文档库 最新最全的文档下载
当前位置:文档库 › 图形的分割与剪拼

图形的分割与剪拼

图形的分割与剪拼
图形的分割与剪拼

图形的分割与剪拼(一.分割)

近几年山西中考试卷的22题多以操作型问题为主,这些题大体可以分为两类,一类是围绕图形的分割与剪拼展开的,另一类是围绕图形的变换展开的,这一节我们先研究一下分割与剪拼中的第一部分-----分割。

把一个图形按照某种要求分成几个图形,就叫做图形的分割。有的要求分割后各部分的面积满足一定的比例关系,有的要求形状相同,有的要求全等......

一.按要求分割后各部分的面积满足一定的比例关系。

在研究这类问题时,同学们先给我们的大脑充点电吧

Ⅰ.把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出

4种不同的分法.

分析:方法一.根据等底等高的三角形面积相等这一结论,只要把原三角形分成2个等底等高的小三角形,它们的面积必定相等.而要得到这2个等底等高的小三角形,只需找出原三角形的某条边的中点与这边相对的顶点连接起来就行了.根据上面的分析,可得如图所示的三种分法.

方法二:当图形的重心在图形内部时,过重心的直线一定将原图形分成面积相等的两部分。

Ⅱ.如图求△ABD与△CBD的面积比

分析:

当α=β时

Ⅲ.用直尺作网格中将线段的n等分点。

分析:利用8字型相似很容易得到相应的等分点

同学们以上三点看懂了吗?下面让我们来两个小题实战一下吧!

1.如图所示五边形ABCDE内有一段折线CFE把原五边形分成两部分,面积分别为s1和s2现在过点E想用一条直线将原五边形仍分成两部分但两侧的面积不变。

做法:连接CE,过点F作CE的平行线,根据

等底等高的三角形面积相等,所以S△EFC=S△EGC

所以S四边形CDEG=S△CDE+S△CEG=S△CDE+S△EFC=S2

所以直线EG左边的四边形ABGE的面积

为S1则直线EG即为所求。

}

AB

BC

AF

CG

AF

BD

CG

BD

ABD

S

CBD

S

?

?

=

=

?

?

=

β

α

sin

sin

2

1

2

1

AE

CE

AF

CG

AF

BD

CG

BD

ABD

S

CBD

S

=

=

?

?

=

2

1

2

1

?AE CE

AB

BC

SABD

SCBD

=

=

2.用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?

过长方形中心(重心)的任意一条直线都可以把长方形平均分割成两块,根据这点给出如下分法(如右图):

⑴做长方形的两条对角线,设交点为O

⑵过O点任作一条直线AB,直线AB将长方形平均分割

成两块.可见用线段平分长方形的分法是无穷多的.

变型1:将图1用一条直线分成面积相等的两部分

作法:将原图形分割或补全形成矩形,用连接对角线的方法确定两个矩形的中心,过这两点作一条直线,这条直线正好能把图1平分为两块。(同学们这样的直线只有两条吗?带着这个疑问咱们往下看!!!)

变型2:若图1中有任意一点P,经过点P确定一条直线,使得直线两边图形的面积相等。

分析:直线AB,CD都能把图1分成面积相等的两部分,那么图1的重心一定是这两条直线的交点O,过点O的直线有无数条都能把图1平分,所以连接PO,则直线PO即为

3.用无刻度的直尺,在三角形内部求作一点P 使得△PAB,△PBC,△PAC 的面积比 为1:2:3

分析:由8字相似可知PBC S PAB S SC QA CD AD △△===21 PAC

S PAB S CE BE CT BR △△===31 ∴△PAB,△PBC,△PAC 的面积比为1:2:3

二.按要求分割出与原图形形状相同的图形

图形的形状相同即相似,在研究多边形相似时要满足两点:

1.对应角相等,

2.对应边成比例,

(1)如图,非等腰Rt △ABC 中,∠A=90°点P 为Rt △ABC 的边上的动点,过点P 作一条直线分割出一个三角形与原三角形形状相同。

分析:当点P在AB边上时,以∠A为公共角时,可过点P构造

∠APG=∠C,∠APF=∠B 可得两个三角形与原三角形相似

当以∠B为公共角时,构造

∠BPD=∠C,∠BPE=∠A 又可得两个三角形与原三角形相似

由动图可看出这4条分割线始终存在。

当点P在BC边上时,以∠C为公共角,过点P构造∠CPD=∠B,∠CPE=∠A 可得两个三角形与原三角形相似,以∠B为公共角时过点P构造∠BPF=∠C可以得到一个三角形与原三角形相似,有动图可以看出这三条分割线始终存在。

当点P位于AC上时由初始位置过点P可以画出4条分割线构造出4个三角形与原三角形相似,但有动图可以看出,随着P点的运动,当点B位于直线PE下方时△PAE

c2时有4就不存在了,所以此时就剩3个三角形与原三角形相似了,即当0

b

c2

个三角形与原三角形相似,当

b

综上:在非等腰直角三角形中除去顶点,点P在红色线上有3条分割线满足题意,点P在黑色线上包括点D,有4条分割线满足题意。

解题关键:1认清目标三角形(Rt△ABC)

找准公共角。

2分情况讨论,除定角外的两个角都

有可能与点P处的动角相等。

(2)任意矩形ABCD能否分割为4个与自身相似的图形?请你作出分割线.能不能设计一种方案,将任意△ABC分割成四个与△ABC相似的小三角形,且其中至少有两个小三角形的相似比不为1,如图AB=6,AC=4,BC=5,请你画出草图,并简单地说明理由.

解:如图

如图:在BC 上取点D ,过点D 作DE ∥AB ,DF ∥AC 易证

△CDE ∽△DBF ∽△CBA 四边形AEDF 为平行四边形

设CE=x 则AE=4-x

∵△CDE ∽△CBA ∴X DE AB DE CA CE 23=∴= ∴X DE AF 23

==

如果△AEF ∽△ABC ∴

AB AE CA AF = ∴CE=13

16 所以AF=

1324 CD=1320

三.分割后满足各部分全等

做这类题要注意以下几点:

(1)全等 对应角相等,对应线段相等

(2)各部分面积相等

(3)找中心利用染色法分割

例题:1.下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.

321D C B A 1

F

E

221D C

B

A

分割后两个图形形状相同面积相等说明两个图形全等,直角梯形的上底为1,

下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,AD 边长正好为3,所以AD 边分成两段,找到AD 的三等分点E ,过点E 任作一条线段将梯形ABCD 分成两部分交BC 与点F ,现在,CD AE =,∠D=∠A=90°,DE AB =,∴BE=CE 且∠BED=90°△BEC 为等腰直角三角形,由对应性,只需满足EF=BF ,CF=EF 即CF=EF=BF ∴F 应为BC 的中点,连接EF ,就把梯形ABCD 分成完全相同的两部分.如右上图.

2.下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分.

要求把阴影部分分成四个大小、形状都相同的四个图形,先不考虑形状,大小相同也就是面积相等,也就是把整个图形的面积分成四份,分割后的每一部分占一份.考虑先把阴影部分分成12个小正方形再分成四份,这样每份正好有3个小正方形.再看形状,三个小正方形只能排成“-”(经分析不可能所以舍去)形或者“∟”形.答案如下图.

3.下图是一个34?的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.

分成的两块每块有1226

÷=(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,我们从对称线入手,介绍一种分割技巧——染色法,先选中一个小格,找它关于中心点或中心线的对称位置,标上相应的符号.当找它关于中心线的对称位置时是一种情况,关于中心点的对称位置是另一种情况,具体如下图所示.

动图

实战:1.如图 求阴影部分面积比

有了分割的思想就能口算此题了

9

88494=÷ 2.图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?

这道题的要点在于通过计算解决问题,要求把原来三个正三角形分成四个大小、形状都相同的四个梯形,先不考虑形状,大小相同也就是面积相等,即把整个梯形的面积分成四份,分割后的每一个梯形占一份,可以考虑把每一个三角形的面积分成四份,再把三个正三角形中的每一个小三角形合成要求的梯形,这种类型的题目可以从中点入手,找到每个正三角形的中点并连接,如上图.

能力提高

请用尺规将一正方形分成六个面积相等的部分,可冒失的小丽一上来就过正方形的中心任意作了一条直线(红色)结果发现自己用的是中性笔擦不掉,这下可把她急坏了,请你帮助她完成余下的操作。

科学活动:《图形分割与组合》(形)

科学活动:《图形分割与组合》(形) 活动目标: 1.尝试运用多种方法将一个图形分成多个图形或将多个图形拼成一个图形,并表述。 2.理解平面图形之间的关系。 活动准备: 经验准备:幼儿已认识圆形、正方形、三角形、长方形、椭圆形等。 材料准备:正方形、三角形、长方形、圆形纸片若干,笔、剪刀、固体胶,黑色卡纸等。 材料配套:数字资源《机器人》,幼儿活动操作材料《科学·图形分割与组合》 活动过程: 1.以“机器人”导入,复习集合图形。 播放数字资源《机器人》,引导幼儿观察机器人是由哪些图形组成的。 引导语:老师带来了一个机器人,你们看看这个机器人是由哪些图形组成的。 根据幼儿的回答,从机器人身上分离出图形。 2.尝试对各种图形进行简单的分割并组合,理解图形之间的关系。 游戏“正方形变变变”(变长方形、小的正方形、三角形等)。 引导语:我们发现机器人是由这么多图形组合成的,可这些图形还会变魔术呢!你们猜猜看他们能变出什么? 出示正方形纸片,提问:恩能够吧正方形的纸变成长方形(小正方形、三角形)吗? 请个别幼儿回答。

引导幼儿动手操作,尝试用折、剪、画等方法将正方形的纸变成长方形(小正方形、三角形)。 分享交流:你的正方形的纸变成了什么图形?有几个?是怎么做的?(如“我把正方形边对着一次,变成两个长方形”。)小结:正方形的纸,边对边折一次,就变成两个长方形;边对边折两次,变成四个小的正方形。正方形的纸,角对角折一次,变成两个三角形,角对角折两次,变成四个小的三角形。 游戏“图形变变变”。 引导语:你们刚才把正方形变成了长方形,小正方形,三角形,你们能不能将长方形、圆形、三角形等图形也用折、剪、画的方法变成其他图形呢? 引导幼儿自主选择一个图形,用折、剪、画的方法进行图形分割。 分享交流:你选择什么图形,用什么方法变成几个其他图形? 小结:原来,我们可以通过折、剪、画的方法将图形分割变成其他几个更小的图形。 尝试将分割后的图形进行组合。 引导语:你们能把剪下来的小正方形(长方形,三角形,半圆形等)再拼合成原来的正方形(长方形、三角形、圆形等)或者拼成其他图形吗?请一个小朋友上来试试看。(有条件的幼儿园可以放在食物投影仪上操作。) 引导幼儿将刚才分割的图形进行组合,如从正方形分割出的四个小三角形又拼合成原来的正方形。 小结:我们把分割出来的图形进行组合,还会变成原来的图形,也会变成另一个图形。 3.幼儿自选操作,通过分割与组合,进一步理解图形之间的关系。

4-1-5_图形的分割与拼接[题库教师版

图形的分割与拼接 例题精讲 本讲主要学习三大图形处理方法: 1.理解掌握图形的分割; 2.理解掌握图形的拼合; 3.理解图形的剪拼. 本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力. 把一个几何图形按某种要求分成几个图形,就叫做图形的分割. 反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合. 将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考. 如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多. 图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形. 如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的. 如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法. 板块一图形的分割 【例 1】用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法? 【解析】怎样把一个图形按照规定的要求分割成若干部分呢?这就是图形的分割问题.按照规定的要求合理分割图形,是很讲究技巧的,多做这种有趣的训练,可以培养学生的创造性思维,发展空间观念,丰富想象,提高观察能力. 这道题要求把长方形平均分割成两块,过长方形中心的任意一条直线都可以把长方形平均分割成两块,根据这点给出如下分法(如右图): ⑴做长方形的两条对角线,设交点为O ⑵过O点任作一条直线AB,直线AB将长方形平均分割成两块. 可见用线段平分长方形的分法是无穷多的. 【巩固】画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有条. 【解析】无数条.任何过六边形中心的直线均符合要求. 【例 2】把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.

图形的分割与组合练习题

.将图12—18分成两块拼成一个正方形. 2.将图形12—19分成四个形状、大小相同的图形,然后拼成一个正方形. 3.将一块长6米、宽3.5米的长方形剪成形状相同、面积相等的两块,拼成一个长为5米、宽为4.2米的新的长方形. 4.有一个长100厘米、宽70厘米的长方形桌面,中间损坏了一块.现在想在中间挖去一个长60厘米,宽10厘米的小长方形,如图12—20,然后把它分成两块,拼成一个正方形桌子,应怎么切拼? 5.将图12—21所示的正方形分成两块,使得这两块的形状和大小都相同,并且每一块中只含有A、B、C、D、E五个字母. 6.如图12—22,有两个正方形.请把每一个正方形分成两块,两个正方形共分成四块,使这四块的形状和大小都相同,并且每一块中都有1、2、3、4四个数字.

答案仅供参考: 1.切拼方法如图12—1’. 2.因为小方格的个数是36个,所以拼成的一个正方形的边长为6个小方格,将图12-19分成四个形状、大小相同的图形,只需将图12-19从图的对称中心切开即可,如图12-2’,然后按照图12-3’拼成一个正方形. 3.因为新长方形的长比原长方形的长少1米,宽多0.7米,因此将原长方形分成长为1米,宽为0.7米的小长方形,如图12-4’,按阶梯形分法分成相同的两块,然后错位对齐,即可拼成一个新的长方形,如图12-5’.

4.因为拼成的正方形的桌面的面积为: 100×70-60×10=6400(平方厘米) 所以正方形的桌子的边长为80厘米. 原长方形的长减少20厘米,宽增加10厘米.将原长方形分成长为20厘米,宽为10厘米的小长方形,利用阶梯形分法,分到中间缺损地方时,要考虑到两块的形状必须相同,按如图12-6’中的粗线切分,最后拼成一个正方形,如图12-7’ 5.图中有相同的字母挨在一起时,要从它们之间切开,因此先在它们之间画上切分线,然后将这些切分线绕中心点旋转180°,得到一些切分线,根据切分线进行切分,分成形状、大小相同的两块,每块有18个小方格.本题有两种切法,如图12-8’(1)、(2). 6.把两个正方形叠在一起考虑.为了便于区别,将其中一组数字1、2、3、4改写为A、B、C、D,如图12-9’,为

图形的分割与拼接

课题:图形的分割与拼接 【专题知识点概述】 本讲中的知识点比较抽象,在这一讲中我们主要学习几种图形处理方法: 1、理解掌握图形的分割; 2、理解掌握图形的拼合; 3、理解图形的剪拼; 4、利用剪拼图形计算、解决问题. 图形的分割与拼接的概念 把一个几何图形按某种要求分成几个图形,就叫做图形的分割. 反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考. 如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多. 图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形. 如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的. 如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法. 【习题精讲】 【例1】(难度等级※) 右图是一个3×4的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的 完整. 【分析与解】 因为要分割成完全相同的两块,即大小、形状完全相同.方格纸一共有3×4=12(个)小格,所以 分成的两块每块有12÷2=6(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,我 们从对称线入手,介绍一种分割技巧——染色法,先选中一个小格,找它关于中心点或中心线的 对称位置,标上相应的符号,当找它关于中心线的对称位置时是一种情况,关于中心点的对称位置 是另一种情况,具体如下图所示.

图形的分割与组合练习题

使这四块的形状和大小都相同,并且每一块中都有 1、2、3、4四个数字. .将图12 —18分成两块拼成一个正方形. 2?将图形12 —19分成四个形状、大小相同的图形,然后拼成一个正方形. 3?将一块长6米、宽3.5米的长方形剪成形状相同、面积相等的两块,拼成一个长为 5米、宽为4.2米的新的长方形. 4.有一个长100厘米、宽70厘米的长方形桌面,中间损坏了一块.现在想在中间挖 去一个长60厘米,宽10厘米的小长方形,如图 12 — 20 ,然后把它分成两块,拼成一个正 方形桌子,应怎么切拼? 5 ?将图12 — 21所示的正方形分成两块,使得这两块的形状和大小都相同,并且每 块中只含有 A 、B 、C 、D 、E 五个字母. D B B D E C C E 圏 IZ-ZL 6.如图12 — 22 ,有两个正方形.请把每一个正方形分成两块, 两个正方形共分成四块,

答案仅供参考: 1. 切拼方法如图12 — 1 '. 2. 因为小方格的个数是 36个,所以拼成的一个正方形 的边长为 6个小方格,将图12-19 分成四个形状、大小相同的图形,只需将图 12-19从图的对称中心切开即可,如图 12-2 ', 然后按照图12-3 '拼成一个正方形. 3. 因为新长方形的长比原长方形的长少 1米,宽多 0.7米,因此将原长方形分成长为 1米,宽为0.7米的小长方形,如图12-4 ',按阶梯形分法分成相同的两块, 然后错位对齐, 即可拼成一个新的长方形,如图 12-5 '. 3 3 4 4 1 2 2 1 3 1 3 2 4 4. 2 1 (1) ⑵ H 12—22 切法

【思维拓展】数学四年级思维拓展之图形的分割与剪拼(附答案)

四年级思维拓展之图形的分割与剪拼 1.请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪? 2.图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗? 3.把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗? 4.下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.

5.下面哪些图形自身用4次就能拼成一个正方形? 6.将右图分成4个形状、大小都相同的图形,然后拼成一个正方形. 7.下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形. 8.用两块大小一样的等腰直角三角形能拼成几种常见的图形? 用下面左边的3个图形,拼成右边的大正方形.

参考答案 1.【解答】图中“奥数”与“读本”中的两个字都是挨着的,所以肯定要在它们中间分割,因此,首先在它们中间划出分割线,因为要将这个长方形分成大小、形状完全相同的4块,因为长方形是6×4的,所以分割后的每一块都有6小块组成,可以考虑先把长方形分成相同的两部分,再把每一部分分成相同的两部分,对称分成如右上图. 2.【解答】这道题的要点在于通过计算解决问题,要求把原来三个正三角分成四个大小、形状都相同的四个梯形,先不考虑形状,大小相同也就是面积相等,即把整个梯形的面积分成四份,分割后的每一个梯形占一份,可以考虑把每一个三角形的面积分成四份,再把三个正三角形中的每一个小三角形合成要求的梯形,这种类型的题目可以从中点入手,找到每个正三角形的中点并连接,如下图. 3.【解答】先把图形分成20×40相等的两块,每一块中再分成相等的两份,这

小学四年级逻辑思维学习—图形的分割与拼接

小学四年级逻辑思维学习—图形的分割与拼接 知识定位 本讲中的知识点比较抽象,在这一讲中我们主要学习几种图形处理方法: 1、理解掌握图形的分割; 2、理解掌握图形的拼合; 3、理解图形的剪拼; 4、利用剪拼图形计算、解决问题. 【授课批注】 本讲中很多类型的题目还要求学生去动手尝试.通过本讲知识点的学习,让学生了解不同图形的分割、拼合、剪拼的方法,锻炼学生的平面想象能力以及增强学生的动手操作能力 知识梳理 图形的分割与拼接的概念 把一个几何图形按某种要求分成几个图形,就叫做图形的分割. 反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考. 如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多. 图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形. 如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的. 如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法. 【授课批注】 该知识点可从七巧板引入,举几个由七巧板组成的图形的剪拼的例子。 【重点难点解析】 1.根据题目需要找合适的方法进行剪拼 2.如何根据相等的量来剪拼图形 【竞赛考点挖掘】 1.方格纸的分割与拼接 2.简单平面基本图形(长方形、三角形等)的分割与拼接

图形的分割与拼接

本讲主要学习三大图形处理方法: 1.理解掌握图形的分割; 2.理解掌握图形的拼合; 3.理解图形的剪拼. 本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力. 把一个几何图形按某种要求分成几个图形,就叫做图形的分割. 反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合. 例题精讲 令狐采学 图形的分割与拼接

将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考. 如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多. 图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形. 如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的. 如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法. 板块一图形的分割 【例 1】用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法? 【解析】怎样把一个图形按照规定的要求分割成若干部分呢?这

就是图形的分割问题.按照规定的要求合理分割图形, 是很讲究技巧的,多做这种有趣的训练,可以培养学生 的创造性思维,发展空间观念,丰富想象,提高观察能 力. 这道题要求把长方形平均分割成两块,过长方形中心的 任意一条直线都可以把长方形平均分割成两块,根据这 点给出如下分法(如右图): ⑴ 做长方形的两条对角线,设交点为 ⑵ 过点任作一条直线,直线将长方形平均分割 成两块. 可见用线段平分长方形的分法是无穷多的. 【巩固】画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有条. 【解析】无数条.任何过六边形中心的直线均符合要求. 【例 2】把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法. 【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积必定相 等.而要得到这4个等底等高的小三角形,只需把原三 角形的某条边四等分,再将各分点与这边相对的顶点连 接起来就行了.根据上面的分析,可得如左下图所示的 三种分法.又因为,所以,如果我们把每一

数学,图形分割与组合

活动时间: 活动(一) 活动内容:数学——图形分割与组含 活动目的: 1、尝试运用多种方法将一个图形分成多个图形或将多个图形拼成一个图形,并表述。 2、理解平面图形之间的关系。 活动准备: 经验准备:幼儿已认识过正方形、三角形、长方形、圆形等。 材料准备:正方形、三角形、长方形、圆形纸片若干,笔,剪刀,固体胶,黑色卡纸等。 材料配套:数字资源《机器人》,幼儿活动操作材料《科学·图形分割与组合》。 活动指导: 1、以“机器人”导入,复习几何图形。 ★播放数字资源《机器人》,引导幼儿观察机器人是由哪些图形组成的。 引导语:老师带来了一个机器人,你们看看这个机器人是由哪些图形组成的。 根据幼儿的回答,从机器人身上分离出图形。 2、尝试对各种图形进行简单的分割并组合,理解图形之间的关系。 ★游戏“正方形变变变”(变长方形、小的正方形、三角形等) 引导语:我们发现机器人是由这么多图形组合成的,可这些图形还会变魔术呢!你们猜猜看它们能变出什么? 出示正方形纸片,提问:能把正方形的纸变成长方形(小正方形、三角形)吗? 请个别幼儿回答。 引导幼儿动手操作,尝试用折、剪、画等方法将正方形的纸变成长方形(小正方形角形)。 分享交流:你的正方形的纸变成了什么图形?有几个?是怎么做的?(如“我把正方形边对边折一次,变成两个长方形”。) 小结:正方形的纸,边对边折一次,就变成两个长方形;边对边折两次,变成四个小的正方形。正方形的纸,角对角折一次,变成两个三角形;角对角折两次,变成四个小的三角形… ★游戏“图形变变变”。 引导语:你们刚才把正方形变成了长方形、小正方形、三角形,你们能不能将长方形、圆形、三角形等图形也用折、剪、画的方法变成其他图形呢? 引导幼儿自主选择一个图形,用折、剪、画等方法进行图形分割。 分享交流:你选择什么图形,用什么方法变成几个其他图形? 小结:原来,我们可以通过折、剪、画的方法将图形分割变成其他几个更小的图形。 ★尝试将分割后的图形进行组合。 引导语:你们能把剪下的小正方形《长方形,三角形、半圆形等)再拼合成原来的正方形(长方形、三角形、圆形等)或者拼成其他图形吗?请一个小朋友上来试试看。 导幼几将刚才分测的图形进行组合,如从正方形分测出的四个小三角形又拼合成原来的正方形。 小结:我们把分割出来的图形进行组合,还会变成原来的图形,也会变成另一个图形。 3、幼儿自选操作,通过分割与组合,进一步理解图形之间的关系。 ★第一组:提供操作材料《图形分割与组合》,让幼儿将图形分割并进行组合。

图形的分割与剪拼

课题:图形的分割与剪拼 图形操作型的问题可分为两大类:一类是围绕“图形变换”展开的,一类是围绕图形的分割与剪拼展开的。 图形分割与剪拼应注意以下几下方面的思考途径和解决方法: 1、图形的剪拼问题考虑图形的变换性质和如何利用变换; 2、考虑相似三角形面积比与相似比的关系; 3、考虑“勾股定理”对应的图形面积关系; 4、考虑特定数量的构成形式。 一、图形的分割 按分割的要求分为: (1)借助于“边、角”计算的分割; (2)依“面积等分”为要求的分割; 例1 (1)已知ABC ?中,?=∠?=∠5.67,90B A ,请画一条直线,把这个三角形分割成两个等腰三角形。 (2)已知ABC ?中,C ∠是其最小的内角,过顶点B 的一条直线把这个三角形分割成了两个等腰三角形,请探求ABC ∠与C ∠之间的关系。 例2 如图(1),在ABC ?和DEF ?中,?=∠=∠90D A ,42,3====DF AC DE AB 。 (1)判断这两个三角形是否相似?并说明为什么? (2)能否分别过D A ,在这两个三角形中各作一条辅助线,使ABC ?分割成的两个三角形与DEF ? 分割成的两个三角形分别对应相似?证明你的结论。 (1) A B C E F A B C

例3 我们能把平分四边形面积的直线称为“好线”,利用下面的作图,可以得到四边形的“好线”:在四边形ABCD 中,取对角线BD 的中点O ,连结OC OA ,,显然,折线AOC 能把四边形ABCD 的面积平分,再过点O 作 AC OE //,交CD 于E ,则直线AE 即为一条“好线”。(如图(1) (1)试证明:AE 确为一条“好线”; (2)如图(2),若AE 为四边形ABCD 的一条“好线”,F 为CD 上一点,请作出过F 的一条“好线”,并说明理由。 (1) (2) 二、将原图形剪拼成新图形 例1 下列各图中,沿着虚线将正方形剪成两部分,那么由这两部分既能拼成平行四边形,又能拼成三角形和梯形的是( ) (中点) (中点) A B C D 例2 如图(1),现有两个边长之比为1:2的正方形ABCD 与''''D C B A ,已知点',',,C B C B 在同一直线上,且点'B C 与 重合,请你利用这两个正方形,通过裁割、平移、旋转的方法,拼出两个相似比为1;3的三角形。 B A B C O D E M A B C D )'(B 'C 'D 'A

图形的分割与拼接含答案

“图形的分割与拼接”专项复习 本讲主要学习三大图形处理方法: 1.理解掌握图形的分割; 2.理解掌握图形的拼合; 3.理解图形的剪拼. 本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力. 把一个几何图形按某种要求分成几个图形,就叫做图形的分割. 反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考. 如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多. 图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形. 如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼

合在一起,先拼少的,再拼多的. 如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法. 【典型例题】 板块一图形的分割 【例 1】用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法 【解析】怎样把一个图形按照规定的要求分割成若干部分呢这就是图形的分割问题.按照规定的要求合理分割图形,是很讲究技巧的,多做这种有趣的训练,可以培养学生的创造性思维,发展空间观念,丰富想象,提高观察能力. 这道题要求把长方形平均分割成两块,过长方形中心的任意一条直线都可以把长方形平均分割成两块,根据这点给出如下分法(如右图): ⑴做长方形的两条对角线,设交点为O ⑵过O点任作一条直线AB,直线AB将长方形平均分割成两块. 可见用线段平分长方形的分法是无穷多的. 【巩固】画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有条. 【解析】无数条.任何过六边形中心的直线均符合要求.

小学奥数习题版三年级几何图形的剪拼教师版

知识要点 找对称 【例 1】 把一个 33 的的网格分成形状、大小完全相同的四份。 【分析】 答案不唯一,最简单的分法如右上图。 【例 2】 哥哥和弟弟一起做手工,想把一张红色的平行四边形蜡光纸沿着一条直线,把它剪成大小、形状 完全相同的两部分。想一想,你可以有多少种剪法? 【分析】凡是经过平行四边形的中心点的直线都符合要求,故有无数种画法。 图形的剪拼

【例3】要把一个正方形剪成形状相同、大小相等的4个图形,该怎样分? 【分析】把一个正方形分成形状、大小相等的4个图形。 可以先把这个正方形分成形状、大小相等的2个图形, 然后再把这两个图形继续分成形状、大小相等的4份。 有些方法中我们也可以利用对称图形的特点来分。 本题有很多种解法,这里只列举最常用的几种。 【温馨提示】规则图形或不规则图形的分割成相等的几部分。 第一步:先将原图形平均分成若干个小的规则图形。 第二步:根据题意按要求画分成相等的几部分。 【例4】你能把下面的图形分割成4个形状相同、大小相等的图形吗? 【分析】一共有32个小正方形,分割成4个形状相同、大小相等的图形,每个图形有8小正方形。 答案如图所示。 【例5】一个长6厘米,宽4厘米的长方形,从中间剪开,如图所示,得到2个大小、形状都相同的长方形,这两个新长方形的周长是多少? 【分析】切割开之后,新形成的2个小长方形除了原有长方形的边之外,新产生了两条边,如图虚线所示。 每个新长方形的周长为34214 +?= ()厘米。 两个新长方形的周长是14+14=28厘米或14228 ?=厘米。

图形剪切 【例 6】 你能把一个正三角形分成形状相同,大小相等的2个、3个、4个、6个、9个三角形吗? 分成 分成 分成2个三角形分成9个三角形 分成6个三角形分成4个三角形分成3个三角形 【分析】 通过观察正三角形有3条对称轴,把一个正三角形分成若干份,都可以根据它的对称轴来分。 答案如图所示。 【温馨提示】如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形, 这条直线叫做这个图形的对称轴。对称轴绝对是一条直线。 先让学生理解对称轴的意义,然后根据对称轴划分。 【例 7】 你能把一个正方形分成6个、7个、8个、9个小正方形吗?(不要求面积相等 ) 【分析】 首先我们来观察:一个正方形分成4个小正方形,每分一次,正方形的个数增加3个。 根据这样的规律,我们可以想到怎样把一个正方形分成4个、6个、8个正方形的方法。 分成6个 分成7个 分成8个 分成9个 【例 8】 你能把下面的图形分割成4个形状相同、大小相等的图形吗? 【分析】 一共有5个完整的小正方形、2个三角形(半个正方形)。相当于6个小正方形的面积。

科学活动图形分割与组合形

科学活动图形分割与组 合形 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

科学活动:《图形分割与组合》(形) 活动目标:? 1.尝试运用多种方法将一个图形分成多个图形或将多个图形拼成一个图形,并表述。? 2.理解平面图形之间的关系。? 活动准备:? 经验准备:幼儿已认识圆形、正方形、三角形、长方形、椭圆形等。 材料准备:正方形、三角形、长方形、圆形纸片若干,笔、剪刀、固体胶,黑色卡纸等。 材料配套:数字资源《机器人》,幼儿活动操作材料《科学·图形分割与组合》 活动过程:? 1.以“机器人”导入,复习集合图形。 播放数字资源《机器人》,引导幼儿观察机器人是由哪些图形组成的。 引导语:老师带来了一个机器人,你们看看这个机器人是由哪些图形组成的。 根据幼儿的回答,从机器人身上分离出图形。 2.尝试对各种图形进行简单的分割并组合,理解图形之间的关系。 游戏“正方形变变变”(变长方形、小的正方形、三角形等)。 引导语:我们发现机器人是由这么多图形组合成的,可这些图形还会变魔术呢!你们猜猜看他们能变出什么?

出示正方形纸片,提问:恩能够吧正方形的纸变成长方形(小正方形、三角形)吗? 请个别幼儿回答。 引导幼儿动手操作,尝试用折、剪、画等方法将正方形的纸变成长方形(小正方形、三角形)。 分享交流:你的正方形的纸变成了什么图形?有几个?是怎么做的?(如“我把正方形边对着一次,变成两个长方形”。) 小结:正方形的纸,边对边折一次,就变成两个长方形;边对边折两次,变成四个小的正方形。正方形的纸,角对角折一次,变成两个三角形,角对角折两次,变成四个小的三角形。 游戏“图形变变变”。 引导语:你们刚才把正方形变成了长方形,小正方形,三角形,你们能不能将长方形、圆形、三角形等图形也用折、剪、画的方法变成其他图形呢? 引导幼儿自主选择一个图形,用折、剪、画的方法进行图形分割。 分享交流:你选择什么图形,用什么方法变成几个其他图形? 小结:原来,我们可以通过折、剪、画的方法将图形分割变成其他几个更小的图形。 尝试将分割后的图形进行组合。 引导语:你们能把剪下来的小正方形(长方形,三角形,半圆形等)再拼合成原来的正方形(长方形、三角形、圆形等)或者拼成其他图形吗?请一个小朋友上来试试看。(有条件的幼儿园可以放在食物投影仪上操作。)

2018四年级奥数.几何.图形的分割与拼接(C级).学生版

图形的分割和拼接提高 知识框架 把一个几何图形按某种要求分成几个图形,就叫做图形的分割. 反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合. 将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考. (1)如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多. (2)图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形. (3)如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的. (4)如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法. 例题精讲 模块一、图形的分割 【例1】用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法? 【巩固】图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.

【例2】下图分割成大小、形状相同的三块,使每一小块中都含有一个○. 欢迎关注:奥数轻松学 【例3】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样 的四部分.

【巩固】图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗? 【例4】如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字. 【巩固】如右图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割? 欢迎关注:奥数轻松学 余老师薇芯:69039270 模块二、图形的拼接 【例5】用四块相同的不等腰的直角三角板,拼成一个外面是正方形,里面有正方形孔的图形

中班数学活动:图形分割与组合(形)(备选)

中班数学活动:图形分割与组合(形) 【活动目标】 1.尝试运用多种方法将一个图形分成多个图形或将多个图形拼成一个图形,并表述。 2.理解平面图形之间的关系。 【活动准备】 (一)经验准备:幼儿已认识过正方形、三角形、长方形、圆形等,数字资源《机器人》,操作材料《图形分割与组合》。 (二)材料投放:正方形、三角形、长方形、圆形纸片若干,笔,剪刀,固体胶,黑色卡纸等。 【活动过程】 一、以“机器人”导入,复习几何图形。 (一)播放数字资源《机器人》,引导幼儿观察机器人是由哪些图形组成的。 1.引导语:老师带来了一个机器人,你们看看这个机器人是由哪些图形组成的。 2.根据幼儿的回答,从机器人身上分离出图形。 二、尝试对各种图形进行简单的分割并组合,理解图形之间的关系(一)游戏“正方形变变变”(变长方形、小的正方形、三角形等) 1.引导语:我们发现机器人是由这么多图形组合成的,可这些图形还会变魔术呢!你们猜猜看它们能变出什么? 2.出示正方形纸片,提问:能把正方形的纸变成长方形(小正方形,三

角形)吗? 请个别幼儿回答。 3.引导幼儿动手操作,尝试用折、剪、画等方法将正方形的纸变成长方形(小正方形、三角形)。 4.分享交流:你的正方形的纸变成了什么图形?有几个?是怎么做 的?(如我把正方形边对边折一次,变成两个长方形”) 5.小结:正方形的纸,边对边折一次,就变成两个长方形;边对边折两次,变成四个小的正方形。正方形的纸,角对角折一次,变成两个三角形;角对角折两次,变成四个小的三角形。 (二)游戏“图形变变变”。 1.引导语:你们刚才把正方形变成了长方形、小正方形、三角形,你们能不能将长方形、圆形、三角形等图形也用折、剪、画的方法变成其他图形呢? 2.引导幼儿自主选择一个图形,用折、剪、画等方法进行图形分割。 3.分享交流:你选择什么图形,用什么方法变成几个其他图形? 4.小结:原来,我们可以通过折、剪、画的方法将图形分割变成其他几个更小的图形。 (三)尝试将分割后的图形进行组合。 1.引导语,你们能把剪下的小正方形(长方形、三角形、半圆形等)再拼合成原来的正方形(长方程、三角形,圆形等)或者拼成其他图形吗?请一个小朋友上来试一试看。 2.引导幼儿将刚才分割的图形进行组合,如从正方形分割出的四个小

小学数学《图形的分割与拼接》练习题(含答案)

小学数学《图形的分割与拼接》练习题(含答案) 把一个几何图形按某种要求分成几个图形,就叫做图形的分割. 反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合. 将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考. 如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多. 图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形. 如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的. 如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法. (一)图形的分割 【例1】(★★★)下图是一个3×4的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整. 分析:因为要分割成完全相同的两块,即大小、形状完全相同.方格纸一共有3×4=12(个)小格,所以分成的两块每块有12÷2=6(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,我们从对称线入手,介绍一种分割技巧——染色法,先选中一个小格,找它关于中心点或中心线的对称位置,标上相应的符号.当找它关于中心线的对称位置时是一种情况,关于中心点的对称位置是另一种情况,具体如右上图所示. [拓展] 下图是一个4×4的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整. 分析:因为要分割成完全相同的两块,即大小、形状完全相同.方格纸一共有4×4=16(个)小格,所以分成的两块每块有16÷2=8(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,应用染色法,从中心点的一侧入手染色,逐步推进.(建议教师同时呈现六幅空的4×4格图,不同的变化在不同的图上同时呈现)如下图:

第三章第五讲:图形的分割与拼接题库 知识例题精讲

本讲主要学习三大图形处理方法: 1.理解掌握图形的分割; 2.理解掌握图形的拼合; 3.理解图形的剪拼. 本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力. 把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多. 图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形. 如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的. 如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法. 板块一图形的分割 【例 1】用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法? B A O 【例 2】把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.【例 3】怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形. → 【例 4】下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.

3 2 1 D C B A 1 F E 2 2 1 D C B A 【例 5】 在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块. A O 【例 6】 把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗? 20 60 40 20 【例 7】 下图是一个34 的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方 格的完整. 【例 8】 下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四 部分. 【例 9】 下图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分? 【例 10】 已知左下图是由同样大小的5个正方形组成的.试将图形分割成4块形状、大小都一样的图形.

第20讲:图形的分割与剪拼

图形的分割与剪拼练习题 一.夯实基础: 1.下图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分? 你能想出几种方法? 2. 3. 4.

二. 拓展提高: 5. 把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别 的方法吗? 6. 7. 下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形. 8. 下面哪些图形自身用4次就能拼成一个正方形? 三.超常挑战: 9. 下图是一个34 的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要 保持每个小方格的完整. 20 60 40 20

10. 试用图a 中的8个相等的直角三角形,拼成图b 中的空心正八边形和图c 中的空心正八 角星. 11. 12. 13.分割的结果.

答案: 1. 如果不考虑分成的四个图形的形状,只考虑它们的面积,这就要求把原来五个正方形分 成四个面积相等的图形,每个图形的面积应是1个多正方形.我们把每个正方形各分成四个面积相等的小正方形,分成的每块图形应有五个这样的小正方形.根据图形的对称性,我们很快就能得到如左下图图的分法.也可以将中间的正方形分成四个小正方形,如右下图. 2. 小图形的格数作图,如下图. 3. 由于土地的形状为正三角形,由题意可知,把大三角形的面积分成四份,每一块占一份, 4. 5. 先把图形分成2040?相等的两块,每一块中再分成相等的两份,这样就不难分成四块了, 如右上图. (答案不唯一) 20

6. 这道题的要点在于通过计算解决问题,要求把原来三个正三角形分成四个大小、形状都 相同的四个梯形,先不考虑形状,大小相同也就是面积相等,即把整个梯形的面积分成四份,分割后的每一个梯形占一份,可以考虑把每一个三角形的面积分成四份,再把三个正三角形中的每一个小三角形合成要求的梯形,这种类型的题目可以从中点入手,找到每个正三角形的中点并连接,如下图. 7. 通过计算,18÷6=3,说明基本形状是由三个小正方形组成,三个正方形有两种形式: 与, 通过观察,上面的图形具有对称性,不可能分成6个 ,分法如下图: 8. 9. 10. 把一个直角三角形的斜边与另一个直角三角形的一条直角边重合,同时,斜边上的一个 锐角顶点与直角顶点重合,像这样依次摆放下去,便可得空心正八边形.若把一个直角三角形的斜边与另一个直角三角形的直角边的一部分重合,但顶点均不重合,依次摆放下去,便可由这八个相等的直角三角形组成空心正八角星.

四年级下册数学扩展专题练习:几何.图形的分割与拼接(A级)全国通用

把一个几何图形按某种要求分成几个图形,就叫做图形的分割. 反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合. 将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考. (1) 如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形 先分少,再分多. (2) 图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结 合数量来分割图形. (3) 如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起, 先拼少的,再拼多的. (4) 如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点, 通过分析推理和必要的计算,确定剪拼的方法. 模块一、图形的分割 【例 1】 用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法? 【巩固】 画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有 条. 【例 2】 下图是一个3×4的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个 小方格的完整. 例题精讲 知识框架 图形的分割和拼接提高

【巩固】下图是一个4×4的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整. 【例 3】一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分? 【巩固】请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪? 【例 4】在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.

图形的分割与剪拼

图形的有关问题 一、图形的分割 例:用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法? 练习: 1、画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有 条. 2、在一块长方形的地里有一正方形的水池( 如下图).试画一条直线把除开水池外的这块地平分成两块. A O 例:把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法. 练习:怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形. 例:把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗? 20 6040 20 例:下图是一个3×4的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.

练习:右图是一个4×4的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整. 例:下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分. 练习:下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的两部分.如果分三部分呢? 下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形. 二、格点与面积 例1 计算下图中各图形的面积:

例3 相邻四点连成的小正方形面积为1平方厘米。 分别连接各点,组成下面12个图形,你发现有什么排列的规律? 算出各图形的面积。找出图形外面一周的点子数、中间的点子数与面积三者之间的关系。

练习:计算下图中各多边形的面积(点与点之间的距离都是1厘米) ⑴⑵ 例:用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少?面积等于2平方厘米的三角形有多少个?

相关文档
相关文档 最新文档