文档库 最新最全的文档下载
当前位置:文档库 › HFSS仿真实验报告样例

HFSS仿真实验报告样例

HFSS仿真实验报告样例
HFSS仿真实验报告样例

〈〈微波技术与天线》HFSS仿真实验报告

实验二印刷偶极子天线设计

一、仿真实验内容和目的

使用HFSS设计一个中心频率为2.45GHz的采用微带巴伦馈线的印刷偶极子天线, 并通过HFSS 软件Opitmetrics模块的参数扫描分析功能对印刷偶极子天线的一些3!要结构参数进行参数扫描分析,分析这些参数对天线性能的影响。

二、设计模型简介

整个天线分为5个部分,即介质层,偶极于天线臂,微带巴伦线,微带传输线,见

三、建模和仿真步骤

1、新建HFSSC程,添加新设计,设置求解类型:Driven Modal。

2、创建介质层。创建长方体,名称设为Substrate,材质为FR4_epoxy颜色为深绿色,透明度为

0.6。

3、创建上层金属部分

1)创建上层金属片,建立矩形面,名称Top_Patch颜色铜黄色。

2)创建偶极子位于介质层上表面的一个臂。画矩形面,名称Dip_Patch,颜色铜黄色。3)创建三角形斜切角,创建一个三角形面,把由矩形面Top_Patch和Dip_Patch组成的

90折线连接起来。

4)合并生成完整的金属片模型。

4、创建下表面金属片■I批注[y1]:实际报告撰写中,表格应手动编制,不允许直接截图。

1)创建下表面传输线Top_patch_1。

2)创建矩形面Rectangle1。

3)创建三角形polyline2。

4)镜像复制生成左侧的三角形和矩形面

此步完成后得到即得到印刷偶极子天线三维仿真模型如图2所示。

5、设置边界条件

1)分配理想导体。

2)设置辐射边界条件,材质设为air。

6、设置激励方式:在天线的输入端口创建一个矩形面最为馈电面,设置该馈电面的激励方式为集总端口激励,端口阻抗为50欧姆。

7、求解设置:求解频率(Solution Frequency)为2.45GHz自适应网格最大迭代次数(Maximum Number of Passes) : 20,收敛误差(Maximum Delta S)为0.02。

8、扫频设置:频率扫描范围2—3GHz,以0.001GHz为扫描步进,扫描类型:快速扫描

(Fast Sweep)。

9、设计检查和运行仿真计算。

四、仿真结果分析

1、S11仿真结果分析由S11频响曲线仿真图可见,所设计的偶极子天线中心频率为

2.45GHz, S11< - 10dB勺

相对带宽BW= (2.729 - 2.256 /2.45=19.3%。

2、输入阻抗仿真结果分析

由输入阻抗频响曲线仿真图可见,在 2.45GHz中心频率处,天线的输入阻抗为(49.8 - j*6.3欧姆,可见印刷偶极子天线的初始结构已经达到了良好的阻抗匹配。

3、三维增益方向图仿真结果分析

观察频率:2.45GHz,观察角度范围:Phi=0deg: 1deg: 360deg , Theta=0deg:1deg:180deg 天线的三维方向图形状以及增益符合设计预期。

图5 2.45GHz三维增益方向图仿真结果(初始设计)

五、参数扫描研究

这里利用HFSS 的参数扫描功能研究天线臂的长度对中心频率的影响。

1、L2为扫描变量,扫描范围 L2=19mm:1mm:23mm ,固定L3=10mm,其它尺寸如前。

从不同L2值对应的S11仿真频响曲线可以看出,天线的谐振频率随着天线臂长度 变量L2的增长而降低。

2、L3为扫描变量,扫描范围 L3=6mm:2mm:14mm ,固定L2=21mm,其它尺寸如前。 从不同L2值对应的S11仿真频响曲线可以看出,当平衡三角形直角边长 L3从

6mm 增加到14mm 时,天线的带宽逐渐减小。 -一 邪■■ M g ~: !~:~:~:"": :~~: -------------------------------------------------------------------- T""! !~-"":"": :~:"":~! ! --------------------------------------------------------- T 七、总结和思考(可选)

HFSS天线仿真实验报告

HFSS天线仿真实验报告 半波偶极子天线设计 通信0905 杨巨 U200913892 2012-3-7

半波偶极子天线仿真实验报告 一、实验目的 1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法 2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法 3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图 特性等 4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法 二、实验仪器 1、装有windows系统的PC一台 2、HFSS13.0软件 3、截图软件 三、实验原理 1、首先明白一点:半波偶极子天线就是对称阵子天线。 2、 对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为a,长度为l。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。对称振子的长度与波长相比拟,本身已可以构成实用天线。 3、 在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。取图1的坐标,并忽略振子损耗,则其电流分布可以表示为: 式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。 4、 在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。

电流元I(z)dz所产生的辐射场为 图2 对称振子辐射场的计算 如图2 所示,电流元I(z)所产生的辐射场为 其中 5、方向函数 四、实验步骤 1、设计变量 设置求解类型为Driven Model 类型,并设置长度单位为毫米。 提前定义对称阵子天线的基本参数并初始化 2、创建偶极子天线模型,即圆柱形的天线模型。 其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。 3、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。 4、设置辐射边界条件 要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。这里创建一个沿Z轴放置的圆柱模型,材质为空气。把圆柱体的表面设置为辐射边界条件。 5、外加激励求解设置 分析的半波偶极子天线的中心频率在3G Hz,同时添加2.5 G Hz ~3.5 G Hz频段内的扫频设置,扫频类型为快速扫频。

实验二电磁波发射天线的模拟仿真

实验二电磁波发射天线的模拟仿真电动力学实验报告电磁波发射天线的模拟仿真 学院: 应用科学学院专业班级: 学生姓名: 某某某 学号: 指导教师: 完成时间: 2013年7月2号 一、实验目的 1(熟悉并了解CST 的软件环境。 2(通过实验掌握天线的实际画法及步骤。 3(了解电磁波发射天线的模拟仿真过程,进一步了解电磁波发射现象。 二、实验原理及要求 在CST微波工作室中,通常采用瞬态求解器来计算天线,典型的天线特性,如S参量(S参数)、主瓣方向、增益、效率等,都将被自动计算和显11 示。按照如下图的天线模型形自行设计可接受2GHz左右的电磁波信号的天线并仿真出结果,同时作出一定分析。(碳纳米管的半径为R,轴向方向沿z轴,长度为L,中间馈电端口缝隙为D) 三、实验步骤 1、选择天线模板 启动CST,在弹出的“Welcome”对话框中点击“OK” 按钮,创建一个新项目。然后会看到选择模板对话框,选择 Antenna(Horn,Waveguide),并点击OK按钮。 2、设置单位

用鼠标左键单击主菜单上的按钮,在下拉菜单中 选择,然后在弹出的对话框中将单位设置值更改为: mm,GHz,ns,然后点击OK按钮。 3、设置背景材料 假设天线在理想的真空环境中。用鼠标左键单击主菜单 上的按钮,在下拉菜单中选择,然后在弹出的对话框中设置各参数。 4、定义天线结构 用鼠标左键单击主菜单上的按钮,在下拉菜单中 选择 ,然后在弹出的对话框中设置各参数。其中 a,,。 5、建立模型 天线为圆柱结构,用鼠标左键单击主菜单上的按钮,在下拉菜单中选择,在出现的子菜单中选择,然后再按下键盘上的ESC键,在出现在对话框中输入碳纳米管天线的半径、长度、材料特性等参数。设置完成后点击OK按钮。 用鼠标左键单击主菜单上的按钮,在下拉菜单中选择 ,在出现的子菜单中选择,然后再按下键盘上的ESC键,在出现在对话框中输入碳纳米管天线的半径、长度、材料特性等参数。设置完成后点击OK按钮。 6、定义激励端口 为了给天线提供馈电端口,设置柱体中间部分为馈电缝隙,采用中心馈电。用鼠标左键单击主菜单上的按钮,在下拉菜单中选择,在出现的子菜单中选择,然后再按下键盘上的ESC键,在出现在对话框中输入碳纳米管天线的半径、长度、材料特性等参数,设置完成后点击OK按钮。

电磁兼容天线仿真实验报告

电磁场与电磁兼容 实验报告 学号: 姓名: 院系: 专业: 教师: 05月20日

半波对称振子天线阵最大辐射方向控制 实验工具 ?Expert MININEC Classic电磁场数值仿真软件 实验目的 根据要求的参数,利用仿真软件设计和分析自由空间或地面上的细、直线天线的电磁场数值,并完成以下要求: ?改变每幅天线馈电电流的相位控制最大增益的方向:要求的最大增益方向是:1. 00 ;2. 400;3. 800 (选择与自己学号后2位数最近的度数) ?根据运行结果指出: 1.增益方向性图; 2.最大增益; 3.最大增益方向。 实验参数 ?频率 f = 300MHz,波长λ = 1m ?四分之一波长单极子天线L=0.25λ,四个半波长对称振子排列在一条直线上,相邻两幅天线的间隔是四分之一波长 实验过程 ?建立几何模型:点—> 线,尺寸,环境,坐标等 半波对称振子放在 YOZ 平面内,相邻振子的间距是四分之一波长 0.25m。

图1 问题描述图2 –图4 几何模型 图3 图4 ?定义电特性:频率,电压,当前节点 ZENITH(DEG) 对应球坐标系中的θ, AZIMUTH (DEG) 对应球坐标系中的φ 图5 电特性—频率图6 馈电电流相位设置

图7 球坐标参数θ、ψ以及间隔设置 ?选择模式:辐射模式 ?求解项:近场 ?调试、运行 表格中出现“No detected violations ”表明设置正确 图8 选择运行平面图9 调试结果 ?显示结果 3D display 显示所设计天线的图形 天线增益方向性图中给出了最大增益值和最大增益方向、以及半功率增益带宽的计算结果。

HFSS天线仿真实验报告

[键入公司名称] [键入文档标题] 通信0905 杨巨 U2 2012-3-7 半波偶极子天线仿真实验报告 一、实验目的 1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法 2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法 3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图 特性等 4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法 二、实验仪器 1、装有windows系统的PC一台 2、HFSS13.0软件 3、截图软件 三、实验原理 1、首先明白一点:半波偶极子天线就是对称阵子天线。

对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为a,长度为l。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。对称振子的长度与波长相比拟,本身已可以构成实用天线。 在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。取图1的坐标,并忽略振子损耗,则其电流分布可以表示为:式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。 4、 在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。 电流元I(z)dz所产生的辐射场为 图2 对称振子辐射场的计算 如图2 所示,电流元I(z)所产生的辐射场为 其中 5、方向函数 四、实验步骤 1、设计变量 设置求解类型为Driven Model 类型,并设置长度单位为毫米。 提前定义对称阵子天线的基本参数并初始化 2、创建偶极子天线模型,即圆柱形的天线模型。 其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。 3、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。 4、设置辐射边界条件 要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。这里创建一个沿Z轴放置的圆柱模型,材质为空气。把圆柱体的表面设置为辐射边界条件。 5、外加激励求解设置 分析的半波偶极子天线的中心频率在3G Hz,同时添加2.5 G Hz ~3.5 G Hz频段内的扫频设置,扫频类型为快速扫频。 6、设计检查和运行仿真计算 7、HFSS天线问题的数据后处理 具体在实验结果中阐释。 五、实验结果 1、回波损耗S11 回波损耗回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射,是天线设计需要关注的参数之一。 图中所示是在2.5 G Hz ~3.5 G Hz频段内的回波损耗,设计的偶极子天线中心频率约为3 G Hz,S11<-10dBd的相对带宽BW=(3.25-2.775)/3*100%=15.83%

综合实验报告LTE仿真实验

综合实验报告—LTE 学号: 姓名: 日期: 2016/2017学年第一学期

实验1 LTE无线接入网设备配置 实验目的: 1. 掌握LTE无线接入网的网元名称及其作用。 2. 掌握实验中各网元的线缆名称及其作用。 实验内容: 1. 完成一个LTE无线接入网站点机房的设备配置。 实验要求: 1. 完成大型城市万绿市A站点机房的设备配置。 实验步骤: 设备配置步骤如下: 1.单击仿真平台中的“设备配置”按钮,然后选择仿真场景中的某站点机房。 2.添加设备:包括BBU、RRU、ANT、PTN、ODF、GPS。 3.连接RRU和ANT。ANT1连接到RRU1,使用“天线跳线”,将ANT1左边1脚和 RRU的1脚,同理将对应的4脚连接起来。因为默认使用的是2×2的天线模式。 注意相互对应,不能连串。 4.连接RRU和BBU。使用“成对LC-LC光纤”,把TX0-RX0~TX2-RX2与RRU1~RRU3 对应连接起来。 5.连接BBU和GPS。使用“GPS馈线”,一端将馈线与GPS连接,另一端连接到BBU的IN 口。 6.连接BBU与PTN。使用“成对LC-LC光纤”,点击设备指示图里的BBU,将光纤接到BBU 的TXRX端口上,另一端连接到设备指示图里的PTN设备槽位1的GE1端口上。 7.连接ODF和PTN。单击ODF进入到ODF架内部,使用“成对LC-FC光纤”,将某市站 点机房和该市汇聚机房连接起来。这里要使用两对LC-FC线,分别连接到PTN的端口3和4口上。 至此,该市某站点机房的设备配置就完成了,从“设备指示图”中可观察到设备间的连接情况。 设备之间连接关系表 图3-1 万绿市核心网设备配置接口使用情况

双极天线方向图仿真实验报告(B5)

天线与电波传播实验报告级队区队学员姓名学号实验组别3同组人无实验日期实验成绩实验项目:双极天线方向图仿真实验 实验目的: 1.熟悉matlab 的使用。 2.加深对双极天线工作原理的理解; 3.理解双极天线的方向性及天线臂长、架设高度对 天线方向性的影响; 实验器材:计算机一台、matlab 软件。 实验原理阐述、实验方案: 双极天线可以理解成架设在地面上的对称振子,因此,研究双级天线的性质(这里主要指方向性)可以分两步进行。 1.对称振子的方向性 (1)电基本振子的远区辐射场 如果对称振子的电流分布已知,则由电基本振子的远区辐射场表达式沿对称振子几分,就可以得到对称振子的辐射场表达式。 电基本振子的远区(满足kr>>1,即πλ<<2r )辐射场表达式如下:

?????????====θλπ=θλ=?θ-θ-?0E E H H e sin r Il 60j E e sin r 2Il j H r r jkr jkr (1-1) 式中: I——电基本振子的电流; l——电基本振子的长度; r——远区中一点到电基本振子的距离。 根据远区辐射场的性质可知,Eθ和Hφ的比值为常数(称为媒质的波阻抗),所以,在研究天线的辐射场时,只需要讨论其中的一个量即可。通常总是采用电场强度作为分析的主体。 (2)对称振子的电流分布 如果将细对称振子看成是末端开路的传输线张开形成,则细对称振子的电流分布与末端开路线上的电流分布相似,即非常接近于正弦驻波分布。 以振子中心为原点,忽略振子损耗,则细对称振子的电流分布为: ???≤+≥-=-=0 z )z l (k sin I 0z )z l (k sin I )z l (k sin I )z (I m m m (1-2) (3)对称振子的辐射场及方向函数

行波天线方向图仿真实验报告(B5)

天线与电波传播实验报告 08 级队区队学员姓名学号 实验组别 3 同组人实验日期2011.12.22 实验成绩 实验项目:行波天线方向图仿真实验 实验目的: 1.加深对行波天线工作原理的理解; 2.理解行波单导线的长度对天线方向性的影响; 3.了解菱形天线的参数选取。 实验器材: 1.计算机 2.MATLAB软件 实验原理阐述、实验方案: 一、实验原理 1.行波单导线的方向性 行波单导线是指天线上电流按行波分布的单导线天线。设长度为l 的导线沿z轴放置,如图2所示,导线上电流按行波分布,即天线沿线各点电流振幅相等,相位连续滞后,其馈电点置于坐标原点。设输入端电流为I0,忽略沿线电流的衰减,则线上电流分布为

'jk z 0e I )'z (I -= (2-1) z o R r kz cos θ??l dz ′ θ 图2 行波单导线及其坐标 行波单导线辐射场的分析方子相似法与对称振,即首先把天线分割成许多个电基本振子,而后取所有电基本振子辐射场的总和,故 ?θ-θθλ =l 0)cos 'z r (jk 'jk z 0 'dz e e sin r I 60j E )cos 1(2 k l j jk r 0e )]cos 1(2 kl sin[cos 1sin e r I 60j θ--θ-θ-θλ= (2-2) 式中,r 为原点至场点的距离;θ为射线与z 轴之间的夹角。由上式可得行波单导线的方向函数为 ) cos 1()]cos 1(2 kl sin[ sin )(f θ-θ-θ =θ (2-3) 根据上式可画出行波单导线的方向图如图3所示,由图可以看出行波单导线的方向性具有如下特点:

天线实验报告

实验一 半波振子天线的制作与测试 一、实验目的 1、掌握50欧姆同轴电缆与SMA 连接器的连接方法。 2、掌握半波振子天线的制作方法。 3、掌握使用“天馈线测试仪”测试天线VSWR 和回波损耗的方法。 4、掌握采用“天馈线测试仪” 测试电缆损耗的方法。 二、实验原理 (1)天线阻抗带宽的测试 测试天线的反射系数(S 11),需要用到公式(1-1): )ex p(||0 11θj Z Z Z Z S A A Γ=+-= (1-1) 根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗Z A 接近于所要求的阻抗Z 0(匹配),在天线工程上,Z 0通常被规定为75Ω或者50Ω,本实验中取Z 0=50Ω。天线工程中通常使用电压驻波比(VSWR )ρ以及回波损耗(Return Loss ,RL )来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述: | |1| |1Γ-Γ+= ρ (1-2) |)lg(|20Γ-=RL [dB] (1-3) 对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1中。 表1-1 工程上对天线的不同要求(供参考) 天线带宽 驻波系数ρ的要求 反射系数|Γ|的要求 反射损耗RL 的要求 窄带(相对带宽5%以下) ρ≤1.2或1.5 |Γ|≤0.09或0.2 ≥21dB 或14dB 宽带(相对带宽20%以下) ρ≤1.5或2 |Γ|≤0.2或0.33 ≥14dB 或10dB 超宽带 ρ≤2或2.5,甚至更大 |Γ|≤0.33或0.43 ≥10dB (2)同轴电缆的特性阻抗 本实验采用50欧姆同轴电缆,其外皮和内芯为金属,中间填充聚四氟乙烯介质(相对介电常数 2.2r ε=)。其特性阻抗计算公式如下: 060ln r b Z a ε?? = ??? (1-4) 式中 a ——内芯直径; b ——外皮内直径。

半波偶极子实验报告

邢台学院 实验报告 课程名称电磁波与天线技术 实验项目2 偶极子和单极子天线设计授课教师 专业班级 实验时间 学号 学生姓名 系部数学与信息技术学院2015~2016学年度第1学期

●实验学时:4 ●实验目的及要求: 1、掌握偶极子和单极子天线的几个基本参数; 2、使用HFSS设计半波偶极子天线。 3、使用HFSS设计单极子天线。 ●实验环境: 1、Windows操作系统 2、PC连接到Internet 实验容及步骤: 1、新建设计工程。 2、添加和定义设计变量。 3、设计建模。 4、求解设置。 5、设计检查和运行仿真计算。 6、HFSS天线问题的数据后处理。 ●实验结果及体会: 1、建立工程 菜单Project->Insert HFSS Design 2、设置求解模式 菜单HFSS->Solution Type->天线为Driven Modal

3、设置模型尺寸长度单位 菜单Modeler->Units->mm->OK 单位一般设置为毫米mm。 4、添加和定义设计变量。 5、设计建模 1)创建一个沿z轴方向放置的细圆柱体模型作为偶极子天线的一个臂2)通过沿着坐标轴复制,生成偶极子天线的另一个臂。 3)设置端口激励。 4)设置边界条件。

6、求解设置。 7、设计检查和运行仿真计算。

8、HFSS天线问题的数据后处理 1)S11扫频分析: 2)电压驻波比: 3)Smith圆图查看归一化输入阻抗: 4)输入阻抗: m1:

m2: 5)方向图: 6)三维方向图: 体会:通过仿真软件对半波偶极子设计仿真,得到符合要求的半波偶极子天线。通过仿真得到了天线的回波损耗,电压驻波比,3D方向增益图等参数。

实验一半波振子天线仿真设计

实验一 半波振子天线仿真设计 一、实验目的: 1、 熟悉HFSS 软件设计天线的基本方法; 2、 利用HFSS 软件仿真设计以了解半波振子天线的结构和工作原理; 3、 通过仿真设计掌握天线的基本参数:频率、方向图、增益等。 二、预习要求 1、 熟悉天线的理论知识。 2、 熟悉天线设计的理论知识。 三、实验原理与参考电路 天线介绍 天线的定义:用来辐射和接收无线电波的装置。天线的作用:将电磁波能量转换为导波能量,或将导波能量转换为电磁波能量。 天线的基本功能 天线应尽可能多的将导波能量转变为电磁波能量,要求天线是一个良好的开放系统,其次要与发射机(或接收机)良好匹配; (1)、 天线应使电磁波能量尽量集中于需要的方向, (2)、 对来波有最大的接收; (3)、 天线应有适当的极化,以便于发射或接收规定极化的电磁波; (4)、 天线应有只够的工作带宽; 天线的分类 (1)、 按用途分:通信天线、广播电视天线、雷达天线等; (2)、 按工作波长分:长波天线、中波天线、短波天线、超短波天线、微波天线等; (3)、 按辐射元分:线天线和面天线; 天线的技术指标 大多数天线电参数是针对发射状态规定的,以衡量天线把高频电流能量转变成空间电波能量以及 定向辐射的能力。 (1) 天线方向图及其有关参数 所谓方向图,是指在离天线一定距离处,辐射场的相对场强 (归一化模值)随方向变化的曲线图。如图1所示。若天线辐射的电场 强度为E (r ,θ,φ),把电场强度(绝对值)写成 60(,,(,) I E r f r θ?θ?=式式中I 为归算电流,对于驻波天线,通常取波腹电流I m 作为归算电流; f (θ,φ)为场强方向函数。因此,方向函数可定义为 (,,) (,)260/E r f I r θ?θ?= 式 为了便于比较不同天线的方向性,常采用归一化方向函数, 用F (θ,φ)表示,即 max max (,)(,)(,)3 (,)E f F f E θ?θ?θ?θ?== 式图1 方向图球坐标系

微带天线实验报告

微波与天线实验报告 实验名称:微带天线(Microstrip Antenna)实验指导:黎鹏老师 学院:信息学院 专业:通信国防 一、实验目的: 1.了解天线之基原理与微带天线的设计方法。 2.利用实验模组的实际测量得以了解微带天线的特性。

二、预习内容: 1.熟悉天线的理论知识。 2.熟悉天线设计的理论知识。 三、实验设备: 四、理论分析: 天线基本原理: 天线的主要功能是将电磁波发射至空气中或从空气中接收电磁波。所以天线亦可视为射频发收电路与空气的信号耦合器。在射频应用上,天线的类型与结构有许多种类。就波长特性分有八分之一波长、四分之一波长、半波天线;就结构分,常见有单极型(Monopole )、双极型(Dipole )、喇叭型(Horn )、抛物型(Parabolic Disc )、角型(Corrner )、螺旋型(Helix )、介电质平面型(Dielectric Patch )及阵列型(Array )天线。 (一)天线特性参数 1. 天线增益(Antenna Gain ’G ): 其中 G ——天线增益 P ——与测量天线距离R 处所接收到的功率密度,Watt / m 2 Pisotropic —— 与全向性天线距离R 处所接收到的功率密度,Watt / m 2 2. 天线输入阻抗(Antenna Input Impedance ’Zin ): 其中 Z in ——天线输入阻抗 V ——在馈入点上的射频电压 I ——在馈入点上的射频电流

以偶极天线为例,其阻抗由中心处73Ω变化到末端为2500Ω。 3. 辐射阻抗(Radiation Resistance ’Rrad ): 2i P R av rad = 其中Pav ——天线平均辐射功率,W i ——馈入天线的有效电流,A I ——在馈入点上的射频电流 对一半波长天线而言,其辐射阻抗为73Ω。 4. 辐射效率(Radiation Efficiency ’ ηr ): input radiated r P P = η 其中P radiated ——由天线幅射出的功率,W P input ——由馈入天线的功率,W 5. 辐射场型(Radiation Pattern ) 天线的电场强度与辐射功率的分布可利用一极坐标图来表示。 6. 半功率角(Radiation Beam Width ) 7. 方向系数( av P P D m ax = 其中P max ——最大功率密度,W/m 2 P input ——平均幅射功率密度,W/m 2 五、实验结果分析 1. 版图设计

CST仿真实验实验报告

电子科技大学自动化工程学院标准实验报告 (实验)课程名称微波技术与天线 电子科技大学教务处制表

电子科技大学 实验报告 学生姓名:学号:指导教师: 实验地点:实验时间: 一、实验室名称:C2-513 二、实验项目名称:微波技术与天线CST仿真实验 三、实验学时:6学时 四、实验目的: 1、矩形波导仿真 (1)、熟悉CST仿真软件; (2)、能够使用CST仿真软件进行简单矩形波导的仿真、能够正确设置仿真参数,并学会查看结果和相关参数。 2、带销钉T接头优化 (1)、增强CST仿真软件建模能力; (2)、学会使用CST对参数扫描和参数优化功能。 3、微带线仿真 学习利用CST仿真微带线及微带器件。 4、设计如下指标的微带线高低阻抗低通滤波器 截止频率:2GHz 截止频率处衰减:小于1dB 带外抑制:3.5GHz插入损耗大于20dB 端口反射系数:<15dB

端口阻抗:50欧姆。 五、实验内容: 1、矩形波导仿真 (1)、熟悉CST仿真软件的基本操作流程; (2)、能够对矩形波导建模、仿真,并使用CST的时域求解器求解波导场量; (3)、在仿真软件中查看电场、磁场,并能够求解相位常数、端口阻抗等基本参数。 2、带销钉T接头优化 (1)、使用CST对带销钉T接头建模; (2)、使用CST参数优化功能对销钉的位置优化; (3)、通过S参数分析优化效果。 3、微带线仿真 (1)、基本微带线的建模; (2)、学习微带线的端口及边界条件的设置。 4、微带低通滤波器设计 (1)、根据参数要求计算滤波器的各项参数; (2)、学习微带滤波器的设计方法; (3)、利用CST软件设计出符合实验要求的微带低通滤波器。 六、实验器材(设备、元器件): 计算机、CST软件。 七、实验步骤:(简述各个实验的实验步骤) 1、矩形波导仿真: ①. 建模:建立矩形波导的模型(86.4mm*43.2mm*200mm);②. 设置

北邮微波 天线的特性特性和研究 实验报告

北京邮电大学 电磁场与微波测量实验 学院:电子工程学院 班级:2013211203 组员: 组号:第九组

实验六 用谐振腔微扰法测量介电常数 微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。 一、 实验目的 1. 了解谐振腔的基本知识。 2. 学习用谐振腔法测量介质特性的原理和方法 二、 实验原理 本实验是采用反射式矩形谐振腔来测量微波介质特性的。反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,具有储能、选频等特性。 谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。 谐振腔的有载品质因数QL 由下式确定: 2 10 f f f Q L -= 式中:f0为腔的谐振频率,f1,f2分别为半功率点频率。谐振腔的Q 值越高,谐振曲线越窄,因此Q 值的高低除了表示谐振腔效率的高低之外,还表示频率选择性的好坏。 如果在矩形谐振腔内插入一样品棒,样品在腔中电场作用下就会极化,并在极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化。

图1 反射式谐振腔谐振曲线 图2 微找法TE10n 模式矩形腔示意图 电介质在交变电场下,其介电常数ε为复数,ε和介电损耗正切tan δ可由下列关系式表示: εεε''-'=j , εεδ'' '= tan , 其中:ε,和ε,,分别表示ε的实部和虚部。 选择TE10n ,(n 为奇数)的谐振腔,将样品置于谐振腔内微波电场最强而磁场最弱处, 即x =α/2,z =l /2处,且样品棒的轴向与y 轴平行,如图2所示。 假设: 1.样品棒的横向尺寸d(圆形的直径或正方形的边长)与棒长九相比小得多(一般 d /h<1/10),y 方向的退磁场可以忽略。 2.介质棒样品体积Vs 远小于谐振腔体积V0,则可以认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,因此可以把样品看成一个微扰,则样品中的电场与外电场相等。 这样根据谐振腔的微扰理论可得下列关系式

MATLAB仿真瑞利衰落信道实验报告结果

封面: 题目:瑞利衰落信道仿真实验报告

题目:MATLAB仿真瑞利衰落信道实验报告 引言 由于多径效应和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着重要的影响,而多径信道的包络统计特性则是我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。在此专门针对服从瑞利分布的多径信道进行模拟仿真,进一步加深对多径信道特性的了解。 一、瑞利衰落信道简介: 瑞利衰落信道(Rayleigh fading channel)是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。 二、仿真原理 (1)瑞利分布分析 环境条件: 通常在离基站较远、反射物较多的地区,发射机和接收机之间没有直射波路径(如视距传播路径),且存在大量反射波,到达接收天线的方向角随机的((0~2π)均匀分布),各反射波的幅度和相位都统计独立。 幅度与相位的分布特性: 包络 r 服从瑞利分布,θ在0~2π内服从均匀分布。瑞利分

布的概率分布密度如图2-1所示: 00.51 1.52 2.53 00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 图2-1 瑞利分布的概率分布密度 (2)多径衰落信道基本模型 离散多径衰落信道模型为 ()1()()() N t k k k y t r t x t τ==-∑ 其中,()k r t 复路径衰落,服从瑞利分布; k τ是多径时延。 多径衰落信道模型框图如图2-2所示:

HFSS微波仿真实验,实验报告六合一

肇庆学院 12通信2班杨桐烁 4202 实验一 T形波导的内场分析和优化设计 实验目的 1、熟悉并掌握HFSS的工作界面、操作步骤及工作流程。 2、掌握T型波导功分器的设计方法、优化设计方法和工作原理。 实验仪器 1、装有windows 系统的PC 一台 2、或更高版本软件 3、截图软件 T形波导的内场分析 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 实验步骤 1、新建工程设置:运行HFSS并新建工程、选择求解类型、设置长度单位

2、创建T形波导模型:创建长方形模型、设置波端口源励、复制长方体、 合并长方体、创建隔片 3、分析求解设置:添加求解设置、添加扫频设置、设计检查 4、运行仿真分析 5、查看仿真分析计算结果 内场分析结果 1、图形化显示S参数计算结果 8.008.258.508.759.009.259.509.7510.00 Freq [GHz] 0.13 0.25 0.38 0.50 0.63 0.75 Y 1 TeeModal XY Plot 1ANSOFT Curve Info mag(S(P ort1,P ort1)) Setup1 : Sw eep1 mag(S(P ort1,P ort2)) Setup1 : Sw eep1 mag(S(P ort1,P ort3)) Setup1 : Sw eep1 图形化显示S参数幅度随频率变化的曲线 2、查看表面电场分布 表面场分布图 3、动态演示场分布图

微波技术与天线仿真实验报告.docx

《微波技术与天线》HFSS仿真实验报告 实验二H面T型波导分支器设计 一.仿真实验内容和目的 使用HFSS设计一个带有隔片的H面T型波导分支器,首先分析隔片位于T型波导正中央,在8~10GHz的工作频段内,波导输入输出端口的S参数随频率变化的关系曲线以及10GHz时波导表面的电场分布;然后通过参数扫描分析以及优化设计效用分析在10GHz处输入输出端口的S参数随着隔片位置变化而变化的关系曲线;最后利用HFSS优化设计效用找出端口三输出功率是端口二输出功率两倍时隔片所在位置。 二.设计模型简介 整个H面T型波导分为两个部分:T型波导模型,隔片。见图1。 图1 三.建模和仿真步骤 1.运行HFSS并新建工程,把工程另存为Tee.hfss。 2.选择求解类型:主菜单HFSS→solution type→driven modal,设置求解类型为模式驱动。 3.设置长度单位:主菜单modeler→units→in,设置默认长度单位为英寸。 4.创建长方体模型 1)从主菜单选择draw→box,进入创建长方体模型的工作状态,移动鼠标到HFSS工作界面的右下角状态栏,在状态栏输入长方体的起始点坐标为(0,-0.45,0),按下回车键确认之后在状态栏输入长方体的长宽高分别为2,0.9,0.4。 2)再次按下回车键之后,在新建长方体的属性对话框修改物体的位置,尺寸,名称,材料和透明度等属性。在attribute选项卡中将长方体名称项(name)修改为Tee,材料属性(material)保持为真空(vacuum)不变,透明度(transparent)设置为0.4。 3)设置端口激励 4)复制长方体第二个和第三个臂 5)合并长方体 5.创建隔片 1)创建一个长方体并设置位置和尺寸 2)执行相减操作 上诉步骤完成后即可得到H面T型波导的三维仿真模型图如图2所示 图2 6.分析求解设置 1)添加求解设置:在工程管理窗口中展开工程并选中analyse节点,单击右键,在弹出的快捷菜单中选择add solution type并设置相关参数,完成后工程管理窗口的analyse节点下会添加一个名称为setup1的求解设置项 2)添加扫频设置:在工程管理窗口中展开analysis节点,右键单击前面添加的setup1求解设置项,在弹出菜单中单击add frequency sweep,并设置sweep name,sweep type,等参数。Frequency setup项作表1所示的设置。 Type Linearsetup Start 8GHz Stop 10GHz Step size 0.01GHz 表1

HFSS微波仿真实验,实验报告六合一

肇庆学院 12通信2班杨桐烁 2 实验一 T形波导的内场分析和优化设计 实验目的 1、熟悉并掌握HFSS的工作界面、操作步骤及工作流程。 2、掌握T型波导功分器的设计方法、优化设计方法和工作原理。 实验仪器 1、装有windows 系统的PC 一台 2、 HFSS13.0 或更高版本软件 3、截图软件 T形波导的内场分析 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 实验步骤 1、新建工程设置:运行HFSS并新建工程、选择求解类型、设置长度单位

2、创建T形波导模型:创建长方形模型、设置波端口源励、复制长方体、 合并长方体、创建隔片 3、分析求解设置:添加求解设置、添加扫频设置、设计检查 4、运行仿真分析 5、查看仿真分析计算结果 内场分析结果 1、图形化显示S参数计算结果 8.008.258.508.759.009.259.509.7510.00 Freq [GHz] 0.13 0.25 0.38 0.50 0.63 0.75 Y 1 TeeModal XY Plot 1ANSOFT Curve Info mag(S(P ort1,P ort1)) Setup1 : Sw eep1 mag(S(P ort1,P ort2)) Setup1 : Sw eep1 mag(S(P ort1,P ort3)) Setup1 : Sw eep1 图形化显示S参数幅度随频率变化的曲线 2、查看表面电场分布 表面场分布图 3、动态演示场分布图

实验一半波振子天线仿真设计

实验一 半波振子天线仿真设计 一、 实验目的: 1、 熟悉HFSS 软件设计天线的基本方法; 2、 利用HFSS 软件仿真设计以了解半波振子天线的结构和工作原理; 通过仿真设计掌握天线的基本参数:频率、方向图、增益等。 预习要求 熟悉天线的理论知识。 熟悉天线设计的理论知识。 实验原理与参考电路 天线介绍 天线的定义:用来辐射和接收无线电波的装置。天线的作用:将电磁波能量转换为导波能量,或将导波能量转换为电磁波能量。 天线的基本功能 天线应尽可能多的将导波能量转变为电磁波能量,要求天线是一个良好的开放系统,其次要与发射机(或接收机)良好匹配; 天线应使电磁波能量尽量集中于需要的方向, 对来波有最大的接收; 天线应有适当的极化,以便于发射或接收规定极化的电磁波; 天线应有只够的工作带宽; 天线的分类 按用途分:通信天线、广播电视天线、雷达天线等; 按工作波长分:长波天线、中波天线、短波天线、超短波天线、微波天线等; 按辐射元分:线天线和面天线; 天线的技术指标 大多数天线电参数是针对发射状态规定的,以衡量天线把高频电流能量转变成空间电波能量以及定向辐射的能力。 天线方向图及其有关参数 所谓方向图,是指在离天线一定距离处,辐射场的相对场强 (归一化模值)随方向变化的曲线图。如图1所示。若天线辐射的电场 强度为E (r ,θ,φ),把电场强度(绝对值)写成 60(,,(,) 1I E r f r θ?θ?=式 式中I 为归算电流,对于驻波天线,通常取波腹电流I m 作为归算电流; f (θ,φ)为场强方向函数。因此,方向函数可定义为 (,,) (,)260/E r f I r θ?θ?= 式 为了便于比较不同天线的方向性,常采用归一化方向函数, 用F (θ,φ)表示,即 max max (,)(,)(,)3 (,)E f F f E θ?θ?θ?θ?= = 式图1 方向图球坐标系

天线仿真实验报告

课程名称电磁场与电磁波学院通信工程 年级 2010 级 专业通信班 姓名 X X X 学号 X X X 时间 X X X

一、实验目的: 1、熟悉HFSS软件设计天线的基本方法; 2、利用HFSS软件仿真设计以了解天线的结构和工 作原理; 3、通过仿真设计掌握天线的基本参数:频率、方向 图、增益等。 二、实验仪器: 1、HFSS软件 三、实验原理: 1、天线是用金属导线、金属面或其他介质材料构成一定形状,架设在一定空间,将从发射机馈给的视频电能转换为向空间辐射的电磁波能,或者把空间传播的电磁波能转化为射频电能并输送到接收机的装置。 2、天线能把传输线上传播的导行波变换成在无界媒介中传播的电磁波,或者进行相反的变变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用

作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。 四、 实验步骤: 1、根据个人在班级的序号N ,设计一个工作频率为()[]GHz N f 102.020-?+=的41波长单极子天线,所用导线的直径为mm R 10=,长度为mm L 0的天线。 2、以频率上的长度0L 为基准,讨论当天线长度为 ()mm L 20±时,天线的谐振频率、带宽和方向图的变化。 3、在频率0f 上,讨论当天线直径0R 为mm 2和mm 3时,天线的谐振频率、带宽和方向图的变化。 4、结合工作生活实际,谈谈对天线的认识。 5、仿真图形如下:

微波技术与天线实验报告

微波技术与天线实验报告 一、实验名称:测量微波通信系统各模块的特性参数 二、实验目的与要求 ◆了解矢量网络分析仪的工作原理 ◆理解模块的频率特性、驻波比、反射系数、插损、S参数等概念 ◆测量并分析微波通信系统各模块的S参数 三、实验设备:矢量网络分析仪、PNA 天线实验测量仪 四、实验原理(共同部分) 1.矢量网络分析仪的工作原理 矢量网络分析仪器是一种电磁波能量的测试设备。 矢量网络分析仪的原理与使用力直接取决于系统的动态范围指标。 相位波动参数的测试是利用矢量网络分析仪的电子延迟(Electrical Delay)功能来实现的。直接观察插入相移通常不是很有用,这是因为器件的电长度相移相对于频率呈现负斜率(器件越长,斜率越大)。由于只有偏离线性相移才会引起失真,因此希望移去相位响应的线性部分。利用网络分析仪的电子延迟功能,能够抵消被测器件的电长度,结果得到与线性相移的偏差,即相位波动(失真)。 矢量网络分析仪既能测量单端口网络或两端口网络的各种参数幅值,又能测相位,矢量网络分析仪能用史密斯圆图显示测试数据。 2.几个重要的概念

频率特性:系统频率响应与输入信号的复数比称为频率特性,频率特性表征了系统输入输出之间的关系,故可由频率特性来分析系统性能。 驻波比:驻波比全称为电压驻波比,又名VSWR和SWR,为英文Voltage Standing Wave Ratio的简写。 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅 Vmin ,形成波节。其它各点的振幅值则介于波腹与波节之间。这种合成波称为行驻波。驻波比是驻波波腹处的电压幅值Vmax与波节处的电压幅值Vmin之比。 驻波比就是一个数值,用来表示天线和电波发射台是否匹配。如果 SWR 的值等于1,则表示发射传输给天线的电波没有任何反射,全部发射出去,这是最理想的情况。如果SWR 值大于1,则表示有一部分电波被反射回来,最终变成热量,使得馈线升温。被反射的电波在发射台输出口也可产生相当高的电压,有可能损坏发射台。 反射系数:反射电压/入射电压, 为标量。 插损:插入损耗指在传输系统的某处由于元件或器件的插入而发生的负载功率的损耗,它表示为该元件或器件插入前负载上所接收到的功率与插入后同一负载上所接收到的功率以分贝为单位的比值。 用频谱分析仪,或调频接收机或跟踪发生器,很容易测量插入损耗。不带滤波器是建一个零dB参考点。然后插入滤波器,记录在所需频率范围内提供的衰减。

HFSS天线仿真实验报告

HFSS天线仿真实验报告

[键入公司名称] [键入文档标题] 通信0905 杨巨 U200913892 2012-3-7

半波偶极子天线仿真实验报告 一、实验目的 1、学会简单搭建天线仿真环境的方法,主要是 熟悉HFSS软件的使用方法 2、了解利用HFSS仿真软件设计和仿真天线的 原理、过程和方法 3、通过天线的仿真,了解天线的主要性能参 数,如驻波比特性、smith圆图特性、方向图特性等 4、通过对半波偶极子天线的仿真,学会对其他 类型天线仿真的方法 二、实验仪器 1、装有windows系统的PC一台 2、HFSS13.0软件 3、截图软件 三、实验原理 1、首先明白一点:半波偶极子天线就是对称阵

子天线。 2、 对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为a,长度为l。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。对称振子的长度与波长相比拟,本身已可以构成实用天线。3、 在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。取图1的坐标,并忽略振子损耗,则其电流分布可以表示为: 式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。 4、 在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。 电流元I(z)dz所产生的辐射场为 图2 对称振子辐射场的计算 如图2 所示,电流元I(z)所产生的辐射场为

相关文档
相关文档 最新文档