA:有新数据事件。当有新数据待发送时,触发该事件。

4 结论

CP2200的多种集成功能(如CRC校验、数据滤波等)有效地减轻了单片机的载荷,它内部的

收发接口单元操作起来灵活方便,为以太网数据包提供了有效的缓冲;另外,该芯片具有稳定的工作性能和抗干扰抗震性能。笔者利用CP2200、C8051F040和文中提到的TCP/IP协议栈开发出了用于铁路机车的以太网通信接口板卡。此板卡已在测试机车上运行,工作性能良好,能够进行稳定的数据传递。

OptiX OSN1500以太网功能介绍

OptiX OSN1500以太网功能介绍 OptiX OSN1500提供N1EFS4、N1EFS0、N2EFS0、N1EGS2、N2EGS2、N1EGT2、N1EMS4、N1EGS4、N3EGS4和R1EFT4等以太网单板,实现不同的以太网业务需求。 各单板提供的以太网功能如表1、表2、表3和表4所示。 表1 EFS4、EFS0板功能列表 特性单板 N1EFS4 EFS4 EFS0 FS0 FS0 接口4×FE 4×FE 8×FE 8×FE 8×FE 接口类型10Base-T, 100Base-TX 0Base-T, 100Base-TX 0Base-T, 100Base-TX, 100Base-FX 0Base-T, 100Base-TX, 100Base-FX 0Base-T, 100Base-TX, 100Base-FX 配合的出线板需出线板需出线板1ETF8、N1EFF8 1ETS8(配合TSB8 实现1:1 TPS)、 N1ETF8、N1EFF8 1ETS8(配合TSB8实现1:1 TPS)、N1ETF8、N1EFF8 业务帧格式hernet II、IEEE 802.3、IEEE 802.1 q/p ernet II、IEEE 802.3、IEEE 802.1 q/p rnet II、IEEE 802.3、IEEE 802.1 q/p et II、IEEE 802.3、IEEE 802.1 q/p et II、IEEE 802.3、IEEE 802.1 q/p JUMBO帧支持9600字节支持9600字节支持9600字节支持9600字节支持9600字节上行带宽 4 VC-4 8 VC-4 4 VC-4 8 VC-4 8 VC-4 映射方式VC-12、VC-3、 VC-12-xv(x≤ 63)、VC-3-xv(x ≤12)VC-12、VC-3、 VC-12-xv(x≤ 63)、VC-3-xv(x ≤12) VC-12、VC-3、 VC-12-xv(x≤ 63)、VC-3-xv(x ≤12) VC-12、VC-3、 VC-12-xv(x≤ 63)、VC-3-xv(x ≤12) VC-12、VC-3、 VC-12-xv(x≤ 63)、VC-3-xv(x ≤12)

以太网EMC接口电路设计与PCB设计说明

以太网EMC接口电路设计及PCB设计 我们现今使用的网络接口均为以太网接口,目前大部分处理器都支持以太网口。目前以太网按照速率主要包括10M、10/100M、1000M三种接口,10M应用已经很少,基本为10/100M所代替。目前我司产品的以太网接口类型主要采用双绞线的RJ45接口,且基本应用于工控领域,因工控领域的特殊性,所以我们对以太网的器件选型以及PCB设计相当考究。从硬件的角度看,以太网接口电路主要由MAC(Media Access Controlleroler)控制和物理层接口(Physical Layer,PHY)两大部分构成。大部分处理器内部包含了以太网MAC控制,但并不提供物理层接口,故需外接一片物理芯片以提供以太网的接入通道。面对如此复杂的接口电路,相信各位硬件工程师们都想知道该硬件电路如何在PCB上实现。 下图1以太网的典型应用。我们的PCB设计基本是按照这个框图来布局布线,下面我们就以这个框图详解以太网有关的布局布线要点。 图1 以太网典型应用 1.图2网口变压器没有集成在网口连接器里的参考电路PCB布局、布线图,下面就以图2介绍以太网电路的布局、布线需注意的要点。 图2 变压器没有集成在网口连接器的电路PCB布局、布线参考 a)RJ45和变压器之间的距离尽可能的短,晶振远离接口、PCB边缘和其他的高频设备、走线或磁性元件周围,PHY层芯片和变压器之间的距离尽可能短,但有时为了

顾全整体布局,这一点可能比较难满足,但他们之间的距离最大约10~12cm,器件布局的原则是通常按照信号流向放置,切不可绕来绕去; b)PHY层芯片的电源滤波按照要芯片要求设计,通常每个电源端都需放置一个退耦电容,他们可以为信号提供一个低阻抗通路,减小电源和地平面间的谐振,为了让电容起到去耦和旁路的作用,故要保证退耦和旁路电容由电容、走线、过孔、焊盘组成的环路面积尽量小,保证引线电感尽量小; c)网口变压器PHY层芯片侧中心抽头对地的滤波电容要尽量靠近变压器管脚,保证引线最短,分布电感最小; d)网口变压器接口侧的共模电阻和高压电容靠近中心抽头放置,走线短而粗(≥15mil); e)变压器的两边需要割地:即RJ45连接座和变压器的次级线圈用单独的隔离地,隔离区域100mil以上,且在这个隔离区域下没有电源和地层存在。这样做分割处理,就是为了达到初、次级的隔离,控制源端的干扰通过参考平面耦合到次级; f)指示灯的电源线和驱动信号线相邻走线,尽量减小环路面积。指示灯和差分线要进行必要的隔离,两者要保证足够的距离,如有空间可用GND隔开; g)用于连接GND和PGND的电阻及电容需放置地分割区域。 2.以太网的信号线是以差分对(Rx±、Tx±)的形式存在,差分线具有很强共模抑制能力,抗干扰能力强,但是如果布线不当,将会带来严重的信号完整性问题。下面我们来一一介绍差分线的处理要点: a)优先绘制Rx±、Tx±差分对,尽量保持差分对平行、等长、短距,避免过孔、交叉。由于管脚分布、过孔、以及走线空间等因素存在使得差分线长易不匹配,时序会发生偏移,还会引入共模干扰,降低信号质量。所以,相应的要对差分对不匹配的情况作出补偿,使其线长匹配,长度差通常控制在5mil以内,补偿原则是哪里出现长度差补偿哪里; b)当速度要求高时需对Rx±、Tx±差分对进行阻抗控制,通常阻抗控制在100Ω±10%; c)差分信号终端电阻(49.9Ω,有的PHY层芯片可能没有)必须靠近PHY层芯片的Rx±、Tx±管脚放置,这样能更好的消除通信电缆中的信号反射,此电阻有些接电源,有些通过电容接地,这是由PHY芯片决定的; d)差分线对上的滤波电容必须对称放置,否则差模可能转成共模,带来共模噪声,且其走线时不能有stub ,这样才能对高频噪声有良好的抑制能力。

经典中的经典 以太网电接口采用UTP设计的EMC设计指导书

?以太网电接口采用UTP设计的EMC设计指导书 一、UTP(非屏蔽网线)的介绍 非屏蔽网线由两根具有绝缘保护层的铜导线组成,两根绝缘铜导线按照一定密度绞在一起,每一根导线在传输中辐射的电波会与另外一根的抵消,这样可降低信号的干扰程度。 用来衡量UTP的主要指标有: 1、衰减:就是沿链路的信号损失度量。 2、近端串扰:测量一条UTP链路对另一条的影响。 3、直流电阻。 4、衰减串扰比(ACR)。 5、电缆特性。 二、10/100/1000BASE-T以太网电接口原理图设计 10/100/1000BASE-T以太网口电路按照连接器的种类网口电路可以分为:网口变压器集成在连接器里的网口电路和网口变压器不集成在连接器里的网口电路。 1、网口变压器未集成在连接器里的网口电路原理图 网口电路主要包括PHY芯片,网口变压器,网口连接器三部分,图中左侧的八个49.9Ω的电阻是差分线上的终端匹配电阻,其阻值的大小由差分线的特性阻抗决定,当变压器内的线圈匝数发生变化时,其阻值也跟随变化,保证两者的阻抗匹配。由电容组成的差模、共模滤波器可以增强EMC性能。在线圈的中心抽头处接的电容可以有效的改善电路的抗EMC性能,合理的选择电容值可以使电路的EMC做到最优。电路的右侧四个75Ω的电阻是电路的共模阻抗。 2、网口变压器集成在连接器里的网口电路原理图

网口电路主要包括PHY芯片,网口连接器两部分,网口变压器部分集成在接口内部,同样左侧的49.9Ω的电阻阻值也是由变压器的匝数及差分线的特性阻抗决定的。中间的电容组成共模、差模滤波器,滤除共模及差模噪声。75Ω的共模电阻也集成在网口连接器的内部。 3、网口指示灯电路原理图 带指示灯的以太网口电路原理图与不带指示灯灯的大致相同,只是多出指示灯的驱动电路。 注意点: 1)、两个匹配电阻是否需要根据PHY层芯片决定,如有的PHY层芯片内部集成匹配电阻就不需要。匹配电阻是接地还是接电源也是由PHY芯片决定,一般接电源。 2)、芯片侧中间抽头需要通过磁珠串接电源,并且注意每一路接一个磁珠,并通过电容0.01-0.1uf接数字地。 3)、点灯部分电路,link和ACT灯走线要加磁珠处理,同时供电电源也要加磁珠处理。但所有显示驱动灯的电源可以共用一个磁珠。 4)、变压器与连接器部分的匹配电阻75欧姆和50欧姆精度可以放低到5%。

以太网接口PCB设计经验分享

以太网口PCB布线经验分享 目前大部分32 位处理器都支持以太网口。从硬件的角度看,以太网接口电路主要由 MAC 控制器和物理层接口(Physical Layer ,PHY )两大部分构成,目前常见的以太网接口 芯片,如LXT971 、RTL8019 、RTL8201、RTL8039、CS8900、DM9008 等,其内部结构也 主要包含这两部分。 一般32 位处理器内部实际上已包含了以太网MAC 控制,但并未提供物理层接口,因此,需外接一片物理层芯片以提供以太网的接入通道。 常用的单口10M/100Mbps 高速以太网物理层接口器件主要有RTL8201、LXT971 等,均提供MII 接口和传统7 线制网络接口,可方便的与CPU 接口。以太网物理层接口器件主 要功能一般包括:物理编码子层、物理媒体附件、双绞线物理媒体子层、10BASE-TX 编码/ 解码器和双绞线媒体访问单元等。 下面以RTL8201 为例,详细描述以太网接口的有关布局布线问题。 一、布局 CPU M A RTL8201 TX ± 变 压 RJ45 网口 器 C RX± 1、RJ45和变压器之间的距离应当尽可能的缩短. 2、RTL8201的复位信号Rtset 信号(RTL8201 pin 28 )应当尽可能靠近RTL8021,并且,如果可能的话应当远离TX+/-,RX+/-, 和时钟信号。 3、RTL8201的晶体不应该放置在靠近I/O 端口、电路板边缘和其他的高频设备、走线或磁性 元件周围. 4、RTL8201和变压器之间的距离也应该尽可能的短。为了实际操作的方便,这一点经常被放弃。但是,保持Tx±, Rx±信号走线的对称性是非常重要的,而且RTL8201和变压器之间的距离需要保持在一个合理的范围内,最大约10~12cm。 5、Tx+ and Tx- (Rx+ and Rx-) 信号走线长度差应当保持在2cm之内。 二、布线 1、走线的长度不应当超过该信号的最高次谐波( 大约10th) 波长的1/20 。例如:25M的时钟走线不应该超过30cm,125M信号走线不应该超过12cm (Tx ±, Rx ±) 。 2、电源信号的走线( 退耦电容走线, 电源线, 地线) 应该保持短而宽。退耦电容上的过孔直径 最好稍大一点。 3、每一个电容都应当有一个独立的过孔到地。 4、退耦电容应当放在靠近IC的正端(电源),走线要短。每一个RTL8201 模拟电源端都需要退耦电容(pin 32, 36, 48). 每一个RTL8201 数字电源最好也配一个退耦电容。 5、Tx±, Rx ±布线应当注意以下几点: (1)Tx+, Tx- 应当尽可能的等长,Rx+, Rx- s 应当尽可能的等长; (2) Tx±和Rx±走线之间的距离满足下图: (3) Rx±最好不要有过孔, Rx ±布线在元件侧等。

工业以太网简介

工业以太网简介: 工业以太网就是基于IEEE 802、3 (Ethernet)得强大得区域与单元网络。利用工业以太网,SIMATIC NET 提供了一个无缝集成到新得多媒体世界得途径。 企业内部互联网(Intranet),外部互联网(Extranet),以及国际互联网(Internet) 提供得广泛应用不但已经进入今天得办公室领域,而且还可以应用于生产与过程自动化。继10M波特率以太网成功运行之后,具有交换功能,全双工与自适应得100M波特率快速以太网(Fast Ethernet,符合IEEE 802、3u 得标准)也已成功运行多年。采用何种性能得以太网取决于用户得需要。通用得兼容性允许用户无缝升级到新技术。 为用户带来得利益 :市场占有率高达80%,以太网毫无疑问就是当今LAN(局域网)领域中首屈一指得网络。以太网优越得性能,为您得应用带来巨大得利益: 通过简单得连接方式快速装配。 通过不断得开发提供了持续得兼容性,因而保证了投资得安全。 通过交换技术提供实际上没有限制得通讯性能。 各种各样联网应用,例如办公室环境与生产应用环境得联网。 通过接入WAN(广域网)可实现公司之间得通讯,例如,ISDN 或Internet 得接入。 SIMATIC NET基于经过现场应用验证得技术,SIMATIC NET已供应多于400,000个节点,遍布世界各地,用于严酷得工业环境,包括有高强度电磁干扰得区域。 工业以太网络得构成 :一个典型得工业以太网络环境,有以下三类网络器件: ◆网络部件 连接部件: ?FC 快速连接插座 ?ELS(工业以太网电气交换机) ?ESM(工业以太网电气交换机) ?SM(工业以太网光纤交换机) ?MC TP11(工业以太网光纤电气转换模块) 通信介质:普通双绞线,工业屏蔽双绞线与光纤 ◆ SIMATIC PLC控制器上得工业以太网通讯外理器。用于将SIMATIC PLC连接到工 业以太网。 ◆ PG/PC 上得工业以太网通讯外理器。用于将PG/PC连接到工业以太网。 工业以太网重要性能:为了应用于严酷得工业环境,确保工业应用得安全可靠,SIMATIC NET 为以太网技术补充了不少重要得性能: ?工业以太网技术上与IEEE802、3/802、3u兼容,使用ISO与TCP/IP 通讯协议?10/100M 自适应传输速率 ?冗余24VDC 供电 ?简单得机柜导轨安装 ?方便得构成星型、线型与环型拓扑结构 ?高速冗余得安全网络,最大网络重构时间为0、3 秒 ?用于严酷环境得网络元件,通过EMC 测试 ?通过带有RJ45 技术、工业级得Sub-D 连接技术与安装专用屏蔽电缆得Fast Connect连接技术,确保现场电缆安装工作得快速进行 ?简单高效得信号装置不断地监视网络元件 ?符合SNMP(简单得网络管理协议) ?可使用基于web 得网络管理 ?使用VB/VC 或组态软件即可监控管理网络。 工业以太网冗余原理

以太网的帧结构

以太网的帧结构 要讲帧结构,就要说一说OSI七层参考模型。 一个是访问服务点,每一层都对上层提供访问服务点(SAP),或者我们可以说,每一层的头里面都有一个字段来区分上层协议。 比如说传输层对应上层的访问服务点就是端口号,比如说23端口是telnet,80端口是http。IP层的SAP是什么? 其实就是protocol字段,17表示上层是UDP,6是TCP,89是OSPF,88是EGIRP,1是ICMP 等等。 以太网对应上层的SAP是什么呢?就是这个type或length。比如 0800表示上层是IP,0806表示上层是ARP。我 第二个要了解的就是对等层通讯,对等层通讯比较好理解,发送端某一层的封装,接收端要同一层才能解封装。 我们再来看看帧结构,以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。这个叫帧间隙IFG—InterFrame Gap IFG长度是96bit。当然还可能有Idle时间。 以太网的帧是从目的MAC地址到FCS,事实上以太网帧的前面还有preamble,我们把它叫做先导字段。作用是用来同步的,当接受端收到 preamble,就知道以太网帧就要来了。preamble 有8个字节前面7个字节是10101010也就是16进制的AA,最后一个字节是 10101011,也就是AB,当接受端接受到连续的两个高电平,就知道接着来的就是D_mac。所以最后一个字节AB我们也叫他SFD(帧开始标示符)。 所以在以太网传输过程中,即使没有idle,也就是连续传输,也有20个字节的间隔。对于

大量64字节数据来说,效率也就显得不 1s = 1,000ms=1,000,000us 以太网帧最小为64byte(512bit) 10M以太网的slot time =512×0.1 = 51.2us 100M以太网的slot time = 512×0.01 = 5.12us 以太网的理论帧速率: Packet/second=1second/(IFG+PreambleTime+FrameTime) 10M以太网:IFG time=96x0.1=9.6us 100M以太网:IFG time=96x0.01=0.96us 以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。这个叫帧间隙IFG—InterFrame Gap 10M以太网:Preamble time= 64bit×0.1=6.4us 100M以太网:Preamble time= 64bit×0.01=0.64us Preamble 先导字段。作用是用来同步的,当接受端收到preamble,就知道以太网帧就要来了 10M以太网:FrameTime=512bit×0.1=51.2us 100M以太网:FrameTime=512bit×0.01=5.12us 因此,10M以太网64byte包最大转发速度=1,000,000 sec÷(9.6+6.4+51.2)= 0.014880952Mpps 100M以太网64byte包最大转发速度=1,000,000 sec÷(0.96+0.64+5.12)= 0.14880952Mpps

以太网通信接口电路设计规范

目录 1目的 (3) 2范围 (3) 3定义 (3) 3.1以太网名词范围定义 (3) 3.2缩略语和英文名词解释 (3) 4引用标准和参考资料 (4) 5以太网物理层电路设计规范 (4) 5.1:10M物理层芯片特点 (4) 5.1.1:10M物理层芯片的分层模型 (4) 5.1.2:10M物理层芯片的接口 (5) 5.1.3:10M物理层芯片的发展 (6) 5.2:100M物理层芯片特点 (6) 5.2.1:100M物理层芯片和10M物理层芯片的不同 (6) 5.2.2:100M物理层芯片的分层模型 (6) 5.2.3:100M物理层数据的发送和接收过程 (8) 5.2.4:100M物理层芯片的寄存器分析 (8) 5.2.5:100M物理层芯片的自协商技术 (10) 5.2.5.1:自商技术概述 (10) 5.2.5.2:自协商技术的功能规范 (11) 5.2.5.3:自协商技术中的信息编码 (11) 5.2.5.4:自协商功能的寄存器控制 (14) 5.2.6:100M物理层芯片的接口信号管脚 (15) 5.3:典型物理层器件分析 (16) 5.4:多口物理层器件分析 (16) 5.4.1:多口物理层器件的介绍 (16) 5.4.2:典型多口物理层器件分析。 (17) 6以太网MAC层接口电路设计规范 (17) 6.1:单口MAC层芯片简介 (17) 6.2:以太网MAC层的技术标准 (18) 6.3:单口MAC层芯片的模块和接口 (19) 6.4:单口MAC层芯片的使用范例 (20) 71000M以太网(单口)接口电路设计规范 (21) 8以太网交换芯片电路设计规范 (21) 8.1:以太网交换芯片的特点 (21) 8.1.1:以太网交换芯片的发展过程 (21) 8.1.2:以太网交换芯片的特性 (22) 8.2:以太网交换芯片的接口 (22) 8.3:MII接口分析 (23) 8.3.1:MII发送数据信号接口 (24) 8.3.2:MII接收数据信号接口 (25) 8.3.3:PHY侧状态指示信号接口 (25) 8.3.4:MII的管理信号MDIO接口 (25) 8.4:以太网交换芯片电路设计要点 (27) 8.5:以太网交换芯片典型电路 (27) 8.5.1:以太网交换芯片典型电路一 (28)

组建简单以太网要点

-------------学院 课程设计III课程设计设计说明书 组建简单以太网 学生姓名 学号 班级网络1202 成绩 指导教师 数学与计算机科学学院 2015年 3月 7 日

课程设计任务书 2014—2015学年第二学期 课程设计名称:课程设计III课程设计 课程设计题目:组建简单以太网 完成期限:自2015 年 3 月 5 日至2015 年 3 月13 日共 2 周 设计内容: 在Cisco Packet Tracer中构建一个局域网(有计算机、交换机和集线器构成),并且对每台计算机的IP地址和子网掩码进行配置,让局域网中的每台计算机可以相互通信 认识简单的网络拓扑结构;掌握组建以太网的技术与方法:网卡、安装配置、连通性测试等。 指导教师:教研室负责人: 课程设计评阅

摘要 本次课程设计是通过PacketTracer软件组建一个简单的以太网,并采用PacketTracer软件作为网络模拟开发环境实现该以太网,测试其连通性,采用计算机网络原理进行配置和连接,使本以太网具有基本的连接、通信功能,由此对网络结构有所掌握和学习。 关键词:计算机;以太网;PacketTracer

目录 1 课题描述 (1) 2 原理介绍 (2) 2.1 实验目的及要求 (2) 2.2网络设备概述 (2) 2.2 以太网介绍 (3) 3 以太网设计与实现 (5) 3.1网络的设计 (5) 3.2 PC机的IP设置 (5) 4测试及分析 (7) 4.1测试连通性 (7) 4.2分析注意事项 (10) 5 总结 (11) 参考文献 (12)

1 课题描述 本次课程设计是通过认识简单的网络拓扑结构;掌握组建以太网的技术与设计方法;并且基本了解网卡的安装、配置驱动程序、配置TCP/IP协议、连通性测试等操作,对计算机网络原理有实践性认识,提高对实际网络问题的分析解决能力。 开发工具:PacketTracer

RJ45以太网接口EMC防雷设计方案

以太网接口EMC设计方案 一、接口概述 RJ45以太网接口是目前应用最广泛的通讯设备接口,以太网口的电磁兼容性能关系到通讯设备的稳定运行。 二、接口电路原理图的EMC设计 百兆以太网接口2KV防雷滤波设计 图1 百兆以太网接口2KV防雷滤波设计 接口电路设计概述: 本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决EMC问题;同时此电路兼容了百兆以太网接口防雷设计。 本防雷电路设计可通过IEC61000-4-5或GB17626.5标准,共模2KV,差摸1KV的非屏蔽平衡信号的接口防雷测试。 电路EMC设计说明: (1) 电路滤波设计要点: 为了抑制RJ45接口通过电缆带出的共模干扰,建议设计过程中将常规网络变压器改为接口带有共模抑制作用的网络变压器,此种变压器示意图如下。

图2 带有共模抑制作用的网络变压器 RJ45接口的NC空余针脚一定要采用BOB-smith电路设计,以达到信号阻抗匹配,抑制对外干扰的作用,经过测试,BOB-smith电路能有10个dB左右的抑制干扰的效果。 网络变压器虽然带有隔离作用,但是由于变压器初次级线圈之间存在着几个pF的分布电容;为了提升变压器的隔离作用,建议在变压器的次级电路上增加对地滤波电容,如电路图上C4-C7,此电容取值5Pf~10pF。 在变压器驱动电源电路上,增加LC型滤波,抑制电源系统带来的干扰,如电路图上L1、C1、C2、C3,L1采用磁珠,典型值为600Ω/100MHz,电容取值0.01μF~0.1μF。 百兆以太网的设计中,如果在不影响通讯质量的情况,适当减低网络驱动电压电平,对于EMC干扰抑制会有一定的帮助;也可以在变压器次级的发送端和接收端差分线上串加10Ω的电阻来抑制干扰。 (2) 电路防雷设计要点: 为了达到IEC61000-4-5或GB17626.5标准,共模2KV,差摸1KV的防雷测试要求,成本最低的设计方案就是变压器初级中心抽头通过防雷器件接地,电路图上的D1可以选择成本较低的半导体放电管,但是要注意“防护器件标称电压要求大于等于6V;防护器件峰值电流要求大于等于50A;防护器件峰值功率要求大于等于300 W。注意选择半导体放电管,要注意器件“断态电压、维持电流”均要大于电路工作电压和工作电流。 根据测试标准要求,对于非屏蔽的平衡信号,不要求强制性进行差模测试,所以对于差模1KV以内的防护要求,可以通过变压器自身绕阻来防护能量冲击,不需要增加差模防护器件。 接口电路设计备注: 如果设备为金属外壳,同时单板可以独立的划分出接口地,那么金属外壳与接口地直接电气连接,且单板地与接口地通过1000pF电容相连。

以太网GMII介绍

以太网知识GMII / RGMII接口 本文主要分析MII/RMII/SMII,以及GMII/RGMII/SGMII接口的信号定义,及相关知识,同时本文也对RJ-45接口进行了总结,分析了在10/100模式下和1000M模式下的连接方法。 1. GMII 接口分析 GMII接口提供了8位数据通道,125MHz的时钟速率,从而1000Mbps的数据传输速率。下图定义了RS层的输入输出信号以及STA的信号: 图18 Reconciliation Sublayer (RS) and STA connections to GMII 下面将详细介绍GMII接口的信号定义,时序特性等。由于GMII接口有MAC和PHY模式,因此,将会根据这两种不同的模式进行分析,同时还会对RGMII/TBI/RTBI接口进行介绍。 4.1 GMII接口信号定义 GMII接口可分为MAC模式和PHY模式,一般说来MAC和PHY对接,但是MAC和MAC也是可以对接的。 在GMII接口中,它是用8根数据线来传送数据的,这样在传送1000M数据时,时钟就会125MHz。 GMII接口主要包括四个部分。一是从MAC层到物理层的发送数据接口,二是从物理层到MAC层的接收数据接口,三是从物理层到MAC层的状态指示信号,四是MAC层和物理层之间传送控制和状态信息的MDIO接口。 GMII接口的MAC模式定义:

注意在表7中,信号GTX_CLK对于MAC来说,此时是Output信号,这一点和MII接口中的TX_CLK的Input特性不一致。 GMII接口PHY模式定义: 表8 注意在表8中,信号GTX_CLK对于PHY来说,此时是Input信号,这一点和MII接口中的TX_CLK的Output特性不一致。 4.2 GMII接口时序特性

1.1以太网接口简介·

目录 1以太网接口配置············································································································· 1-1 1.1 以太网接口简介·········································································································· 1-1 1.2 以太网接口配置·········································································································· 1-1 1.2.1 以太网接口基本配置 ··························································································· 1-1 1.2.2 以太网子接口基本配置 ························································································ 1-2 1.2.3 切换以太网接口的二三层工作模式 ········································································· 1-2 1.2.4 配置以太网接口允许超长帧通过 ············································································ 1-3 1.2.5 配置以太网接口dampening功能 ············································································ 1-3 1.2.6 配置以太网接口统计信息的时间间隔 ······································································ 1-5 1.2.7 配置以太网接口的MAC地址 ················································································· 1-5 1.3 以太网接口显示和维护································································································· 1-6

嵌入式系统的以太网接口设计

龙源期刊网 https://www.wendangku.net/doc/db1047303.html, 嵌入式系统的以太网接口设计 作者:于申申 来源:《硅谷》2011年第17期 摘要:随着网络和嵌入式系统的发展,嵌入式系统与网络的结合已经成为最新的研究方向。使用处理器S3C44B0X和以太网接口芯片RTL8019AS,设计一种通用的嵌入式系统以太网接口设计与实现方案。这种设计结构简单,实现方便,具有很好的实用价值。 关键词: S3C44BOX; RTL8019AS; uCLinux操作系统 中图分类号:TP368 文献标识码:A 文章编号:1671-7597(2011)0910067-01 目前,随着计算机技术、通信技术的飞速发展,以太网以它的普遍性及低廉的接口价格,已经作为一种最通用的网络,广泛应用于生产和生活中。使得我们在计算机进行网络互连的同时,许多领域的嵌入式设备如工业控制、数据采集、数控机床和智能仪表等也有接入网络的需求。伴随着信息家电出现,嵌入式设备的网络化必将拥有更广阔的发展前途。在这个过程里,首先要解决的是嵌入式设备如何实现网络互连。 本文基于常用的嵌人式处理器S3C44B0X和以太网驱动器RTL8019AS以及μClinux系统设计了一款嵌人式以太网接口。该方案和其它设计比较具有高性能、低功耗、软硬件易扩展特点,是当前及今后工业以太网控制器的理想选择方案。本设计的特点是,既可仅用于嵌人式以太网驱动设备,方便简单,又可进行扩展其他模块,必要时可以移植操作系统,应用于其他复杂领域。 1 芯片简介 1.1 S3C44B0X芯片概述 系统的CPU采用S3C44B0X,它是Samsung公司推出的16/32位RISC处理器,采用了ARM7TDMI内核,0.25um工艺的CMOS标准宏单元和存储编译器。S3C44B0X还采用了一种新的总线结构,即SAMBA-II(三星ARM嵌入式微处理器总线结构)。S3C44B0X[1]通过提供全面的、通用的片上外设,大大减少了系统电路中外围元器件配置,从而最小化系统的成本,它为一般应用提供了高性价比和高性能的微处理器解决方案。 由于S3C44B0X微处理器集成了丰富的外设,非常适合控制管理。而μClinux系统又可对多种硬件资源进行控制,加之S3C44B0X对μClinux操作系统的完美支持,故采用了三星公司S3C44B0X芯片作为微处理器。

10GbE以太网介绍

Introduction to 10 Gigabit Ethernet Tim Chung Version 1.0 (FEB, 2010) QSAN Technology, Inc. https://www.wendangku.net/doc/db1047303.html, White Paper# QWP201003-P500H

lntroduction This document introduces some basic knowledge about 10 Gigabit Ethernet. It includes cable media, MSAs (multi-source agreements, the modularized adapter sets), and the solutions which QSAN provides. Users will learn the knowledge and make the right choice of their needs. Cable media Fiber Basically, optical fiber can be divided into two classifications: single-mode fiber (SMF) and multi-mode fiber (MMF). The comparison table is listed below: Fiber type Core size of cable Distance Light source Benefit Shortcoming Cable color MMF 50 or 62.5 μm Less than 300M Low-cost laser or LED Cheaper, easy to manufacture, lower power consumption Short distances Orange SMF 8~9 μm Over 10Km by diff. fiber standards High power, collimated laser Long distances Expensive, Higher power consumption Yellow The fiber solutions used by 10 Gigabit Ethernet are definded by IEEE 802.3ae. It includes fiber -SR, -LR, -ER, and –LX4. Here we take an example of -SR and –LR. Common name IEEE standard Wavelength (nm) Cable type Distance 10GBASE- SR 802.3ae 850 MMF Up to 300M 10GBASE- LR 802.3ae 1310 SMF 10KM Copper The copper solutions used by 10Gigabit Ethernet are 10BASE-CX4 (IEEE 802.3ak), 10BASE-T (IEEE 802.3an), and the SFP+ Direct Attach. Here is the comparison table. Common name IEEE standard Cable type Distance Benefit Shortcoming 10GBASE-CX4 802.3ak CX4, similar to the one used by InfiniBand? technology 15M Low latency, low cost, low power Short reach, bigger form factor SFP+ DA N/A Passive Twin- Axial (2 pair copper) cables 10M Low latency, low cost, low power small form Short reach

以太网网卡结构和工作原理

以太网网卡结构和工作原理 网络适配器又称网卡或网络接口卡(NIC),英文名NetworkInterfaceCard。它是使计算机联网的设备。平常所说的网卡就是将PC机和LAN连接的网络适配器。网卡(NIC)插在计算机主板插槽中,负责将用户要传递的数据转换为网络上其它设备能够识别的格式,通过网络介质传输。它的主要技术参数为带宽、总线方式、电气接口方式等。它的基本功能为:从并行到串行的数据转换,包的装配和拆装,网络存取控制,数据缓存和网络信号。目前主要是8位和16位网卡。 网卡必须具备两大技术:网卡驱动程序和I/O技术。驱动程序使网卡和网络操作系统兼容,实现PC机与网络的通信。I/O技术可以通过数据总线实现PC和网卡之间的通信。网卡是计算机网络中最基本的元素。在计算机局域网络中,如果有一台计算机没有网卡,那么这台计算机将不能和其他计算机通信,也就是说,这台计算机和网络是孤立的。 网卡的不同分类:根据网络技术的不同,网卡的分类也有所不同,如大家所熟知的ATM网卡、令牌环网卡和以太网网卡等。据统计,目前约有80%的局域网采用以太网技术。根据工作对象的不同务器的工作特点而专门设计的,价格较贵,但性能很好。就兼容网卡而言,目前,网卡一般分为普通工作站网卡和服务器专用网卡。服务器专用网卡是为了适应网络服种类较多,性能也有差异,可按以下的标准进行分类:按网卡所支持带宽的不同可分为10M网卡、100M网卡、 10/100M自适应网卡、1000M网卡几种;根据网卡总线类型的不同,主要分为ISA网卡、EISA网卡和PCI网卡三大类,其中ISA网卡和PCI网卡较常使用。ISA总线网卡的带宽一般为10M,PCI总线网卡的带宽从10M到1000M都有。同样是10M网卡,因为ISA总线为16位,而PCI总线为32位,所以PCI网卡要比ISA网卡快。 网卡的接口类型:根据传输介质的不同,网卡出现了AUI接口(粗缆接口)、BNC接口(细缆接口)和RJ-45接口(双绞线接口)三种接口类型。所以在选用网卡时,应注意网卡所支持的接口类型,否则可能不适用于你的网络。市面上常见的10M网卡主要有单口网卡(RJ-45接口或BNC接口)和双口网卡(RJ-45和BNC两种接口),带有AUI粗缆接口的网卡较少。而100M和1000M网卡一般为单口卡(RJ-45接口)。除网卡的接口外,我们在选用网卡时还常常要注意网卡是否支持无盘启动。必要时还要考虑网卡是否支持光纤连接。 网卡的选购:据统计,目前绝大多数的局域网采用以太网技术,因而重点以以太网网卡为例,讲一些选购网卡时应注意的问题。购买时应注意以下几个重点: 网卡的应用领域----目前,以太网网卡有10M、100M、10M/100M及千兆网卡。对于大数据量网络来说,服务器应该采用千兆以太网网卡,这种网卡多用于服务器与交换机之间的连接,以提高整体系统的响应速率。而10M、100M和 10M/100M网卡则属人们经常购买且常用的网络设备,这三种产品的价格相差不大。所谓10M/100M自适应是指网卡可以与远端网络设备(集线器或交换机)

以太网采用的通信协议

竭诚为您提供优质文档/双击可除以太网采用的通信协议 篇一:以太网基础协议802.3介绍 802.3 802.3通常指以太网。一种网络协议。描述物理层和数据链路层的mac子层的实现方法,在多种物理媒体上以多种速率采用csma/cd访问方式,对于快速以太网该标准说明的实现方法有所扩展。 dixethernetV2标准与ieee的802.3标准只有很小的差别,因此可以将802.3局域网简称为“以太网”。 严格说来,“以太网”应当是指符合dixethernetV2标准的局域网。 早期的ieee802.3描述的物理媒体类型包括:10base2、10base5、10baseF、10baset和10broad36等;快速以太网的物理媒体类型包括:100baset、100baset4和100basex等。 为了使数据链路层能更好地适应多种局域网标准,802委员会就将局域网的数据链路层拆成两个子层: 逻辑链路控制llc(logicallinkcontrol)子层 媒体接入控制mac(mediumaccesscontrol)子层。

与接入到传输媒体有关的内容都放在mac子层,而llc 子层则与传输媒体无关,不管采用何种协议的局域网对llc 子层来说都是透明的。 由于tcp/ip体系经常使用的局域网是dixethernetV2而不是802.3标准中的几种局域网,因此现在802委员会制定的逻辑链路控制子层llc(即802.2标准)的作用已经不大了。 很多厂商生产的网卡上就仅装有mac协议而没有llc协议。 mac子层的数据封装所包括的主要内容有:数据封装分为发送数据封装和接收数据封装两部分,包括成帧、编制和差错检测等功能。 数据封装的过程:当llc子层请求发送数据帧时,发送数据封装部分开始按mac子层的帧格式组帧: (1)将一个前导码p和一个帧起始定界符sFd附加到帧头部分; (2)填上目的地址、源地址、计算出llc数据帧的字节数并填入长度字段len; (3)必要时将填充字符pad附加到llc数据帧后; (4)求出cRc校验码附加到帧校验码序列Fcs中; (5)将完成封装后的mac帧递交miac子层的发送介质访问管理部分以供发送;接收数据解封部分主要用于校验帧

以太网交换机说明

以太网交换机的功能与原理详细说明 下面文章根据以太网交换机的功能和原理进行详细的说明介绍,或许一些刚刚接触到这一行业的用户来说,以太网交换机这个名词对于他们来说是个陌生的东西,那么看完本文能给您带来相关益处。 作为局域网的主要连接设备,以太网交换机成为应用普及最快的网络设备之一。随着交换技术的不断发展,以太网交换机的价格急剧下降,交换到桌面已是大势所趋。如果你的以太网络上拥有大量的用户、繁忙的应用程序和各式各样的服务器。 而且你还未对网络结构做出任何调整,那么整个网络的性能可能会非常低。解决方法之一是在以太网上添加一个10/100Mbps的交换机,它不仅可以处理10Mbps的常规以太网数据流,而且还可以支持100Mbps的快速以太网连接。 如果网络的利用率超过了40%,并且碰撞率大于10%,交换机可以帮你解决一点问题。带有100Mbps快速以太网和10Mbps以太网端口的交换机可以全双工方式运行,可以建立起专用的20Mbps到200Mbps连接。 不仅不同网络环境下交换机的作用各不相同,在同一网络环境下添加新的交换机和增加现有交换机的交换端口对网络的影响也不尽相同。充分了解和掌握网络的流量模式是能否发挥交换机作用的一个非常重要的因素。 因为使用交换机的目的就是尽可能的减少和过滤网络中的数据流量,所以如果网络中的某台交换机由于安装位置设置不当,几乎需要转发接收到的所有数据包的话,交换机就无法发挥其优化网络性能的作用,反而降低了数据的传输速度,增加了网络延迟。 除安装位置之外,如果在那些负载较小,信息量较低的网络中也盲目添加交换机的话,同样也可能起到负面影响。受数据包的处理时间、交换机的缓冲区大小以及需要重新生成新数据包等因素的影响。 在这种情况下使用简单的HUB要比交换机更为理想。因此,我们不能一概认为交换机就比HUB有优势,尤其当用户的网络并不拥挤,尚有很大的可利用空间时,使用HUB更能够充分利用网络的现有资源。 “交换机”是一个舶来词,源自英文“Switch,原意是“开关”,我国技术界在引入这个词汇时, 翻译为“交换”。在英文中,动词“交换”和名词“交换机”是同一个词(注意这里的“交换”特指电信技术中的信号交换,与物品交换不是同一个概念)。 1993年,局域网交换设备出现,1994年,国内掀起了交换网络技术的热潮。其实,交换技

相关文档
相关文档 最新文档