文档库 最新最全的文档下载
当前位置:文档库 › 全国首测 6热管CoolAge Z120散热器

全国首测 6热管CoolAge Z120散热器

全国首测 6热管CoolAge Z120散热器
全国首测 6热管CoolAge Z120散热器

全国首测6热管CoolAge Z120散热器

出处:本站作者:零晨雾

CoolAge Z120 WING/AERO散热器外观赏析一

CoolAge Z120 WING/AERO两款散热器外包装,仅只是型号不同而已

CoolAge Z120 AERO(左)、Z120 WING(中)、九州风神冰刃至尊版(右)

CoolAge Z120 WING/AERO两款散热器的外观设计尺寸相差不大,Z120 AERO在整体高度上稍高1mm。

CoolAge Z120 WING/AERO两款散热器唯一不同之处是散热鳍片设计上,Z120 WING散热鳍片为刀片式光亮设计,而Z120 AERO为凹凸蜂巢式设计,这种别有特色的设计主要是起到增加散热面积和降低风噪作用;Z120 WING散热器共有60片散热鳍片、鳍片间距为1.5mm、散热面积约为8600c㎡,而Z120 AERO散热器则有55片散热鳍片、鳍片间距为0.3~2mm、散热面积约为8000c㎡,散热鳍片厚度同样为0.4mm。

CoolAge Z120 WING/AERO散热器外观赏析一

CoolAge Z120 WING/AERO两款散热器外包装,仅只是型号不同而已

CoolAge Z120 AERO(左)、Z120 WING(中)、九州风神冰刃至尊版(右)

CoolAge Z120 WING/AERO两款散热器的外观设计尺寸相差不大,Z120 AERO在整体高度上稍高1mm。

CoolAge Z120 WING/AERO两款散热器唯一不同之处是散热鳍片设计上,Z120 WING散热鳍片为刀片式光亮设计,而Z120 AERO为凹凸蜂巢式设计,这种别有特色的设计主要是起到

增加散热面积和降低风噪作用;Z120 WING散热器共有60片散热鳍片、鳍片间距为1.5mm、散热面积约为8600c㎡,而Z120 AERO散热器则有55片散热鳍片、鳍片间距为0.3~2mm、散热面积约为8000c㎡,散热鳍片厚度同样为0.4mm。

CoolAge Z120 WING/AERO散热器外观赏析二

两款Z120散热器散热鳍片与热管之间采用穿Fin工艺,再以镀镍层加强接触,处理工艺不错。

从正面和鳍片细节对比两款散热器,刀片式和蜂巢式散热鳍片设计,笔者感觉左边Z120 WING较为美观些。

两款Z120散热器侧面并未采用扣Fin工艺加固散热鳍片,普通用户会觉得这样在牢固性上欠佳,其实好的穿Fin工艺担心这样的问题是多虑的。

两款Z120散热器均采用6根6mm热管,底部为热管直触式设计,这种设计的好处是可以在成本和性能上取得平衡点。

Z120散热器附件中提供两套12025风扇扣具、4颗螺丝、4颗螺母、4粒橡胶圈以及一套全平台金属扣具。

Z120散热器安装教程

先将金属背板安装螺丝处的双面胶表层撕开。

然后粘在主板CPU背面处,安装螺丝。

在螺丝另一面套上塑胶圈固定螺丝。

安装好扣具背板、4颗螺丝,并在CPU表面涂抹上导热硅脂。

在Z120散热器底部有一根小柱子,中心位置有一下凹处,其用处是用来固定金属扣具和加强CPU中心受力点。

如图,金属扣具安装固定。

金属扣具穿过螺丝(如果是头次安装务必注意这点,否则会觉得很难安装),然后再拧上4颗螺母拧紧即可。

安装一颗12025风扇。

安装两颗12025风扇组成一进一出风道加强散热。

在安装内存时候特意拿了一套带马甲的内存(标准高度)安装,发现散热器扣具刚刚好跟内存散热片亲密接触,假如安装那类加高型散热片的内存就要考虑这个问题了。

测试平台及说明

测试中为了模拟高功耗CPU发热,我们将Intel I5-2500K加压至1.4V并超频至4.8GHz,并关闭CPU和主板各种节能技术,测试采用AIDA64记录CPU四个核心在满负载时的稳定平均温度,满负载软件选用ORTHOS。测试的环境温度保持在15°C左右,安装在唯纳智机甲战线封箱测试。

本次测试参考对象为相近价位的九州风神冰刃至尊版,搭配的风扇选用冰刃至尊版原装风扇两颗,并分单风扇和双风扇两组对比。

测试通过记录CPU风扇进风口温度、满载时CPU的稳定平均功耗、温度得出热阻,再以热阻逆换算成参考温度对比(这种测试方法不存在室温变化影响测试结果,更为科学)。

CPU风扇进风口温度监控点散热器性能测试

在搭配单颗风扇情况下,在1200rpm时CoolAge Z120 WING/AERO表现均要比九州风神冰刃至尊版好3~4°C之间,而在1500rpm时同样保持3~4°C优势;Z120 AERO虽散热面积和鳍片数量不及Z120 WING,不过在单风扇测试中Z120 AERO以0.5°C左右轻微优势胜出。

散热器的热管技术

[散热原理——热管技术] 热管属于一种传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,通过在全封闭真空管内的液体的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点,并且由热管组成的换热器具有传热效率高、结构紧凑、流体阻损小等优点。其导热能力已远远超过任何已知金属的导热能力。以前热管技术一直被广泛应用在宇航、军工等行业。 正是因为有热管技术的民用化,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠大风量风扇获得更好散热效果的传统散热模式。取而代之的是采用低转速、低风量风扇配合热管技术的崭新散热模式。热管技术更为PC的静音时代带来了契机 热管技术为什么会有如此的高性能呢?这个问题我们要从热力学的角度看。物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。圣保罗散热器热传递有3种方式:辐射、对流、传导,其中热传导最快。

热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。常见的热管均是由管壳、吸液芯和端盖组成。制作方法是将热管内部抽成负压状态,然后充入适当的液体,这种液体沸点很低,容易挥发。管壁有吸液芯,由毛细多孔材料构成。 热管一端为蒸发端,另外一端为冷凝端。当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体。液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止。热量由热管一端传至另外一端,这种循环是快速进行的,热量可以被源源不断地传导开来。热管的导热过程具有很高的热传导性能,与金属相比,单位重量的热管可多传递几个数量级的热量,并且具有优良的等温性和热开关性能,特别适用于高精密散热环境。 高速度的热传导效果: -重量轻且构造简单。 -温度分布平均,可作均温或等温动作。 -热传输量大。热传送距离长。 -没有主动元件,本身并不耗电。 -可以在无重力力场的环境下使用。 -没有热传方向的限制,蒸发端以及凝结端可以互换。 -容易加工以改变热传输方向。 -耐用、寿命长、可靠,易存放保管。

热管散热器解决方案的优点和限制

热管散热器解决方案的7大优点和5大限制 来源;大比特商务网 今天的大功率LED灯具(300瓦以上)主要采用热管散热器进行散热,但这种散热技术目前也面临着PC处理器散热沿袭下来的均温板和复合槽群散热技术的挑战,下文会帮助您明白为什么超频三科技如此钟爱热管散热技术。 大功率(300瓦以上)LED户外灯具散热除了可考虑采用目前市场很受欢迎的热管散热器以外,还可以考虑采用从PC高速处理器散热传承下来的均温板和复合槽群散热器,下文先为大家介绍热管散热技术的工作原理和优缺点,接下来再为大家介绍均温板和复合槽群散热技术。 我们都知道热的传递方式有三种:传导、对流与辐射,任何的散热设计都是这几种方式的综合应用。目前行业内常用的散热方法主要有以下三种:自然散热、强制对流散热、热管散热。而热管散热是目前效果最好而且性能稳定的散热装置,其传导热量的速度高出传统金属几十到上百倍,这一特点对LED来说再好不过,它能迅速将LED产生的热量以最快的方式传到别处,这比其它任何方法都要快捷有效,缺点是成本较高,若我们实现热管散热的标准化、模组化后,其成本也将不是问题。 那么这项新的技术具有哪些特点呢? 从使用角度看,热管具有热传递速度极快的优点,安装至散热器中可以有效的降低热阻值,增加散热效率。热管,又称“热之超导体”,其核心作用是导热。它通过在全封闭真空管内工质的汽、液相变来传递热量,具有极高的导热性,高达纯铜导热能力的上百倍。 从技术角度看,热管的核心作用提高热传递的效率,将热量快速从热源带离,而非一般意义上所说的“散热”——这则涵括与外界环境进行热交换的过程。热管的工作原理很简单,热管分为蒸发受热端和冷凝端两部分。受热端受热时,管壁周围液体汽化,产生蒸气,此时这部分压力变大,蒸气向冷凝端流动,到达冷凝端后冷凝成液体,同时放出热量,最后借助毛细力回到受热端完成一次循环。

散热器的散热量计算

冀州市冀暖北方暖气片厂 本标准参照采用国际标准ISO3147—1975(E)《热交换器—供水或蒸汽主环路的热平衡实验原理和试验方法》、ISO3148—1975《用空气冷却闭式小室确定辐射散热器、对流散热器和类似设备散热量的试验方法》、ISO3149—1975《用液体冷却闭式小室确定辐射散热器、对流散热器和类似设备散热量的试验方法》、ISO3150—1975(E)《辐射散热器、对流散热器和类似设备—散热量计算和结果的表达式》。 1、主题内容与适用范围本标准规定了在闭式小室内测试采暖散热器(简称散热器,暖气片)单位时间散热量(简称散热量)的原理、装置、方法、要求和数据的整理。本标准适用于以热水或蒸汽为热媒的采暖散热器。 2、术语 2.1辐射散热器在采暖散热器中,部分靠辐射放热的称辐射散热器。 2.2对流散热器在采暖散热器中,几乎完全靠自然对流放热的称对流散热器。 3、测试原理 3.1散热器的散热量散热器的散热量应由下式求得:Q=Gp(h1—h2) 式中:Q——散热器的散热量,W;Gp——热媒的平均流量,Kg/s;h1——散热器进口处热媒的焓,J/Kg;h2——散热器出口处热媒的焓,J/Kg。注:h1、h2 的数值系根据被测散热器进出口热媒的温度和压力,由中国建筑工业出版社1987年第一版《供暖通风设计手册》中查得。 3.2热媒参数的测量3.2.1热媒为热水时,当热水温度低于大气压力下水的沸点温度时,应测量散热器进口和出口处的水温,或测量其中一处水温及散热器进出口的热水温差;当热水温度高于大气压力下水的沸点温度时,则应测量散热器进口和出口处的水温和压力,或测量其中一处水温及散热器进出口的热水温差和压力差。3.2.2热媒为蒸汽时,应测量散热器进出口处蒸汽的压力和温度,散热器进口处的蒸汽应有2~5℃的过热度,测试时被测散热器流出的应仅为凝结水,凝结水温度与散热器进口处蒸汽压力下饱和温度之差不得超过1℃。3.2.3热媒温度系指散热器进出口处的温度。如不可能在该处测量时,则测温点与散热器进(出)口之间的距离不得大于0.3m。应对这段管道严格保温,并在计算散热量时减去这部分散热量。保温层应延伸到测温点之外0.3m以上。3.2.4热媒参数测量的准确度应符合以下要求:流量:±0.5% 温度:±0.1℃压力(绝对):±1%压差:当压差大于1KPa时±5% 当压差小于1KPa时±0.05%KPa 4、测试装置和要求 4.1测试装置测试装置应包括:a、安装被测散热器的闭式小室;b、小室六个壁面外的循环空气或水夹层;c、冷却夹层内循环空气或水的设备d、供给被测散热器能量的热媒循环系统。此系统应符合本标准的要求;e、检测和控制的仪表及设备。 4.2闭式小室的要求4.2.1小室内部的净尺寸应为:地面:(4±0.2m)×(4±0.2m) 高度:2.8±0.2m 4.2.2小室在任何情况下应为气密的。4.2.3小室的内表面应涂不含金属涂料的油漆。4.2.4小室采用空气冷却时,其构造应符合下列要求:4.2.4.1小室周围应设夹层,夹层内应维持稳定的温度环境。4.2.4.2小室的四壁、门、窗(若采用)、屋顶和地面的热阻偏差应在20%以内。4.2.4.3小室门应直接对着夹层外门。夹层外门必须气密,并宜具有和夹层墙相同的热阻。4.2.4.4夹层外围护层的墙、屋顶和地面总热阻应大于或等于1.73m3.K/W。4.2.4.5夹层内由可控温的送回风系统形成的循环空气,使小室的六个面得到均匀冷却。夹层的宽度宜为0.5m(不得小于0.3m);夹层内冷却空气的平均速度宜为0.1~0.5m/s。4.2.5采用水冷却时,小室的构造应符合下列要求:4.2. 5.1冷却水的循环方式应使小室表面温度均匀。4.2.5.2安装被测散热器的墙壁内表面,应在整个宽度离地面1.25m的高度内贴以保温板,保温板的厚度宜为6mm,其热阻应为0.05±0.05m2.K/W。板的外表面若刷油漆,应采用不含金属涂料的油漆。4.2.5.3冷却水的总流量应不小于6000Kg/h,每面墙的水流量应可分别控制。 5、闭式小室内各参数的测试及准确度 5.1小室内的空气温度小室内的空气温度应采用屏蔽的敏感元件在下列各点进行测量。5.1.1在内部空间的中心垂直轴线上a.基准点离地面0.75m高,准确到±0.1℃;b.离地面0.05、0.50、1.50m;距屋顶0.05m的四点,准确到±0.2℃。 5.1.2在每条距两面相邻墙1.0m处的垂直线上,离地面0.75、1.50m高的两点(共八点),准确到±0.2℃。} 5.2小室内表面温度小室的内表面温度应在下列各点进行测量:a.六个内表面的中心点,准确到±0.2℃;b.安装被测散热器的墙壁内表面的垂直中心线上,距地面0.30m的点,准确到±0.2℃。 5.3其他参数的测量除5.1和5.2所规定的各点外,还应测量下列参数;a.小室内空气的相对湿度;b.采用空气冷却时夹层内的空气温度,准确到±0.5℃; c.采用水冷却时,冷却系统入口处的水温准确到±0.2℃; d.大气压力,准确到±0.1KPa。

热阻计算

热阻计算 一般,热阻公式中,Tcmax =Tj - P*Rjc的公式是在假设散热片足够大而且接触足够良好的情况下才成立的,否则还应该写成Tcmax =Tj - P*(Rjc+Rcs+Rsa)。Rjc表示芯片内部至外壳的热阻,Rcs表示外壳至散热片的热阻,Rsa表示散热片的热阻。没有散热片时,Tcmax =Tj - P*(Rjc+Rca)。Rca 表示外壳至空气的热阻。 一般使用条件用Tc =Tj - P*Rjc的公式近似。厂家规格书一般会给出,Rjc, P等参数。一般P是在25度时的功耗。当温度大于25度时,会有一个降额指标。 一、可以把半导体器件分为功率器件和小功率器件。 1、大功率器件的额定功率一般是指带散热器时的功率,散热器足够大时且散热良好时,可以认为其表面到环境之间的热阻为0,所以理想状态时壳温即等于环境温度。功率器件由于采用了特殊的工艺,所以其最高允许结温有的可以达到175度。但是为了保险起见,一律可以按150度来计算。适用公式:Tc =Tj - P*Rjc。设计时,Tj最大值为150,Rjc已知,假设环境温度也确定,根据壳温即等于环境温度,那么此时允许的P也就随之确定。 2、小功率半导体器件,比如小晶体管,IC,一般使用时是不带散热器的。所以这时就要考虑器件壳体到空气之间的热阻了。一般厂家规格书中会给出Rja,即结到环境之间的热阻。(Rja=Rjc+Rca)。 同样以三级管2N5551为例,其最大使用功率1.5W是在其壳温25度时取得的。假设此时环境温度恰好是25度,又要消耗1.5W的功率,还要保证结温也是25度,唯一的可能就是它得到足够良好的散热!但是一般像2N5551这样TO-92封装的三极管,是不可能带散热器使用的。所以此时,小功率半导体器件要用到的公式是: Tc =Tj - P*Rja Rja:结到环境之间的热阻。一般小功率半导体器件的厂家会在规格书中给出这个参数。 2N5551的Rja,厂家给的值是200度/W。已知其最高结温是150度,那么其壳温为25度时,允许的功耗可以把上述数据代入Tc =Tj - P*Rja 得到: 25=150-P*200,得到,P=0.625W。事实上,规格书中就是0.625W。因为2N5551不会加散热器使用,所以我们平常说的2N5551的功率是0.625W而不是1.5W! 还有要注意,SOT-23封装的晶体管其额定功率和Rja数据,是在焊接到规定的焊盘(有一定的散热功能)上时测得的。

热管散热器技术原理

热管散热器技术原理 现在的CPU、显卡、硬盘,甚至主板芯片组的发热量都大得惊人。普通风冷散热器已经发展到极限了,要想继续提高散热性能只能寻求新的散热技术。好在业界早已开发出诸如热管、液冷、半导体制冷等技术。虽然这些技术里不乏高性能得散热方式,但是最贴合实际应用的还非热管莫数了。 热管应用于PC上还是近几年里的事,真正开始普及也就一年左右。随着热管技术的成熟和大规模使用,现在的热管散热器已经走下神台,价格也是一落千丈,从最初的500以上,到现在不足百元的售价,的确让很多玩家为止欣喜。但是,你知道为什么同样的热管散热器价格会有从几千元到几十元这么大的差价么?你知道热管散热器里面的各种技术和制造工艺么?下面我就和大家一起探讨一 下关于热管散热器的方方面面。 热管是一种具有极高导热性能的传热元件,1964年发明于美国洛斯-阿洛莫斯国家实验室(L os Alamos National Laboratory)并在上世纪60年代末达到理论研究高峰于70年代开始在工业领域大量应用。它通过在全封闭真空管内工质的汽、液相变来传递热量,具有极高的导热性,高达纯铜导热能力的上百倍,有“热超导体”之美称。工艺过关、设计出色的热管CPU散热器,将具有普通无热管风冷散热器无法达到的强劲性能。

热管工作状况示意图 PC散热器中应用的热管属常温热管,工艺成熟,热管内工质为水。热管一端为蒸发端,另外一端为冷凝端。当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体。液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止。热量由热管一端传至另外一端,这种循环是快速进行的,热量可以被源源不断地传导开来。 理论上的导热系数优势转化到散热器设计方面,体现在可比同散热水平的全铜质散热片大幅减轻重量、实用型最终成品的效能领先,以及更为灵活的散热区域调整。前两种优势很容易理解,更为灵活的散热区域调整的典型实例是通过热管将CPU热量传递到稍远且不在同一平面上的机箱背部散热片处,由机箱风扇负责将热量带走,成功减少整机风扇数量,使机箱内部空气更加合理顺畅。这种方案在准系统和国外品牌整机中较为常见,如下图:

散热器的选型与计算

散热器的选型与计算 以7805为例说明问题. 设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出. 正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-T a)/Pd Tjmax :芯组最大结温150℃ Ta :环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率-输出功率 ={24×0.75+(-24)×(-0.25)}-9.8×0.25×2 =5.5℃/W

总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d:散热器厚度cm A:散热器面积cm2 C:修正因子取1 按现有散热器考虑,d=1.0A=17.6×7+17.6×1×13 算得散热器热阻RQd-a=4.1℃/W, 散热器选择及散热计算 目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散

灯珠结温和散热面积计算理论

灯珠结温和散热面积计算理论 灯珠结温和散热面积计算理论 一、基础理论 大功率LED的散热问题: LED是个光电器件,其工作过程中只有15%~25%的电能转换成光能,其余的电能几乎都转换成热能,使LED的温度升高。在大功率LED中,散热是个大问题。例如,1个10W白光LED若其光电转换效率为20%,则有8W的电能转换成热能,若不加散热措施,则大功率LED的器芯温度会急速上升,当其结温(TJ)上升超过最大允许温度时(一般是

150℃),大功率LED会因过热而损坏。因此在大功率LED灯具设计中,最主要的设计工作就是散热设计。 另外,一般功率器件(如电源IC)的散热计算中,只要结温小于最大允许结温温度(一般是125℃)就可以了。但在大功率LED散热设计中,其结温TJ要求比125℃低得多。其原因是TJ对LED的出光率及寿命有较大影响:TJ越高会使LED的出光率越低,寿命越短。 K2系列白光LED的结温TJ与相对出光率的关系。在TJ=25℃时,相对出光率为1;TJ=70℃时相对出光率降为0.9;TJ=115℃时,则降到0.8了;TJ=50℃时,寿命为90000小时;TJ=80℃时,寿命降到34000小时;TJ=115℃时,其寿命只有13300小时了。TJ在散热设计中要提出最大允许结温值TJmax,实际的结温值TJ应小于或等于要求的TJmax,即TJ≤TJmax。 大功率LED的散热路径. 大功率LED在结构设计上是十分重视散热的。图2是Lumiled公司K2系列的内部结构、图3是NICHIA公司NCCW022的内部结构。从这两图可以看出:在管芯下面有一个尺寸较大的金属散热垫,它能使管芯的热量通过散热垫传到外面去。 大功率LED是焊在印制板(PCB)上的,如图4所示。散热垫的底面与PCB的敷铜面焊在一起,以较大的敷铜层作散热面。为提高散热效率,采用双层敷铜层的PCB,所示。这是一种最简单的散热结构。热是从温度高处向温度低5其正反面图形如图 处散热。大功率LED主要的散热路径是:管芯→散热垫→印制板敷铜

损耗与散热设计

第8章 损耗与散热设计 开关电源是功率设备,功率元器件损耗大,损耗引起发热,导致元器件温度升高,为了使元器件温度不超过最高允许温度,必须将元器件的热量传输出去,需要散热器和良好的散热措施,设备的体积重量受到损耗限制。同时,输出一定功率时损耗大,也意味着效率低。 8.1热传输 电子元器件功率损耗以热的形式表现出来,热能积累增加元器件内部结构温度,元器件内部温度受最高允许温度限制,必须将内部热量散发到环境中,热量通过传导、对流和辐射传输。当损耗功率与耗散到环境的功率相等时,内部温度达到稳态。 1. 传导 传导是热能从一个质点传到下一个质点,传热的质点保持它原来 的位置的传输过程,如图8-1固体内的热传输。热量从表面温度为T 1 的一端全部传递到温度为T 2的另一端,单位时间传递的能量,即功 率表示为 T R T l T T A P ?=-= )(21λ (8-1) 式中 A l R T λ= (8-2) 称为热阻(℃/ W );l -热导体传输路径长度(m);A -垂直于热传输路径的导体截面积(m 2);λ-棒材料的热导率(W/m ℃),含90%铝的热导率为220W/ m ℃,几种材料的热导率如表8-1所示;ΔT =T 1-T 2温度差(℃)。 例:氧化铝绝缘垫片厚度为0.5mm ,截面积2.5cm 2,求热阻。 解:由表8-1查得λ=20 W/m ℃,根据式(8-2)得到 3 4 0.5100.120 2.510t R --?==??℃/ W 式(8-1)类似电路中欧姆定律:功率P 相当于电路中电流,温度差;ΔT 相当于电路中电压。 半导体结的热量传输到周围空气必然经过几种不同材料传输,每种材料有自己的热导率,截面积和长度,多层材料的热传输可以建立热电模拟的热路图。图8-2是功率器件由硅芯片的热传到环境的热通路(a)和等效热路(b)。由结到环境的总热阻为 sa cs jc js R R R R ++= (8-3) 上式右边前两个热阻可以按式(8-2)计算,最后一项的热阻在以后介绍的方法计算。如果功率器件损耗功率为P ,则结温为 a sa cs jc j T R R R P T +++=)( (8-4) 式中R jc , R cs 及R sa 分别表示芯片结到管壳,管壳到散热器和散热 器到环境热阻。除了散热器到环境的热阻R sa 外,其余两个热阻可以按式(8-2)计算。 (a) (b) 图8-2功率器件热传输和等效热路图

热管散热器的工作原理

热管散热器的工作原理 热管散热器的工作原理,热管:是一种传热性极好的人工构件,常用的热管由三;⑴在真空状态下,液体的沸点降低;;⑵同种物质的汽化潜热比显热高的多;;⑶多孔毛细结构对液体的抽吸力可使液体流动;典型的构造和工作过程如右图所示:;与热源靠近的一段(蒸发段)内的液体吸热而蒸发,蒸;热管利用“相变”传热的原理与金属铜、铝等实体材料热管散热器的工作原理 热管:是一种传热性极好的人工构件,常用的热管由三部分组成:主体为一根封闭的金属管,内部有少量工作介质和毛细结构,管内的空气及其他杂物必须排除在外。热管工作时利用了三种物理学原理: ⑴在真空状态下,液体的沸点降低; ⑵同种物质的汽化潜热比显热高的多; ⑶多孔毛细结构对液体的抽吸力可使液体流动。 典型的构造和工作过程如右图所示: 与热源靠近的一段(蒸发段)内的液体吸热而蒸发,蒸汽携带汽化潜热经空腔流向另一段(冷凝段),汽体经管壁与外界冷媒体换热放出潜热而完成了传热任务,冷凝成液体,经毛细结构的抽吸力量或重力回流到蒸发段进入下一个工作循环。金旗舰铜制散热器114*60 热管利用“相变”传热的原理与金属铜、铝等实体材料的天然传热方式完全不同。热管的有效导热性是铜、铝等有色金属的成百上千

倍,所以热管是传热领域的重大发明和科技成果,给人类社会带来巨大的实用价值。 热管散热器:利用热管技术能对许多老式散热器或换热产品和系统作重大的改进而产生出的新产品。热管散热器就是这一方面的一个很好的典型。散热器的 热阻是由材料的导热性和体积内的有效面积决定的。实体铝或铜散热器在体积达到0.006m3时,再加大其体积和面积也不能明显减小热阻了。对于双面散热的分立半导体器件,风冷的全铜或全铝散热器的热阻只能达到0.04℃/W。而热管散热器可达到0.01℃/W。在自然对流冷却条件下,热管散热器比实体散热器的性能可提高十倍以上。 散热系统:热管问世以来,使电力电子装置的散热系统有了新的发展。无论何种散热方式,其最终散热媒体是空气,其他都是中间环接。空气自然对流冷却是最直接和简便的方式,热管使自冷的应用范围迅速扩大。因为热管自冷散热系统无需风扇、没有噪音、免维修、安全可靠,热管风冷甚至自冷可以取代水冷系统,节约水资源和相关的辅助设备投资。此外,热管散热还能将发热件集中,甚至密封,而将散热部分移到外部或远处,能防尘、防潮、防爆,提高电器设备的安全可靠性和应用范围。

散热器如何选型及计算

散热器如何选型及计算 散热器如何选型及计算;【1】散热器基础;1、散热量计量单位的W是什么?;散热器技术性能中的W是热功率计量单位;金属热强度Q(W/KG.℃):是指金属散热器内热;各种散热器的金属热强度比较表;3、什么是散热器的传热系数?;散热器的传热系数K(W/㎡.℃):是指散热器内热;4、散热器的散热过程是什么样的?;当温度较高的热媒在散热器内流过时,热媒所携带的热;1、散热器如何选型及计算【1】散热器基础 1、散热量计量单位的W 是什么? 散热器技术性能中的W 是热功率计量单位。是指每米或每片(柱)散热器在不同工况下每小时的散热量(瓦)。 2、什么是金属热强度?其在工程中的实际意义是什么? 金属热强度Q(W/KG .℃):是指金属散热器内热媒的平均温度与室内空气温度相差1℃时,每公斤质量的金属单位时间所散出的热量. Q值越大,说明散出同样的热量所耗用金属越少.这个指标是衡量散热器节能和经济性的一个指标。 各种散热器的金属热强度比较表 3、什么是散热器的传热系数? 散热器的传热系数K(W/㎡.℃):是指散热器内热媒的平均温度与室内气温相差为1度时,每平方米散热面积所传出的热量.该值与散 热面积的乘积,再乘标准传热温差(64.5℃)就是该散热器的标准散热 量.即Q=K.F.64.5,在散热面积一定的情况下,K值越大,则散热器的

散热量就越大.K值为整个传热过程的综合系数(包括对流传热和辐射传热),与散热器本身的特点和使用条件有关,如水流情况,内外表面 情况等。 4、散热器的散热过程是什么样的? 当温度较高的热媒在散热器内流过时,热媒所携带的热量通过散 热器不断地传给温度较低的室内空气,其散热过程为: 1、金旗舰铜铝复合散热器88/95散热器内的热媒通过对流换热把热量传给散热器内壁面(内表面放热系数) 2、内壁面靠导热把热量传给外壁; 3、外壁靠对流换热把大部分热量传给空气,又靠辐射把一小部分热量传给室内的物体和人. 5、散热器的水容量对采暖的影响如何? 散热器水容量对采暖的影响: 1、散热器的水容量大,采暖系统热惰性比较大,在锅炉间断供热时,水冷却时间稍长一些,采暖房间仍可以保持相当长时间的一定温度. 但再供水时,水升温也比较慢.大水容量的系统调节反映速度较慢.在连续供热时,对供暖质量无影响; 2、散热器的水容量小,启动时间短,温度调节灵敏,居室升温快, 便于分户计量供热,既省钱又方便; 3、热量是靠流动的水携带和运输的,水容量大小对热量无直接影响,只是调节时间有长短分别。

热传导计算

热传导计算 随着微电子技术的飞速发展,芯片的尺寸越来越小,同时运算速度越来越快,发热量也就越来越大,如英特尔处理器3.6G 奔腾4终极版运行时产生的热量最大可达115W ,这就对芯片的散热提出更高的要求。设计人员就必须采用先进的散热工艺和性能优异的散热材料来有效的带走热量,保证芯片在所能承受的最高温度以内正常工作。 如图 1所示,目前比较常用的一种散热方式是使用散热器,用导热材料和工具将散热器安装于芯片上面,从而将芯片产生的热量迅速排除。本文介绍了根据散热器规格、芯片功率、环境温度等数据,通过热传导计算来求得芯片工作温度的方法。 芯片的散热过程 由于散热器底面与芯片表面之间会存在很多沟壑或空隙,其中都是空气。由于空气是热的不良导体,所以空气间隙会严重影响散热效率,使散热器的性能大打折扣,甚至无法发挥作用。为了减小芯片和散热器之间的空隙,增大接触面积,必须使用导热性能好的导热材料来填充,如导热胶带、导热垫片、导热硅酯、导热黏合剂、相转变材料等。如图2所示,芯片发出的热量通过导热材料传递给散热器,再通过风扇的高速转动将绝大部分热量通过对流(强制对流和自然对流)的方式带走到周围的空气中,强制将热量排除,这样就形成了从芯片,然后通过散热器和导热材料,到周围空气的散热通路。 表征热传导过程的物理量

在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q="K"·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m)。(T1-T2)为温度差。 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A (2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系。 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件。导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量。 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R="R1"+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻。导热材料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积。芯片的工作温度T2为: T2=T1+P×R (6)

散热器高效散热技术及应用研究阚宏伟

散热器高效散热技术及应用研究 摘要:随着电子技术的发展,使得电子器件的热流密度不断增加,这样势必对电子器有更高的散热要求,因此有效地解决散热问题已成为电子设备必须解决的关键技术。针对现代电子设备所面临的散热问题,就散热基本原理以及各种主流散热技术,包括自然对流散、强制风冷散热、液体冷却、热管、微槽道冷却、集成热路、热电致冷等常用的电子设备散热技术及某些前沿的研究现状、发展趋势及存在问题分别予以阐述。 关键词:热传递自然对流强制风冷热管散热热电制冷 引言:据统计,55%的电子设备失效是由温度过高引起的。可见,电子设备的主要故障形式为过热损坏,因此对电子设备进行有效的散热是提高产品可靠性的关键。电子设备的主要散热技术电子设备的高效散热问题与传热学(包括热传导、对流和热辐射)和流体力学(包括质量、动量和能量守恒三大定律)等原理的应用密切相关。 一:热传递主要有三种方式: 传导:物质本身或当物质与物质接触时,能量的传递就被称为热传导,这是最普遍的一种热传递方式,由能量较低的粒子和能量较高的粒子直接接触碰撞来传递能量。相对而言,热传导方式局限于固体和液体,因为气体的分子构成并不是很紧密,它们之间能量的传递被称为热扩散。 热传导的基本公式为“Q=K×A×ΔT/ΔL”。其中Q代表为热量,也就是热传导所产生或传导的热量;K为材料的热传导系数,热传导系数类似比热,但是又与比热有一些差别,热传导系数与比热成反比,热传导系数越高,其比热的数值也就越低。举例说明,纯铜的热传导系数为396.4,而其比热则为0.39;公式中A代表传热的面积(或是两物体的接触面积)、ΔT代表两端的温度差;ΔL则是两端的距离。因此,从公式我们就可以发现,热量传递的大小同热传导系数、热传热面积成正比,同距离成反比。热传递系数越高、热传递面积越大,传输的距离越短,那么热传导的能量就越高,也就越容易带走热量。 对流:对流指的是流体(气体或液体)与固体表面接触,造成流体从固体表面将热带走的热传递方式。 具体应用到实际来看,热对流又有两种不同的情况,即:自然对流和强制对流。自然对流指的是流体运动,成因是温度差,温度高的流体密度较低,因此质量轻,相对就会向上运动。相反地,温度低的流体,密度高,因此向下运动,这种热传递是因为流体受热之后,或者说存在温度差之后,产生了热传递的动力;强制对流则是流体受外在的强制驱动(如风扇带动的空气流动),驱动力向什么地方,流体就向什么地方运动,因此这种热对流更有效率和可指向性。

散热器扩散热阻的计算

散热器扩散热阻的计算 Accident? Consider the scenario where a designer wishes to incorporate a newly developed device into a system and soon learns that a heat sink is needed to cool the device. The designer finds a rather large heat sink in a catalog which marginally satisfies the required thermal criteria. Due to other considerations, such as fan noise and cost constraints, an attempt to use a smaller heat sink proved futile, and so the larger heat sink was accepted into the design. A prototype was made which, unfortunately, burned-out during the initial validation test, the product missed the narrow introduction time, and the project was canceled. What went wrong? The reasons could have been multi-fold. But, under this scenario, the main culprit could have been the spreading resistance that was overlooked during the design process. It is very important for heat sink users to realize that, unless the heat sink is custom developed for a specific application, thermal performance values provided in vendor's catalogs rarely account for the additional resistances coming from the size and location considerations of a heat source. It is understandable that the vendors themselves could not possibly know what kind of devices the users will be cooling with their products. Figure 1 - Normalized local temperature rise with heat sources of different size; from L to R, source area = 100%, 56%, 25%, 6%, of heat-sink area Introduction Spreading or constriction resistances exist whenever heat flows from one region to another in different cross sectional area. In the case of heat sink applications, the spreading resistance occurs in the base-plate when a heat source of a smaller footprin footprint area is mounted on a heat sink with a larger base-plate area. This results in a higher local temperature at the location where the heat source is placed. Figure 1 illustrates how the surface temperature of a heat sink base-plate would respond as the size of the heat source is progressively reduced from left to right with all other

散热片计算方法

征热传导过程的物理量 在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q=K·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m).(T1-T2)为温度差. 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A(2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系. 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件.导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量. 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R=R1+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻.导热材料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积.芯片的工作温度T2为:

T2=T1+P×R (6) 式中:T1为空气温度;P为芯片的发热功率;R为热传导过程的总热阻.芯片的热阻和功率可以从芯片和散热器的技术规格中获得,散热器的热阻可以从散热器的技术规格中得到,从而可以计算出芯片的工作温度T2. 实例 下面通过一个实例来计算芯片的工作温度.芯片的热阻为1.75℃/W,功率为5W,最高工作温度为90℃,散热器热阻为1.5℃/W,导热材料的热阻抗Z为5.8℃cm2/W,导热材料的传热面积为5cm2,周围环境温度为50℃.导热材料理论热阻R4为: R4=Z/A=5.8 (℃·cm2/W)/ 5(cm2)=1.16℃/W(7) 由于导热材料同芯片和散热器之间不可能达到100%的结合,会存在一些空气间隙,因此导热材料的实际热阻要大于理论热阻.假定导热材料同芯片和散热器之间的结合面积为总面积的60%,则实际热阻R3为: R3=R4/60%=1.93℃/W(8) 总热阻R为: R=R1+R2+R3=5.18℃/W (9) 芯片的工作温度T2为: T2=T1+P×R=50℃+(5W× 5.18℃/W)=75.9℃ (10) 可见,芯片的实际工作温度75.9℃小于芯片的最高工作温度90℃,处于安全工作状态. 如果芯片的实际工作温度大于最高工作温度,那就需要重新选择散热性能更好的散热器,增加散热面积,或者选择导热效果更优异的导热材料,提高整体散热效果,从而保持芯片的实际工作温度在允许范围以内(作者:方科 )转载

芯片散热的热传导计算

芯片散热的热传导计算(图) 讨论了表征热传导过程的各个物理量,并且通过实例,介绍了通过散热过程的热传导计算来求得芯片实际工作温度的方法 随着微电子技术的飞速发展,芯片的尺寸越来越小,同时运算速度越来越快,发热量也就越来越大,如英特尔处理器3.6G奔腾4终极版运行时产生的热量最大可达115W,这就对芯片的散热提出更高的要求。设计人员就必须采用先进的散热工艺和性能优异的散热材料来有效的带走热量,保证芯片在所能承受的 最高温度以内正常工作。 如图1所示,目前比较常用的一种散热方式是使用散热器,用导热材料和工具将散热器安装于芯片上面,从而将芯片产生的热量迅速排除。本文介绍了根据散热器规格、芯片功率、环境温度等数据,通过热传导计算来求得芯片工作温 度的方法。 图1散热器在芯片散热中的应用 芯片的散热过程 由于散热器底面与芯片表面之间会存在很多沟壑或空隙,其中都是空气。由于空气是热的不良导体,所以空气间隙会严重影响散热效率,使散热器的性能大打折扣,甚至无法发挥作用。为了减小芯片和散热器之间的空隙,增大接触面积,必须使用导热性能好的导热材料来填充,如导热胶带、导热垫片、导热硅酯、导热黏合剂、相转变材料等。如图2所示,芯片发出的热量通过导热材料传递给散热器,再通过风扇的高速转动将绝大部分热量通过对流(强制对流和自然对流)的方式带走到周围的空气中,强制将热量排除,这样就形成了从芯片,然后通过散热器和导热材料,到周围空气的散热通路。 图2芯片的散热 表征热传导过程的物理量

图3一维热传导模型 在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q=K·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L 为导热长度(m)。(T1-T2)为温度差。 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A (2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系。 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如 下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件。导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量。 图4芯片的工作温度 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R=R1+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻。导热材 料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积。芯片的工作温度T2为: T2=T1+P×R (6) 式中:T1为空气温度;P为芯片的发热功率;R为热传导过程的总热阻。芯片的热阻和功率可以从芯片和散热器的技术规格中获得,散热器的热阻可以从散热器的技术规格中得到,从而可以计算出芯片的工作温度T2。 实例 下面通过一个实例来计算芯片的工作温度。芯片的热阻为1.75℃/W,功率为5W,最高工作温度为90℃,散热器热阻为1.5℃/W,导热材料的热阻抗Z为5.8℃cm2/W,导热材料的传热面积为5cm2,周围环境温度为50℃。导热材料

散热量计算公式

一、标准散热量 标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度-18摄氏度=64.5摄氏度,这是散热器的主要技术参数。散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。 那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。 二、工程上采用的散热量与标准散热量的区别 标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=64.5摄氏度时的散热量。而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。因此,在对工程热工计算中必须按照工程上的散热量来进行计算。 在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,

所对应的计算温差△T=50摄氏度。欧洲标准散热量是在温差△T=50摄氏度的散热量。 那么怎么计算散热器在不同温差下的散热量呢? 散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室内温度,来计算出温差△T,然后计算各种温差下的散热量。△T=(进水温度+出水温度)/2-室内温度。 现在我就介绍几种简单的计算方法 (一)根据散热器热工检测报告中,散热器与计算温差的关系式来计算。 Q=m×△T的N次方 例如74×60检测报告中的热工计算公式(10柱): Q=5.8259×△T1.2829 (1)当进水温度95摄氏度,出口温度70摄氏度,室内温度18摄氏度时: △T=(95摄氏度+70摄氏度)/2-18摄氏度=64.5摄氏度 Q=5.8259×64.51.2829=1221.4W(10柱) 每柱的散热量为122.1W/柱 (2)当进水温度为80摄氏度,出口温度60摄氏度,室内温度20摄氏度时: △T=(80摄氏度+60摄氏度)/2-20摄氏度=50摄氏度 Q=5.8259×501.2829=814.6W(10柱) 每柱的散热量为81.5W/柱 (3)当进水温度为70摄氏度,出口温度50摄氏度,室内温度18摄氏度时:

相关文档