文档库 最新最全的文档下载
当前位置:文档库 › LMC7101BIM5中文资料

LMC7101BIM5中文资料

LMC7101BIM5中文资料
LMC7101BIM5中文资料

LMC7101

Tiny Low Power Operational Amplifier with Rail-To-Rail Input and Output

General Description

The LMC7101is a high performance CMOS operational amplifier available in the space saving SOT 23-5Tiny pack-age.This makes the LMC7101ideal for space and weight critical designs.The performance is similar to a single am-plifier of the LMC6482/6484type,with rail-to-rail input and output,high open loop gain,low distortion,and low supply currents.

The main benefits of the Tiny package are most apparent in small portable electronic devices,such as mobile phones,pagers,notebook computers,personal digital assistants,and PCMCIA cards.The tiny amplifiers can be placed on a board where they are needed,simplifying board layout.

Features

n Tiny SOT23-5package saves space —typical circuit layouts take half the space of SO-8designs n Guaranteed specs at 2.7V,3V,5V,15V supplies n Typical supply current 0.5mA at 5V

n Typical total harmonic distortion of 0.01%at 5V n 1.0MHz gain-bandwidth

n Similar to popular LMC6482/6484n Rail-to-rail input and output

Applications

n Mobile communications n Notebooks and PDAs n Battery powered products n

Sensor interface

Connection Diagram

5-Pin SOT23

01199102

Top View

Ordering Information

Package

Part Number Package Marking

Transport Media NSC Drawing

5-Pin SOT23

LMC7101AIM5

A00A 1k Units on Tape and Reel MF05A LMC7101AIM5X A00A 3k Units Tape and Reel LMC7101BIM5A00B 1k Units on Tape and Reel LMC7101BIM5X

A00B

3k Units Tape and Reel

February 2006

LMC7101Tiny Low Power Operational Amplifier with Rail-To-Rail Input and Output

?2006National Semiconductor Corporation https://www.wendangku.net/doc/da1309379.html,

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.ESD Tolerance (Note 2)2000V

Difference Input Voltage ±Supply Voltage

Voltage at Input/Output Pin (V +)+0.3V,(V ?)?0.3V

Supply Voltage (V +?V ?)16V

Current at Input Pin

±5mA Current at Output Pin (Note 3)±35mA

Current at Power Supply Pin 35mA Lead Temp.(Soldering,10sec.)

260?C

Storage Temperature Range ?65?C to +150?C

Junction Temperature (Note 4)

150?C

Recommended Operating Conditions (Note 1)

Supply Voltage 2.7V ≤V +≤15.5V

Temperature Range LMC7101AI,LMC7101BI ?40?C to +85?C Thermal Resistance (θJA )5-Pin STO23

325?C/W

2.7V Electrical Characteristics

Unless otherwise specified,all limits guaranteed for T J =25?C,V +=2.7V,V ?=0V,V CM =V O =V +/2and R L >1M ?.Bold-face limits apply at the temperature extremes.

Typ

LMC7101AI LMC7101BI Symbol Parameter

Conditions

(Note 5)Limit Limit Units

(Note 6)

(Note 6)

V OS Input Offset Voltage V +=2.7V

0.116

9

mV max TCV OS Input Offset Voltage 1

μV/?C Average Drift I B Input Bias Current 1.06464pA max I OS Input Offset Current 0.5

3232pA max R IN Input Resistance >1

Tera ?CMRR Common-Mode 0V ≤V CM ≤2.7V 70

55

50

dB Rejection Ratio

V +=2.7V

min V CM

Input Common-Mode Voltage Range

For CMRR ≥50dB

0.00.00.0V min 3.0

2.7

2.7

V max PSRR

Power Supply V +=1.35V to 1.65V dB Rejection Ratio

V ?=?1.35V to ?1.65V 60

50

45

min

V CM =0

C IN Common-Mode Input 3

pF

Capacitance V O

Output Swing

R L =2k ? 2.45 2.15 2.15V min 0.250.50.5V max R L =10k ?

2.68 2.64 2.64V min 0.0250.060.06V max I S Supply Current 0.50.810.81mA 0.95

0.95

max SR Slew Rate (Note 8)0.7V/μs GBW

Gain-Bandwidth Product

0.6

MHz

L M C 7101

https://www.wendangku.net/doc/da1309379.html, 2

3V DC Electrical Characteristics

Unless otherwise specified,all limits guaranteed for T J=25?C,V+=3V,V?=0V,V CM=1.5V,V O=V+/2and R L=1M?. Boldface limits apply at the temperature extremes.

Typ LMC7101AI LMC7101BI

Symbol Parameter Conditions(Note5)Limit Limit Units

(Note6)(Note6)

V OS Input Offset Voltage0.114

67

9

mV

max

TCV OS Input Offset Voltage Average

Drift

1μV/?C I B Input Current 1.06464pA max I OS Input Offset Current0.53232pA max R IN Input Resistance>1Tera?

CMRR Common-Mode Rejection

Ratio 0V≤V CM≤3V

V+=3V

746460db

min

V CM Input Common-Mode Voltage

Range For CMRR≥50dB0.00.00.0V

min

3.3 3.0 3.0V

max

PSRR Power Supply Rejection Ratio V+=1.5V to7.5V

V?=?1.5V to?7.5V

V O=V CM=0806860dB

min

C IN Common-Mode Input

Capacitance

3pF V O Output Swing R L=2k? 2.8 2.6 2.6V min

0.20.40.4V max

R L=600? 2.7 2.5 2.5V min

0.370.60.6V max

I S Supply Current0.50.81

0.950.81

0.95

mA

max

LMC7101

https://www.wendangku.net/doc/da1309379.html,

3

5V DC Electrical Characteristics

Unless otherwise specified,all limits guaranteed for T J =25?C,V +=5V,V ?=0V,V CM =1.5V,V O =V +/2and R L =1M ?.Boldface limits apply at the temperature extremes.

Typ

LMC7101AI LMC7101BI Symbol Parameter

Conditions

(Note 5)Limit Limit Units

(Note 6)

(Note 6)

V OS Input Offset Voltage V +=5V

0.1137mV 5

9

max TCV OS Input Offset Voltage 1.0

μV/?C Average Drift I B Input Current 16464pA max I OS Input Offset Current 0.5

3232pA max R IN Input Resistance >1

Tera ?CMRR Common-Mode 0V ≤V CM ≤5V

82

6560db Rejection Ratio 6055min +PSRR Positive Power Supply V +=5V to 15V 82

7065dB Rejection Ratio V ?=0V,V O =1.5V 6562min ?PSRR Negative Power Supply V ?=?5V to ?15V 827065dB Rejection Ratio V +=0V,V O =?1.5V 6562min V CM

Input Common-Mode For CMRR ≥50dB

?0.3?0.20?0.20V Voltage Range

0.000.00min 5.3

5.20 5.20V 5.00

5.00

max C IN Common-Mode 3

pF

Input Capacitance V O

Output Swing

R L =2k ?

4.9 4.7 4.7V 4.6 4.6min 0.1

0.180.18V 0.240.24max R L =600?

4.7 4.5 4.5V 4.24 4.24min 0.3

0.50.5V 0.650.65max I SC

Output Short Circuit Current

V O =0V Sourcing 2416111611mA min V O =5V

Sinking

19117.5117.5mA min I S

Supply Current

0.5

0.851.0

0.851.0

mA max

5V AC Electrical Characteristics

Unless otherwise specified,all limits guaranteed for T J =25?C,V +=5V,V ?=0V,V CM =1.5V,V O =V +/2and R L =1M ?.Boldface limits apply at the temperature extremes.

Typ

LMC7101AI LMC7101BI Symbol Parameter

Conditions

(Note 5)Limit Limit Units

(Note 6)

(Note 6)

THD Total Harmonic F =10kHz,A V =?20.01

%Distortion R L =10k ?,V O =4.0V PP

SR Slew Rate

1.0V/μs GBW

Gain Bandwidth Product

1.0

MHz

L M C 7101

https://www.wendangku.net/doc/da1309379.html, 4

15V DC Electrical Characteristics

Unless otherwise specified,all limits guaranteed for T J=25?C,V+=15V,V?=0V,V CM=1.5V,V O=V+/2and R L=1M?. Boldface limits apply at the temperature extremes.

Typ LMC7101AI LMC7101BI

Symbol Parameter Conditions(Note5)Limit Limit Units

(Note6)(Note6)

V OS Input Offset Voltage0.11mV max TCV OS Input Offset Voltage 1.0μV/?C Average Drift

I B Input Current 1.06464pA max I OS Input Offset Current0.53232pA max R IN Input Resistance>1Tera?CMRR Common-Mode0V≤V CM≤15V827065dB Rejection Ratio6560min +PSRR Positive Power Supply V+=5V to15V827065dB Rejection Ratio V?=0V,V O=1.5V6562min ?PSRR Negative Power Supply V?=?5V to?15V827065dB Rejection Ratio V+=0V,V O=?1.5V6562min V CM Input Common-Mode V+=5V?0.3?0.20?0.20V Voltage Range For CMRR≥50dB0.000.00min

15.315.2015.20V

15.0015.00max

A V Large Signal Voltage Gain

(Note7)R L=2k?Sourcing34080

40

80

40

V/mV

Sinking2415

10

15

10

R L=600?Sourcing3003434

Sinking1566

C IN Input Capacitance3pF V O Output Swing V+=15V14.714.414.4V

R L=2k?14.214.2min

0.160.320.32V

0.450.45max

V+=15V14.113.413.4V

R L=600?13.013.0min

0.5 1.0 1.0V

1.3 1.3max

I SC Output Short Circuit Current

(Note9)V O=0V Sourcing5030

20

30

20mA

min V O=12V Sinking5030

20

30

20

I S Supply Current0.8 1.50

1.711.50

1.71

mA

max

LMC7101

https://www.wendangku.net/doc/da1309379.html,

5

15V AC Electrical Characteristics

Unless otherwise specified,all limits guaranteed for T J =25?C,V +=15V,V ?=0V,V CM =1.5V,V O =V +/2and R L =1M ?.Boldface limits apply at the temperature extremes.

Typ

LMC7101AI LMC7101BI Symbol Parameter

Conditions

(Note 5)Limit Limit Units

(Note 6)(Note 6)SR Slew Rate (Note 8)

V +=15V 1.10.50.4

0.50.4

V/μs min GBW Gain-Bandwidth Product V +=15V

1.1MHz φm Phase Margin 45deg G m Gain Margin

10dB e n

Input-Referred Voltage Noise

f =1kHz,V CM =1V

37

i n

Input-Referred Current Noise f =1kHz 1.5

THD Total Harmonic Distortion

f =10kHz,A V =?20.01%

R L =10k ?,V O =8.5V PP

Note 1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is intended to be functional,but specific performance is not guaranteed.For guaranteed specifications and the test conditions,see the Electrical Characteristics.Note 2:Human Body Model is 1.5k ?in series with 100pF.

Note 3:Applies to both single-supply and split-supply operation.Continuous short operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at 150?C.

Note 4:The maximum power dissipation is a function of T J(MAX),θJA and T A .The maximum allowable power dissipation at any ambient temperature is P D =(T J(MAX)?T A )/θJA .All numbers apply for packages soldered directly into a PC board.Note 5:Typical Values represent the most likely parametric norm.Note 6:All limits are guaranteed by testing or statistical analysis.

Note 7:V +=15V,V CM =1.5V and R L connect to 7.5V.For sourcing tests,7.5V ≤V O ≤12.5V.For sinking tests,2.5V ≤V O ≤7.5V.

Note 8:V +=15V.Connected as a voltage follower with a 10V step input.Number specified is the slower of the positive and negative slew rates.R L =100k ?connected to 7.5V.Amp excited with 1kHz to produce V O =10V PP .

Note 9:Do not short circuit output to V +when V +is greater than 12V or reliability will be adversely affected.

2.7V Typical Performance Characteristics

V +=2.7V,V ?=0V,T A =25?C,unless otherwise

specified.

Open Loop Frequency Response

Input Voltage vs.Output Voltage

01199116

01199117

L M C 7101

https://www.wendangku.net/doc/da1309379.html, 6

2.7V Typical Performance Characteristics V +=2.7V,V ?=0V,T A =25?C,unless otherwise

specified.(Continued)

Gain and Phase vs.Capacitance Load

Gain and Phase vs.Capacitance Load

0119911801199119

dV OS vs.Supply Voltage dV OS https://www.wendangku.net/doc/da1309379.html,mon Mode Voltage

0119912001199121

Sinking Current vs.Output Voltage Sourcing Current vs.Output Voltage

0119912201199123

LMC7101

https://www.wendangku.net/doc/da1309379.html,

7

3V Typical Performance Characteristics

V +=3V,V ?=0V,T A =25?C,unless otherwise specified.

Open Loop Frequency Response

Input Voltage vs.Output Voltage

01199124

01199125

Input Voltage Noise vs.Input Voltage Sourcing Current vs.Output Voltage

01199126

01199127

Sinking Current vs.Output Voltage CMRR vs.Input Voltage

01199128

01199129

L M C 7101

https://www.wendangku.net/doc/da1309379.html, 8

5V Typical Performance Characteristics V+=5V,V?=0V,T

A

=25?C,unless otherwise specified.

Open Loop Frequency Response Input Voltage vs.Output Voltage

01199130

01199131 Input Voltage Noise vs.Input Voltage Sourcing Current vs,Output Voltage

01199132

01199133 Sinking Current vs.Output Voltage CMRR vs.Input Voltage

01199134

01199135

LMC7101

https://www.wendangku.net/doc/da1309379.html,

9

15V Typical Performance Characteristics

V +=+15V,V ?=0V,T A =25?C,unless otherwise

specified.

Open Loop Frequency Response

Input Voltage vs.Output Voltage

01199136

01199137

Input Voltage Noise vs.Input Voltage Sourcing Current vs.Output Voltage

01199138

01199139

Sinking Current vs.Output Voltage CMRR vs.Input Voltage

01199140

01199141

L M C 7101

https://www.wendangku.net/doc/da1309379.html, 10

15V Typical Performance Characteristics V +=+15V,V ?=0V,T A =25?C,unless otherwise

specified.(Continued)

Supply Current vs.Supply Voltage

Input Current vs.Temperature

01199142

01199143

Output Voltage Swing vs.Supply Voltage Input Voltage Noise vs.Frequency

01199144

01199145

Positive PSRR vs.Frequency Negative PSRR vs.Frequency

0119914601199147

LMC7101

https://www.wendangku.net/doc/da1309379.html,

11

15V Typical Performance Characteristics V +=+15V,V ?=0V,T A =25?C,unless otherwise

specified.(Continued)

CMRR vs.Frequency

Open Loop Frequency Response @?40?C

0119914801199149

Open Loop Frequency Response @25?C Open Loop Frequency Response @85?C

0119915001199151

Maximum Output Swing vs.Frequency Gain and Phase vs.Capacitive Load

0119915201199153

L M C 7101

https://www.wendangku.net/doc/da1309379.html, 12

15V Typical Performance Characteristics V +=+15V,V ?=0V,T A =25?C,unless otherwise

specified.(Continued)

Gain and Phase vs.Capacitive Load

Output Impedance vs.Frequency

0119915401199155

Slew Rate vs.Temperature Slew Rate vs.Supply Voltage

01199156

01199157

Inverting Small Signal Pulse Response Inverting Small Signal Pulse Response

0119915801199159

LMC7101

https://www.wendangku.net/doc/da1309379.html,

13

15V Typical Performance Characteristics V +=+15V,V ?=0V,T A =25?C,unless otherwise

specified.(Continued)

Inverting Small Signal Pulse Response

Inverting Large Signal Pulse Response

0119916001199161

Inverting Large Signal Pulse Response Inverting Large Signal Pulse Response

0119916201199163

Non-Inverting Small Signal Pulse Response Non-Inverting Small Signal Pulse Response

0119916401199165

L M C 7101

https://www.wendangku.net/doc/da1309379.html, 14

15V Typical Performance Characteristics V +=+15V,V ?=0V,T A =25?C,unless otherwise

specified.(Continued)

Non-Inverting Small Signal Pulse Response

Non-Inverting Large Signal Pulse Response

0119916601199167

Non-Inverting Large Signal Pulse Response Non-Inverting Large Signal Pulse Response

0119916801199169

Stability vs.Capacitive Load Stability vs.Capacitive Load

0119917001199171

LMC7101

https://www.wendangku.net/doc/da1309379.html,

15

15V Typical Performance Characteristics V +=+15V,V ?=0V,T A =25?C,unless otherwise

specified.(Continued)

Stability vs.Capacitive Load

Stability vs.Capacitive Load

0119917501199176

Stability vs.Capacitive Load Stability vs.Capacitive Load

0119917701199178

L M C 7101

https://www.wendangku.net/doc/da1309379.html, 16

Application Information

1.0BENEFITS OF THE LMC7101TINY AMP

Size

The small footprint of the SOT 23-5packaged Tiny amp,(0.120x 0.118inches,3.05x 3.00mm)saves space on printed circuit boards,and enable the design of smaller electronic products.Because they are easier to carry,many customers prefer smaller and lighter products.Height

The height (0.056inches,1.43mm)of the Tiny amp makes it possible to use it in PCMCIA type III cards.

Signal Integrity

Signals can pick up noise between the signal source and the amplifier.By using a physically smaller amplifier package,the Tiny amp can be placed closer to the signal source,reducing noise pickup and increasing signal integrity.The Tiny amp can also be placed next to the signal destination,such as a buffer for the reference of an analog to digital converter.

Simplified Board Layout

The Tiny amp can simplify board layout in several ways.First,by placing an amp where amps are needed,instead of routing signals to a dual or quad device,long pc traces may be avoided.

By using multiple Tiny amps instead of duals or quads,complex signal routing and possibly crosstalk can be re-duced.

Low THD

The high open loop gain of the LMC7101amp allows it to achieve very low audio distortion —typically 0.01%at 10kHz with a 10k ?load at 5V supplies.This makes the Tiny an excellent for audio,modems,and low frequency signal pro-cessing.

Low Supply Current

The typical 0.5mA supply current of the LMC7101extends battery life in portable applications,and may allow the reduc-tion of the size of batteries in some applications.

Wide Voltage Range

The LMC7101is characterized at 15V,5V and 3V.Perfor-mance data is provided at these popular voltages.This wide voltage range makes the LMC7101a good choice for de-vices where the voltage may vary over the life of the batter-ies.

2.0INPUT COMMON MODE

Voltage Range

The LMC7101does not exhibit phase inversion when an input voltage exceeds the negative supply voltage.Figure 1shows an input voltage exceeding both supplies with no resulting phase inversion of the output.

The absolute maximum input voltage is 300mV beyond either rail at room temperature.Voltages greatly exceeding this maximum rating,as in Figure 2,can cause excessive current to flow in or out of the input pins,adversely affecting reliability.

Applications that exceed this rating must externally limit the maximum input current to ±5mA with an input resistor as shown in Figure 3.

3.0RAIL-TO-RAIL OUTPUT

The approximate output resistance of the LMC7101is 180?sourcing and 130?sinking at V S =3V and 110?sourcing and 80?sinking at V S =https://www.wendangku.net/doc/da1309379.html,ing the calculated output resistance,maximum output voltage swing can be estimated as a function of load.

01199108

FIGURE 1.An Input Voltage Signal Exceeds the

LMC7101Power Supply Voltages with

No Output Phase Inversion

01199109FIGURE 2.A ±7.5V Input Signal Greatly Exceeds the 3V Supply in Figure 3Causing

No Phase Inversion Due to R I

01199110

FIGURE 3.R I Input Current Protection for Voltages Exceeding the Supply Voltage

LMC7101

https://www.wendangku.net/doc/da1309379.html,

17

Application Information

(Continued)

4.0CAPACITIVE LOAD TOLERANCE

The LMC7101can typically directly drive a 100pF load with V S =15V at unity gain without oscillating.The unity gain follower is the most sensitive configuration.Direct capacitive loading reduces the phase margin of op-amps.The combi-nation of the op-amp’s output impedance and the capacitive load induces phase lag.This results in either an under-damped pulse response or oscillation.

Capacitive load compensation can be accomplished using resistive isolation as shown in Figure 4.This simple tech-nique is useful for isolating the capacitive input of multiplex-ers and A/D converters.

5.0COMPENSATING FOR INPUT CAPACITANCE WHEN USING LARGE VALUE FEEDBACK RESISTORS When using very large value feedback resistors,(usually >500k ?)the large feed back resistance can react with the input capacitance due to transducers,photodiodes,and cir-cuit board parasitics to reduce phase margins.

The effect of input capacitance can be compensated for by adding a feedback capacitor.The feedback capacitor (as in Figure 5),C f is first estimated by:

or

R 1C IN ≤R 2C f

which typically provides significant overcompensation.

Printed circuit board stray capacitance may be larger or smaller than that of a breadboard,so the actual optimum value for C F may be different.The values of C F should be checked on the actual circuit.(Refer to the LMC660quad CMOS amplifier data sheet for a more detailed discussion.)

01199111

FIGURE 4.Resistive Isolation of a 330pF Capacitive Load

01199112

FIGURE 5.Cancelling the Effect of Input Capacitance

L M C 7101

https://www.wendangku.net/doc/da1309379.html, 18

LMC7101 Application Information(Continued)

SOT-23-5TAPE AND REEL SPECIFICATION

Tape Format

Tape Section#Cavities Cavity Status Cover Tape Status

Leader0(min)Empty Sealed

(Start End)75(min)Empty Sealed

Carrier3000Filled Sealed

1000Filled Sealed

Trailer125(min)Empty Sealed

(Hub End)0(min)Empty Sealed

Tape Dimensions Array

01199113 8mm0.1300.1240.1300.1260.138±0.0020.055±0.0040.1570.315±0.012

(3.3)(3.15)(3.3)(3.2)(3.5±0.05)(1.4±0.11)(4)(8±0.3)

Tape Size DIM A DIM Ao DIM B DIM Bo DIM F DIM Ko DIM P1DIM W

https://www.wendangku.net/doc/da1309379.html,

19

Application Information

(Continued)

Reel Dimensions

01199114

8mm 7.000.0590.5120.795 2.1650.331+0.059/?0.0000.567W1+0.078/?0.039330.00 1.5013.0020.2055.008.40+1.50/?0.00

14.40W1+2.00/?1.00

Tape Size

A

B

C

D

N

W1

W2

W3

L M C 7101

https://www.wendangku.net/doc/da1309379.html, 20

相关文档