文档库 最新最全的文档下载
当前位置:文档库 › 卷曲折叠充气管展开过程的数值分析及实验研究

卷曲折叠充气管展开过程的数值分析及实验研究

卷曲折叠充气管展开过程的数值分析及实验研究
卷曲折叠充气管展开过程的数值分析及实验研究

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

数值分析习题集及答案[1].(优选)

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出 它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=( n=1,2,…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若

数值计算方法比较

有限差分方法(FDM:Finite Difference Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。有限差分法主要集中在依赖于时间的问题(双曲型和抛物型方程)。有限差分法方面的经典文献有Richtmeyer & Morton的《Difference Methods for Initial-Value Problems》;R. LeVeque《Finite Difference Method for Differential Equations》;《Numerical Methods for C onservation Laws》。 注:差分格式: (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法: 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限差分法的不足:由于采用的是直交网格,因此较难适应区域形状的任意性,而且区分不出场函数在区域中的轻重缓急之差异,缺乏统一有效的处理自然边值条件和内边值条件的方法,难以构造高精度(指收敛阶)差分格式,除非允许差分方程联系更多的节点(这又进一步增加处理边值条件韵困难)。另外它还有编制不出通用程序的困难。 有限差分法的优点:该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念 直观,表达简单,精度可选而且在一个时间步内,对于一个给定点来说其相关的空间点只是 与该相邻的几点,而不是全部的空间点。是发展较早且比较成熟的数值方法 广义差分法(有限体积法)(GDM:Generalized Difference Method):1953年,Mac—Neal 利用积分插值法(也称积分均衡法)建立了三角网格上的差分格 式,这就是以后通称的不规划网格上的差分法.这种方法的几何误差小,特别是给出了处理自然边值条件(及内边值条件)的有效方法,堪称差分法的一大进步。1978年,李荣华利用有限元空间和对偶单元上特征函数的推广——局部Taylor展式的公项,将积分插值法改写成广义Galerkin法形式,从而将不规则网格差分法推广为广义差分法.其基本思路是,将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有

数值分析习题集及答案

(适合课程《数值方法A 》和《数值方法B 》) 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: ***** 123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: * * * * * * * * 12412324(),(),()/,i x x x ii x x x iii x x ++其中* * * * 1234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11783 100 n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列{}n y 满足递推关系1101 n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 (21)f =-,取 2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 6 3 11,(322), ,9970 2. (21) (322) --++ 13. 2 ()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 2 2 ln(1)ln(1)x x x x - -=-+ + 计算,求对数时误差有多大? 14. 试用消元法解方程组{ 10 10 12121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin , 2 s ab c = 其中c 为弧度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证 明面积的误差s ?满足 . s a b c s a b c ????≤ ++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

工程中的数值分析

. 《工程中的数值分析》开放性考试

工程中的数值分析题目: 建筑与土木工程系分院: 14土木工程本一班级: 陈凯名:姓14219114125号:学 日14122016 完成日期:年月 温州大学瓯江学院教务部. . 二○一二年十一月制 实现二分法的和算法及Excel1.1 由闭区间上连续函数的性质f(b)<0f(a)·[a,b]上连续,且在原理:设函数 f(x)二分法的基本思想内至少有一个实根.(a,b),方程(2.2)在区间及定理2-1可知,,进一步缩小有根区间:逐步二分区间[a,b],通过判断两端点函数值的符号是. ,从而求出满足精度要求的根的近似值将有根区间的长度缩小到充分小算法:给定精确度ξ,用二分法求函数f(x)零点近似值的步骤如下: 确定区间[a,b],验证f(a)·f(b)<0,给定精确度.求区间(a,b)的中点c.计算f(c). (1)若f(c)=0,则c就是函数的零点;

(2)若f(a)·f(c)<0,则令b=c; (3)若f(c)·f(b)<0,则令a=c. (4)判断是否达到精确度ε:即若|a-b|<,则得到零点近似值a(或b),否则重复2-4. Excel实现:单元格内分别输入区间[a,b]的左右端点值,中点值=(a+b)/2,依次计算出各点代入公式的f(x)值,用IF函数比较单元格内输入“=IF(f(中点值)<0”,中点值,a)如果f(中点值)<0,则下个左端点取原来的中点值 (a+b)/2. 同理“=IF(f(中点值)<0,b,中点值)”下个右端点取原来的右点值b. 如此循环往下,直至某个中点值代入f(x)得到的解满足题目要求的近似解或者零点即f(c)=0则该值则为零点。 . . 1.2不动点迭代法的原理和算法及Excel实现,并分析不同迭代格式的收敛性原理:将线性方程f(x)=0化为一个同解方程x=φ(x),并且假设φ(x)为连续函数,任取初值x,代入方程得到 x=φ(x),x=φ(x)····x=φ k+121001(x),k=0,1,2,····k称为求解非线性方程组的简单迭代法,称φ(x)为迭代函数,x称为第k步迭代k值. 若{x}收敛,则称迭代法收敛,否则称迭代法发散. k算法: (1)确定初值

数值计算课后答案2

习 题 二 解 答 1.用二分法求方程x 3-2x 2-4x-7=0在区间[3,4]内的根,精确到10-3,即误差不超过31 102-?。 分析:精确到10-3与误差不超过10-3不同。 解:因为f(3)=-10<0,f(4)=9>0,所以,方程在区间[3,4]上有根。 由 3 4311*10 2 2 2 2 2 n n n n n n b a b a x x -----≤ == = < ? 有2n-1>1000,又为210=1024>1000, 所以n =11,即只需要二分11次即可。 x *≈x 11=3.632。 指出: (1)注意精确度的不同表述。精确到10-3和误差不超过10-3 是不同的。 (2)在计算过程中按规定精度保留小数,最后两次计算结果相同。

(3)用秦九韶算法计算f(x n )比较简单。 1*.求方程x 3-2x 2-4x-7=0的隔根区间。 解:令32247y x x x =---, 则2344322()()y x x x x '=--=+- 当23443220()()y x x x x '=--=+-=时,有122 23,x x =-=。 因为2 14902150327(),()y y -=- <=-<,所以方程在区间223 (,)-上无根; 因为214903 27 ()y - =-<,而函数在23 (,)-∞- 上单调增,函数值不可能变号,所以 方程在该区间上无根; 因为2150()y =-<,函数在(2,+∞)上单调增,所以方程在该区间上最多有一个根, 而(3)=-10<0,y(4)=9>0,所以方程在区间(3,4)有一个根。 所以,该方程有一个根,隔根区间是(3.4)。 2.证明1sin 0x x --=在[0,1]内有一个根,使用二分法求误差不大于4 1 102-?的根,需要迭代多少次? 分析:证明方程在指定区间内有一个根,就是证明相应的函数在指定区间有至少一个零点。 解:令()1sin f x x x =--, 因为(0)10sin 010,(1)11sin 1sin 10f f =--=>=--=-<,

数值分析课后答案

1、解:将)(x V n 按最后一行展开,即知)(x V n 是n 次多项式。 由于 n i i i n n n n n i n x x x x x x x x x x V ...1...1... ......... ...... 1 )(21110 20 0---= ,.1,...,1,0-=n i 故知0)(=i n x V ,即110,...,,-n x x x 是)(x V n 的根。又)(x V n 的最高 次幂 n x 的系数为 )(...1...1... ...... .........1),...,,(101 1 21 11 2 2221 02001101j n i j i n n n n n n n n n n n x x x x x x x x x x x x x x V -== ∏-≤<≤-----------。 故知).)...()()(,...,,()(1101101------=n n n n x x x x x x x x x V x V 6、解:(1)设 .)(k x x f =当n k ,...,1,0=时,有.0)()1(=+x f n 对 )(x f 构造Lagrange 插值多项式, ),()(0 x l x x L j n j k j n ∑== 其 0)()! 1() ()()()(1)1(=+=-=++x w n f x L x F x R n n n n ξ, ξ介于j x 之间,.,...,1,0n j = 故 ),()(x L x f n =即 .,...,1,0,)(0 n k x x l x k j n j k j ==∑= 特别地,当0=k 时, 10) (=∑=n j x j l 。 (2) 0)()1(1) ()1()()(0000=-=??? ? ??-??? ? ??-=--=-===∑∑∑∑k j j i j i k j k i i j i i k j n j k i i j k n j j x x x x i k x l x x i k x l x x )利用(。 7、证明:以b a ,为节点进行线性插值,得 )()()(1 b f a b a x a f b a b x x P --+--= 因 0)()(==b f a f ,故0)(1=x P 。而 ))()(("2 1 )()(1b x a x f x P x f --= -ξ,b a <<ξ。 故)("max )(8 122)("max )(max 2 2 x f a b a b x f x f b x a b x a b x a ≤≤≤≤≤≤-=??? ??-≤。 14、解:设 ))...()(()(21n n x x x x x x a x f ---=, k x x g =)(,记)() (1 ∏=-=n j j n x x x w ,则 ),()(x w a x f n n =).()(' j n n j x w a x f = 由差商的性质知 [])! 1()(1,..,,1) (' 1 )(')('1 211 11 -== ==-===∑∑∑ n g a x x x g a x w x a x w a x x f x n n n n n j j n k j n n j j n n k j n j j k j ξ, ξ介于n x x ,...,1之间。 当20-≤≤ n k 时,0)()1(=-ξn g , 当 1-=n k 时,)!1()(1-=-n g n ξ, 故 ???-=-≤≤=-= --=∑1,,20,0)!1()(1) ('1 11 n k a n k n g a x f x n n n n j j k j ξ 16、解:根据差商与微商的关系,有 [] 1! 7! 7!7)(2,...,2,2)7(7 10===ξf f , [ ] 0! 80 !8)(2,...,2,2)8(8 1 ===ξf f 。 ( 13)(47+++=x x x x f 是7次多项式, 故 ,!7)()7(=x f 0)()8(=x f )。 25、解:(1) 右边= [][]dx x S x f x S dx x S x f b a b a ??-+-)(")(")("2)(")("2 = [] d x x S x f x S x S x S x f x f b a ?-++-)("2)(")("2)(")(")("2)(" 222 = [] d x x S x f b a ?-)(")(" 22 = [][]dx x S dx x f b a b a 2 2 )(")("??- =左边。 (2)左边= ? -b a dx x S x f x S ))(")(")(("

浅析数值分析在机械工程领域的应用

浅谈数值分析在机械工程领域的应用 摘要:MATLAB是目前国际上最流行的科学与工程计算的软件工具, 它具有强大的数值分析、矩阵运算、信号处理、图形显示、模拟仿真和最优化设计等功能。本文浅谈MATLAB在机械设计优化问题的几点应用。 关键词:MATLAB 约束条件机械设计优化数值分析 引言:在线性规划和非线性规划等领域经常遇到求函数极值等最优化问题,当函数或约束条件复杂到一定程度时就无法求解,而只能求助于极值分析算法,如果借助计算器进行手工计算的话,计算量会很大,如果要求遇到求解极值问题的每个人都去用BASIC,C和FORTRAN之类的高级语言编写一套程序的话,那是非一朝一日可以解决的,但如用MATLAB语言实现极值问题的数值解算,就可以避免计算量过大和编程难的两大难题,可以轻松高效地得到极值问题的数值解,而且可以达到足够的精度。 数值分析是一门研究如何在计算机上求解数学问题算法的学科,主要内容有:误差分析,插值法,数值微积分,数值代数, 矩阵计算和微分方程数值解法等, 是工科各专业大学本科及研究生中开设的一门计算量大,算法多,实践性比较强的专业课。在长期的教学实践中,数值分析课程常采用C语言进行教学和实验, 要求学生既要对算法有充分了解,又要熟练掌握C语言的语法和编程技巧, 导致学生和教师将大量的时间和精力都花在繁琐的数值计算以及对各种结果绘图上面,学习效果往往令人不满意。M a t l a b 是M a t h W o r k s 公司开发的一款以数值计算为主要特色的数学工具软件, 在数值计算领域独领风骚。其所带强大的符号运算功能, 几乎包括高等数学所涉及的运算, 如求极限、导数、微分、积分、函数的级数展开、解常微分方程等等, 并且样条工具箱中的命令调用格式极为简单方便, 对工科学生来说, 掌握起来无需费多大力气, 而对机械系等理工科系的同学,通过初步了解M a t l a b还可以进一步挖掘其强大的功能, 对学习其他课程也有帮助。本文讨论基于matlab在机械方面的数值分析。 一.数值分析方法的研究 1、数值分析方法意义

数值分析课后题答案

数值分析 2?当x=1,—1,2时,f(x)=O, 一3,4,求f(x)的二次插值多项式。解: X 0 =1,x j = — 1,x 2 = 2, f(X。)= 0, f (xj = -3, f (x2)= 4; l o(x)=(x-xi^~x2\=-1(x 1)(x-2) (x o -X/X o _x2) 2 (x -x0)(x -x2) 1 l i(x) 0 2(x-1)(x-2) (x i ~x0)(x i ~x2) 6 (x—x0)(x—x,) 1 l2(x) 0 1(x-1)(x 1) (X2 -X°)(X2 - X i) 3 则二次拉格朗日插值多项式为 2 L 2(X)= ' y k 1 k ( x) kz0 = -3l°(x) 4l2(x) 1 4 =(x_1)(x—2) 4 (x-1)(x 1) 2 3 5 2 3 7 x x - 6 2 3 6?设Xj, j =0,1,||(,n 为互异节点,求证: n (1 )7 x:l j(x) =x k(k =0,1川,n); j=0 n (2 )7 (X j -x)k l j(x)三0 (k =0,1川,n); j £ 证明 (1)令f(x)=x k

n 若插值节点为X j, j =0,1,|l(, n,则函数f (x)的n次插值多项式为L n(x)八x k l j(x)。 j=0 f (n 十)(?) 插值余项为R n(X)二f(X)-L n(X) n1(X) (n +1)!

.f(n1)( ^0 R n(X)=O n 二瓦x k l j(x) =x k(k =0,1川,n); j :o n ⑵、(X j -x)k l j(x) j卫 n n =為(' C?x j(—x)k_L)l j(x) j =0 i =0 n n i k i i =為C k( -x) (、X j l j(x)) i =0 j=0 又70 _i _n 由上题结论可知 n .原式二''C k(-x)k_L x' i=0 =(X -X)k =0 -得证。 7设f (x) c2 la,b 1且f (a) =f (b)二0,求证: max f(x)兰一(b-a) max a $至小一*丘f (x). 解:令x^a,x^b,以此为插值节点,则线性插值多项式为 L i(x^ f(x o) x x f (xj X o —人x -X o X —X o x-b x-a ==f(a) f(b)- a - b x -a 又T f (a) = f (b)二0 L i(x) = 0 1 插值余项为R(x)二f (x) - L,(x) f (x)(x - X Q)(X - xj 1 f(x) = 2 f (x)(x -X g)(X -xj

哈尔滨工程大学数值分析大作业2014-附fortran程序

B班大作业要求: 1. 使用统一封皮; 2. 上交大作业内容包含: 一摘要 二数学原理 三程序设计(必须对输入变量、输出变量进行说明;编程无语言要求,但程序要求通过)四结果分析和讨论 五完成题目的体会与收获 3. 提交大作业的时间:本学期最后一次课,或考前答疑;过期不计入成绩; 4. 提交方式:打印版一份;或手写大作业,但必须使用A4纸。 5. 撰写的程序需打印出来作为附录。

课程设计 课程名称: 设计题目: 学号: 姓名: 完成时间:

题目一:非线性方程求根 一 摘要 非线性方程的解析解通常很难给出,因此非线性方程的数值解就尤为重要。本实验通过使用常用的求解方法二分法和Newton 法及改进的Newton 法处理几个题目,分析并总结不同方法处理问题的优缺点。观察迭代次数,收敛速度及初值选取对迭代的影响。 用Newton 法计算下列方程 (1) 310x x --= , 初值分别为01x =,00.45x =,00.65x =; (2) 32943892940x x x +-+= 其三个根分别为1,3,98-。当选择初值02x =时给出结果并分析现 象,当6 510ε-=?,迭代停止。 二 数学原理 对于方程f(x)=0,如果f(x)是线性函数,则它的求根是很容易的。牛顿迭代法实质上是一种线性化方法,其基本思想是将非线性方程f(x)=0逐步归结为某种线性方程来求解。 设已知方程f(x)=0有近似根x k (假定k f'(x )0≠) ,将函数f(x)在点x k 进行泰勒展开,有 k k k f(x)f(x )+f'(x )(x-x )+≈??? 于是方程f(x)=0可近似的表示为 k k k f(x )+f'(x )(x-x )=0 这是个线性方程,记其根为x k+1,则x k+1的计算公式为 k+1k () x =x -'() k k f x f x ,k=0,1,2,… 这就是牛顿迭代法或简称牛顿法。

数值分析第四版习题及答案

第四版 数值分析习题 第一章绪论 1.设x>0,x得相对误差为δ,求得误差、 2.设x得相对误差为2%,求得相对误差、 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指 出它们就是几位有效数字: 4.利用公式(3、3)求下列各近似值得误差限: 其中均为第3题所给得数、 5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少? 6.设按递推公式 ( n=1,2,…) 计算到、若取≈27、982(五位有效数字),试问计算将有多大误差? 7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、 8.当N充分大时,怎样求? 9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增 加,而相对误差却减小、 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到得结果最好? 13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足 第二章插值法 1.根据(2、2)定义得范德蒙行列式,令 证明就是n次多项式,它得根就是,且 、 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)得二次插值多项式、 3. 4., 研究用线性插值求cos x 近似值时得总误差界、

工程的中的数值分析报告

《工程中的数值分析》开放性考试 题目:工程中的数值分析 分院:建筑与土木工程系 班级:14土木工程本一 姓名:陈凯 学号:14219114125 完成日期:2016年12月14日 温州大学瓯江学院教务部

二○一二年十一月制 1.1 二分法的和算法及Excel实现 原理:设函数f(x)在[a,b]上连续,且f(a)·f(b)<0由闭区间上连续函数的性质及定理2-1可知,方程(2.2)在区间(a,b)内至少有一个实根.二分法的基本思想是:逐步二分区间[a,b],通过判断两端点函数值的符号,进一步缩小有根区间,将有根区间的长度缩小到充分小,从而求出满足精度要求的根的近似值. 算法:给定精确度ξ,用二分法求函数f(x)零点近似值的步骤如下: 确定区间[a,b],验证f(a)·f(b)<0,给定精确度.求区间(a,b)的中点c.计算f(c). (1)若f(c)=0,则c就是函数的零点; (2)若f(a)·f(c)<0,则令b=c; (3)若f(c)·f(b)<0,则令a=c. (4)判断是否达到精确度ε:即若|a-b|<,则得到零点近似值a(或b),否则重复2-4. Excel实现:单元格内分别输入区间[a,b]的左右端点值,中点值=(a+b)/2,依次计算出各点代入公式的f(x)值,用IF函数比较单元格内输入“=IF(f(中点值)<0”,中点值,a)如果f(中点值)<0,则下个左端点取原来的中点值(a+b)/2. 同理“=IF(f(中点值)<0,b,中点值)”下个右端点取原来的右点值b. 如此循环往下,直至某个中点值代入f(x)得到的解满足题目要求的近似解或者零点即f(c)=0则该值则为零点。

数值分析简明教程第二版课后习题答案(供参考)

0.1算法 1、 (p.11,题1)用二分法求方程013 =--x x 在[1,2]内的近似根,要求误差不 超过10-3. 【解】 由二分法的误差估计式31 1*102 1 2||-++=≤=-≤ -εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812 ln 10 ln 3≈-≥ k ,因此取9=k ,即至少需 2、(p.11,题2) 证明方程210)(-+=x e x f x 在区间[0,1]内有唯一个实根;使用 二分法求这一实根,要求误差不超过2102 1 -?。 【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且 012010)0(0<-=-?+=e f ,082110)1(1>+=-?+=e e f ,即0)1()0(+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根. 由二分法的误差估计式211*1021 2 12||-++?=≤=-≤-εk k k a b x x ,得到1002≥k . 两端取自然对数得6438.63219.322 ln 10 ln 2=?≈≥k ,因此取7=k ,即至少需二分

0.2误差 1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。 【解】有效数字: 因为111021 05.001828.0||-?= <=-K x e ,所以7.21=x 有两位有效数字; 因为1 2102105.000828.0||-?=<=-K x e ,所以71.22=x 亦有两位有效数字; 因为3 3102 10005.000028.0||-?=<=-K x e ,所以718.23=x 有四位有效数字; %85.17.205 .0||111=<-= x x e r ε; %85.171.205 .0||222=<-= x x e r ε; %0184.0718 .20005 .0||333=<-= x x e r ε。 评 (1)经四舍五入得到的近似数,其所有数字均为有效数字; (2)近似数的所有数字并非都是有效数字.2.(p.12,题9)设72.21=x , 71828.22=x ,0718.03=x 均为经过四舍五入得出的近似值,试指明它们的绝对误差(限) 与相对误差(限)。 【解】 005.01=ε,31 1 11084.172.2005 .0-?≈< = x r εε; 000005.02=ε,622 21084.171828 .2000005 .0-?≈< =x r εε; 00005.03=ε,43 3 31096.60718 .000005 .0-?≈< = x r εε; 评 经四舍五入得到的近似数,其绝对误差限为其末位数字所在位的半个单位. 3.(p.12,题10)已知42.11=x ,0184.02-=x ,4 310184-?=x 的绝对误差限均为 2105.0-?,问它们各有几位有效数字?

最新数值分析课程第五版课后习题答案(李庆扬等)1

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

整理工程中的数值分析

工 程 中 的 数 值 分 析 20 年月日A4打印/ 可编辑

《数值分析》 课程教学方法改革案例 1.课程简介 (1)课程类别:专业选修课程 (2)学科类别:工学--计算机科学与技术 (3)课程目标和教学内容: 解决问题的数值方法已经成为工程学乃至社会科学研究中非常重要的基础工具。《数值分析》是应用性很强的数学类课程,是工程数学与计算机应用的桥梁。该课程介绍将连续的数学模型离散化,通过计算机程序在有限步骤内求得数值近似解的方法。通过一系列的实验帮助学生掌握基本的误差分析方法、求解非线性方程和线性方程组的方法、求特征根、用插值及拟合近似计算函数值、计算近似定积分、求解微分方程的方法等。通过学习,学生将掌握经典算法的基本理论、使用技巧,并能够灵活应用以解决实际问题。 (4)教学对象:计算机与软件工程专业三年级本科学生;每年开设3个左右教学班,每班人数控制在50人以内,采用小班化教学。 (5)教学场景:课堂教学在多媒教室,实验教学在计算机实验机房。 2.课程教学重点解决的问题 工程数学领域内用到的大量数学模型,还不能直接用计算机求解,必须通过数

值方法把原始数学模型离散化,变为算法语言能认识的、有限步可解的数学模型,才可用计算机编程、运行得到数值解。《数值分析》就是以高等数学和算法语言为基础,介绍这些数值方法的来龙去脉,使学生学会基本原理,并掌握灵活实际应用的技巧。 在传统的数值分析教学活动及教材中,往往偏重理论证明和简单的手工跟踪算法实践,较少给出数值实验习题,而对如何进行数值实验,如何基于算法进行编程练习等更没有提出要求。但这是一门应用性很强的数学类的课程,因此教学过程中应特别注重实践。虽然专业软件MATLAB具有强大的计算功能,但处理一些特殊困难的问题时仍然不能保证得到好的效果,所以专业人员仍然有必要掌握对基本算法的实现能力,才能在改进算法适应性方面得心应手。 另一方面,数学的学习是锻炼科学研究能力的重要手段之一,课程本身传递的知识固然重要,更重要的是引导学生训练逻辑思维能力,掌握逻辑推理的一般方法,从而培养出科学严谨的思维习惯以及主动探索求知的精神。 3.围绕问题的教学方法改革 (1)教学实施策略与方法 针对课程教学的目标和教学中重点解决的问题,目前课程采用的教学实施策略和方法主要有:基于团队的学习组织方式、基于问题的互动教学、基于编程大作业的实践能力培养、以及基于拓展性课题的研究性学习。 1.基于团队的学习组织方式。课程采用小班教学,人数基本限定在50人以内, 第一堂课将学生分为18组,最多每3人一组。每组学生在课堂学习中座位集中(为了课堂讨论),在课外实践中分工合作完成18个拓展性课题的研究任务。

岩土工程数值分析学习笔记(DOC)

岩土工程数值分析读书笔记 摘要:阅读笔记分为两部分:理论学习和plaxis模拟相关问题。 理论部分 0岩土工程数值分析简介 岩土工程问题解析分析是以弹塑性力学理论和结构力学作为理论依据,适用于解决连续介质、各向同性材料、未知量少、边界条件简单的工程问题,存在很大的局限性。 岩土工程问题数值分析是借助于计算机的计算能力,适用于解决材料复杂、边界条件复杂、任意荷载、任意几何形状,适用范围广。 岩土工程数值分析发展过程: 20世纪40年代,使用差分法解决了土工中的渗流及固结问题,如土坝渗流及浸润线的求法、土坝及地基的固结等。 20世纪60年代,使用有限元法成解决了土石坝的静力问题的求解。 20世纪70年代,使用有限元法解决了土石坝及高楼(包括地基)的抗震分析。 20世纪80年代,边界元法异军突起,解决了半无限域的边界问题;地基的静力及动力问题都使用边界元法得到了有效地解决。 岩土工程数值分析的方法有两类,一类方法是将土视为连续介质,随后又将其离散化,如有限单元法、有限差分法、边界单元法、有限元线法、无单元法以及各种方法的耦合。另一类计算方法是考虑岩土材料本身的不连续性,如裂缝及不同材料间界面的界面模型和界面单元的使用,离散元法,不连续变形分析,流形元法,颗粒流等数值计算方法。 1数值分析过程中存在的问题及解决措施 问题:(1)对岩土工程数值分析方法缺乏系统的知识和深入的理解,出现问题时不知道在什么情况下属于理论问题或数学模型问题;在什么情况下是属于计算方法问题或本构模型问题;在什么情况下是参数的确定问题或计算本身的问题等。 (2)各种本构模型固有的局限性。具有多相性土的物理力学性质太复杂,难以准确地用数学模型和本构模型描述。例如邓肯一张模型不能反映剪胀性,不能反映压缩与剪切的交叉影响; (3)现有的试验手段和设备不能提供适当、合理和精确的参数。靠少数样本点所获得的参数难以准确地描述整个空间场地的物理力学性能;土的参数因土样扰动难以高质量的获取,其精度很差。 (4)数学模型还会给人造成一种错觉,让人觉得其计算结果也一定会更好、更可靠。这样可能使人们忽略了精确的数学公式也照样会有出错的可能性。只有当输入参数的质量和精度很高,并能与数学模型的精度相匹配时,才有可能得到较为准确的计算结果。 措施:(1)加强对土的本构模型的教学与培训,了解和掌握各种土的本构模型的优点和局限性以及模型参数的离散性。 (2)在使用数值分析方法的同时,不断地积累使用经验,包括他人的经验。

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4; ()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--= =-+-----= =------==-+-- 则二次拉格朗日插值多项式为 2 20()()k k k L x y l x ==∑ 0223()4() 1 4(1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+-+=+- 6.设,0,1,,j x j n =L 为互异节点,求证: (1)0 ()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2) 0()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0()()n k n j j j L x x l x ==∑。 插值余项为(1)1()()()()()(1)! n n n n f R x f x L x x n ξω++=-=+ 又,k n ≤Q

(1)()0()0 n n f R x ξ+∴=∴= 0 ()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 000(2)()() (())()()(())n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 0()n k i j j j x l x x ==∑ 0()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10101010()() ()x x x x L x f x f x x x x x --=+-- =()()x b x a f a f b a b x a --=+-- 1()()0 ()0 f a f b L x ==∴=Q 又 插值余项为1011()()()()()()2 R x f x L x f x x x x x ''=-=-- 011()()()()2 f x f x x x x x ''∴=--

相关文档
相关文档 最新文档