文档库 最新最全的文档下载
当前位置:文档库 › 高等数值分析内容介绍

高等数值分析内容介绍

高等数值分析内容介绍
高等数值分析内容介绍

微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。这些著作当时没有引起多大注意。1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门学科。

和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面

的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。

偏微分方程得到迅速发展是在十九世纪,那时候,数学物理问题的研究繁荣起来了,许多数学家都对数学物理问题的解决做出了贡献。这里应该提一提法国数学家傅立叶,他年轻的时候就是一个出色的数学学者。在从事热流动的研究中,写出了《热的解析理论》,在文章中他提出了三维空间的热方程,也就是一种偏微分方程。他的研究对偏微分方程的发展的影响是很大的。

偏微分方程是什么样的?它包括哪些内容?这里我们可从一个例子的研

究加以介绍。

弦振动是一种机械运动,当然机械运动的基本定律是质点力学的

F=ma,但是弦并不是质点,所以质点力学的定律并不适用在弦振动的研究上。然而,如果我们把弦细细地分成若干个极小极小的小段,每一小段抽象地看作是一个质点,这样我们就可以应用质点力学的基本定律了。

弦是指又细又长的弹性物质,比如弦乐器所用的弦就是细长的、柔软的、带有弹性的。演奏的时候,弦总是绷紧着具有一种张力,这种张力大于弦的重量几万倍。当演奏的人用薄片拨动或者用弓在弦上拉动,虽然只因其所接触的一段弦振动,但是由于张力的作用,传播到使整个弦振动起来。

用微分的方法分析可得到弦上一点的位移是这一点所在的位置和时

间为自变量的偏微分方程。偏方程又很多种类型,一般包括椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程。上述的例子是弦振动方程,它属于数学物理方程中的波动方程,也就是双曲型偏微分方程。

偏微分方程的解一般有无穷多个,但是解决具体的物理问题的时候,必须从中选取所需要的解,因此,还必须知道附加条件。因为偏微分方程是同一类现象的共同规律的表示式,仅仅知道这种共同规律还不足以掌握和了解具体问题的特殊性,所以就物理现象来说,各个具体问题的特殊性就在于研究对象所处的特定条件,就是初始条件和边界条件。

拿上面所举的弦振动的例子来说,对于同样的弦的弦乐器,如果一种是以薄片拨动弦,另一种是以弓在弦上拉动,那么它们发出的声音是不同

的。原因就是由于“拨动”或“拉动”的那个“初始”时刻的振动情况不同,因此产生后来的振动情况也就不同。

天文学中也有类似情况,如果要通过计算预言天体的运动,必须要知道这些天体的质量,同时除了牛顿定律的一般公式外,还必须知道我们所研究的天体系统的初始状态,就是在某个起始时间,这些天体的分布以及它们的速度。在解决任何数学物理方程的时候,总会有类似的附加条件。

就弦振动来说,弦振动方程只表示弦的内点的力学规律,对弦的端点就不成立,所以在弦的两端必须给出边界条件,也就是考虑研究对象所处的边界上的物理状况。边界条件也叫做边值问题。

当然,客观实际中也还是有“没有初始条件的问题”,如定场问题(静电场、稳定浓度分布、稳定温度分布等),也有“没有边界条件的问题”,如着重研究不靠近两端的那段弦,就抽象的成为无边界的弦了。

在数学上,初始条件和边界条件叫做定解条件。偏微分方程本身是表达同一类物理现象的共性,是作为解决问题的依据;定解条件却反映出具体问题的个性,它提出了问题的具体情况。方程和定解条件合而为一体,就叫做定解问题。

求偏微分方程的定解问题可以先求出它的通解,然后再用定解条件确定出函数。但是一般来说,在实际中通解是不容易求出的,用定解条件确定函数更是比较困难的。

偏微分方程的解法还可以用分离系数法,也叫做傅立叶级数;还可以用分离变数法,也叫做傅立叶变换或傅立叶积分。分离系数法可以求解有界空间中的定解问题,分离变数法可以求解无界空间的定解问题;也可以

用拉普拉斯变换法去求解一维空间的数学物理方程的定解。对方程实行拉普拉斯变换可以转化成常微分方程,而且初始条件也一并考虑到,解出常微分方程后进行反演就可以了。

应该指出,偏微分方程的定解虽然有以上各种解法,但是我们不能忽视由于某些原因有许多定解问题是不能严格解出的,只可以用近似方法求出满足实际需要的近似程度的近似解。

常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,在数学上是拉普拉斯方程的边值问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。

随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

李庆扬数值分析第五版习题复习资料清华大学出版社

第一章 绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= = = 而ln x 的误差为()1 ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -=Q , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈?Q 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,* 57 1.0.x =? 解:* 1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中**** 1234,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ===g g (*)(*)3(*)r p r r V C R R εεε∴≈=g 又(*)1r V ε=Q

数值分析课程设计题目与要求

数值分析课程设计题目与要求 (10级应数及创新班) [设计题一] 编写顺序Gauss消去法和列主元Gauss消去法的函数,再分别调用这两个函数求解下面的84阶方程组: = , 然后考虑将方程组的阶数取为10至100之间多个值进行求解。将你的计算结果与方程组的精确解进行比较。从“快”、“准”、“省”三个方面分析以上两个算法,试提出改进的算法并加以实现和验证。 [设计题二] 编写平方根法和改进的平方根法(参见教材《计算方法》P54的例题2.5)的函数,然后分别调用这两个函数求解对称正定方程组Ax=b,其中A和b分别为: (1)系数矩阵A为矩阵(阶数取为10至100之间多个值): , 向量b随机地选取; (2)系数矩阵A为Hilbert矩阵(阶数取为5至40之间多个值),即A的第i行第j列元素,向量b的第i个分量取为。将你的计算结果与方程组的精确解进 行比较。 若出现问题,分析其原因,提出改进的设想并尝试实现之。

对于迭代法 ,......)2,1,0(99.021=-=+k x x x k k k , 它显然有不动点0* =x 。试设计2个数值实验 得到收敛阶数的大概数值(不利用判定收敛阶的判据定理): (1) 直接用收敛阶的定义; (2) 用最小二乘拟合的方法。 [设计题四] 湖水在夏天会出现分层现象,接近湖面温度较高,越往下温度变低。这种上热下冷的现象影响了水的对流和混合过程,使得下层水域缺氧,导致水生鱼类的死亡。如果把水温T 看成深度x 的函数T(x),有某个湖的观测数据如下: 环境工程师希望: 1) 用三次样条插值求出T(x)。 2) 求在什么深度处dx dT 的绝对值达到最大( 即02 2=dx T d )。 [设计题五] 某飞机头部的光滑外形曲线的型值点坐标由下表给出: ...值y 及一阶、二阶导数值y ’,y ”。绘出模拟曲线的图形。

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

清华大学高等数值计算(李津)实践题目一(共轭梯度CG法,Lanczos算法与MINRES算法)

高等数值计算实践题目一 1. 实践目的 本次计算实践主要是在掌握共轭梯度法,Lanczos 算法与MINRES 算法的基础上,进一步探讨这3种算法的数值性质,主要研究特征值特征向量对算法收敛性的影响。 2. 实践过程 (一)生成矩阵 (1)作5个100阶对角阵i D 如下: 1D 对角元:1,1,...,20,1+0.1(-20),21,...,100j j d j d j j ==== 2D 对角元:1,1,...,20,1+(-20),21,...,100j j d j d j j ==== 3D 对角元:,1,...,80,81,81,...,100j j d j j d j ==== 4D 对角元:,1,...,40,41,41,...,60,41+(60),61,...,100j j j d j j d j d j j =====-= 5D 对角元:,1,...,100j d j j == 记i D 的最大模特征值和最小模特征值分别为1i λ和i n λ,则i D 特征值分布有如下特点: 1D 的特征值有较多接近于i n λ,并且1/i i n λλ较小, 2D 的特征值有较多接近于i n λ,并且1/i i n λλ较大, 3D 的特征值有较多接近于1i λ,并且1/i i n λλ较大, 4D 的特征值有较多接近于中间模特征值,并且1/i i n λλ较大, 5D 的特征值均匀分布,并且1/i i n λλ较大 (2)随机生成10个100阶矩阵j M : (100(100))j M fix rand = 并作它们的QR 分解,得j Q 和j R ,这样可得50个对称的矩阵T ij j i j A Q DQ =,其中i D 的对角元就是ij A 的特征值,若它们都大于0,则ij A 正定,j Q 的列就是相应的特征向量。结合(1)可知,ij A 都是对称正定阵。

研究生《数值分析》教学大纲

研究生《数值分析》教学大纲 课程名称:数值分析 课程编号:S061005 课程学时:64 学时 课程学分: 4 适用专业:工科硕士生 课程性质:学位课 先修课程:高等数学,线性代数,计算方法,Matlab语言及程序设计 一、课程目的与要求 “数值分析”课是理工科各专业硕士研究生的学位课程。主要介绍用计算机解决数学问题的数值计算方法及其理论。内容新颖,起点较高,并加强了数值试验和程序设计环节。通过本课程的学习,使学生熟练掌握各种常用的数值算法的构造原理和过程分析,提高算法设计和理论分析能力,并且能够根据数学模型,提出相应的数值计算方法编制程序在计算机上算出结果。力求使学生掌握应用数值计算方法解决实际问题的常用技巧。 二、教学内容、重点和难点及学时安排: 第一章? 数值计算与误差分析( 4学时) 介绍数值分析的研究对象与特点,算法分析与误差分析的主要内容。 第一节数值问题与数值方法 第二节数值计算的误差分析 第三节数学软件工具----MATLAB 语言简介 重点:误差分析 第二章? 矩阵分析基础( 10学时) 建立线性空间、赋范线性空间、内积空间的概念,为学习以后各章打好基础。矩阵分解是解决数值代数问题的常用方法,掌握矩阵的三角分解、正交分解、奇异值分解,并能够编写算法程序。 第一节? 矩阵代数基础

第二节? 线性空间 第三节? 赋范线性空间 第四节? 内积空间和内积空间中的正交系 第五节矩阵的三角分解 第六节矩阵的正交分解 第七节矩阵的奇异值分解 难点:内积空间中的正交系。矩阵的正交分解。 重点:范数,施密特(Schmidt) 正交化过程,正交多项式,矩阵的三角分解, 矩阵的正交分解。 第三章? 线性代数方程组的数值方法( 12学时) 了解研究求解线性代数方程组的数值方法分类及直接法的应用范围。高斯消元法是解线性代数方程组的最常用的直接法,也是其它类型直接法的基础。在此方法基础上加以改进,可得选主元的高斯消元法、按比例增减的高斯消元法,其数值稳定性更高。掌握用列主元高斯消元法解线性方程组及计算矩阵的行列式及逆,并且能编写算法程序。掌握矩阵的直接三角分解法:列主元LU 分解,Cholesky分解。了解三对角方程组的追赶法的分解形式及数值稳定性的充分条件。掌握矩阵条件数的定义,并能利用条件数判别方程组是否病态以及对方程组的直接方法的误差进行估计。 迭代解法是求解大型稀疏方程组的常用解法。熟练掌握雅可比迭代法、高斯- 塞德尔迭代法及SOR 方法的计算分量形式、矩阵形式,并能在计算机上编出三种方法的程序用于解决实际问题。了解极小化方法:最速下降法、共轭斜量法。迭代法的收敛性分析是研究解线性代数方程组的迭代法时必须考虑的问题。对于上述常用的迭代法,须掌握其收敛的条件。而对一般的迭代法,掌握其收敛性分析的基本方法和主要结果有助于进一步探究新的迭代法。 第一节求解线性代数方程组的基本定理 第二节高斯消元法及其计算机实现 第三节矩阵分解法求解线性代数方程组 第三节? 误差分析和解的精度改进 第四节? 大型稀疏方程组的迭代法 第五节? 极小化方法 难点:列主元高斯消元法,直接矩阵三角分解。迭代法的收敛性,雅可比迭代法,高斯-塞德尔迭代法,SOR 迭代法。

数值分析试卷及其答案

1、(本题5分)试确定7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22 =3.142857…=1103142857 .0-? π=3.141592… 所以 312102 11021005.0001264.0722--?=?=<=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22 作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3102 1 0005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:??? ?? ??=????? ??????? ??--654131*********x x x ; 解 设???? ? ??????? ? ?????? ??===????? ??--11111 1 131321112323121 32 132 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,215 27 ,25,2323121321- ==-== -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23 ,97,910(,)563, 7,4(== (3分) 3、(本题6分)给定线性方程组???????=++-=+-+=-+-=-+17 7222382311387 510432143213 21431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析整理版试题及答案

数值分析整理版试题及答案

例1、 已知函数表 x -1 1 2 ()f x -3 0 4 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1)k x -1 1 2 k y -3 0 4 插值基函数分别为 ()()()()()()()()()() 1200102121()1211126 x x x x x x l x x x x x x x ----= ==-------- ()()()()()()()() ()()021******* ()1211122x x x x x x l x x x x x x x --+-= ==-+---+- ()()()()()()()()()()0122021111 ()1121213 x x x x x x l x x x x x x x --+-= ==-+--+- 故所求二次拉格朗日插值多项式为 () ()()()()()()()()()()2 20 2()11131201241162314 121123537623k k k L x y l x x x x x x x x x x x x x ==?? =-? --+?-+-+?+-????=---++-=+-∑ (2)一阶均差、二阶均差分别为

[]()()[]()()[][][]010********* 011201202303 ,11204 ,412 3 4,,5 2,,126 f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----= = =----=== --- k x ()k f x 一阶 二阶 -1 -3 1 0 3/ 2 2 4 4 5/6 故所求Newton 二次插值多项式为 ()()[]()[]()() ()()()20010012012,,,35 311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-+ +++-=+- 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{} span 1,x Φ=的最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有

数值分析学习心得体会.doc

数值分析学习感想 一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。这门 课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处 理问题的时候,可以合理适当的提出方案和假设。他的内容贴近实际,像数值分析,数值微 分,求解线性方程组的解等,使数学理论更加有实际意义。 数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有 了更加方便以及科学的方法。像第一章就讲的误差,在现实生活中,也许没有太过于注意误 差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误 差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在 别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数 值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出 的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。 数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数 学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中 的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容 易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的, 这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的 都是不同的算法。而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题, 从而知道如何去解决。 在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下, 我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自 己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触 到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。 计算132 2013014923 张霖篇二:数值分析学习报告 数值分析学习心得报告 班级:11级软工一班 姓名: * * * 学号: 20117610*** 指导老师:* * * 学习数值分析的心得体会 无意中的一次选择,让我接触了数值分析。 作为这学期的选修课,我从内心深处来讲,数值分析真的有点难。感觉它是在高等数学 和线性代数的基础上,又加深了探讨。虽然这节课很难,我学的不是很好,但我依然对它比 较感兴趣。下面就具体说说我的学习体会,让那些感兴趣的同学有个参考。 学习数值分析,我们首先得知道一个软件——matlab。matrix laboratory,即矩阵实验 室,是math work公司推出的一套高效率的数值计算和可视化软件。它是当今科学界最具影 响力、也是最具活力的软件,它起源于矩阵运算,并高速发展成计算机语言。它的优点是强 大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面、便捷的与其他程序和语 言接口。 根据上网搜集到的资料,你就会发现matlab有许多优点: 首先,编程简单使用方便。到目前为止,我已经学过c语言,机器语言,java语言,这

数值分析课程课程设计汇总

课 程 设 计 我再也回不到大二了, 大学是那么短暂 设计题目 数值分析 学生姓名 李飞吾 学 号 x x x x x x x x 专业班级 信息计x x x x x 班 指导教师 设 计 题 目 共15题如下 成绩

数值分析课程设计 1.1 水手、猴子和椰子问题:五个水手带了一只猴子来到南太平洋的一个荒岛上,发现那里有一大堆椰子。由于旅途的颠簸,大家都很疲惫,很快就入睡了。第一个水手醒来后,把椰子平分成五堆,将多余的一只给了猴子,他私藏了一堆后便又去睡了。第二、第三、第四、第五个水手也陆续起来,和第一个水手一样,把椰子分成五堆,恰多一只猴子,私藏一堆,再去入睡,天亮以后,大家把余下的椰子重新等分成五堆,每人分一堆,正好余一只再给猴子,试问原先共有几只椰子?(15621) 试分析椰子数目的变化规律,利用逆向递推的方法求解这一问题 解:算法分析:解该问题主要使用递推算法,关于椰子数目的变化规律可以设起初的椰子数为0p ,第一至五次猴子在夜里藏椰子后,椰子的数目分别为01234,,,,p p p p p 再设最后每个人分得x 个椰子,由题: 14 (1)5 k k p p +=- (k=0,1,2,3,4)51(1)5 x p =- 所以551p x =+,11k k p p +=+利用逆向递推方法求解 15 1,4 k k p p +=+ (k=0,1,2,3,4) MATLAB 代码: n=input('n= '); n= 15621 for x=1:n p=5*x+1; for k=1:5 p=5*p/4+1; end if p==fix(p), break end end disp([x,p]) 1.2 设,1 5n n x I dx x =+? (1)从0I 尽可能精确的近似值出发,利用递推公式: 11 5(1,2,20)n n I I n n -=-+= 计算机从1I 到20I 的近似值; (2)从30I 较粗糙的估计值出发,用递推公式:

数值分析试卷及其答案1

1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知6 5.0102 1 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620*2102 1 ,6,0,10325413.0-?= -=-=?=ε绝对误差限n k k X 2分 2. 已知?? ???=0 01 A 220- ?????440求21,,A A A ∞ (6分) 解: {}, 88,4,1max 1==A 1分 {}, 66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=0 1 A A T 4 2 ???? ? -420?????0 01 2 20 - ???? ?440= ?????0 01 80 ???? ?3200 2分 {}32 32,8,1max )(max ==A A T λ

1分 24322==A 3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (0,1……)产生的序列{}k x 收敛于 2 解: ①迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3 分 ②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-= a a x a x ?? 3分 4. 给定线性方程组,其中:?? ?=13A ?? ?2 2,?? ? ???-=13b 用迭代公式 )()()()1(k k k Ax b x x -+=+α(0,1……)求解,问取什么实数α ,可使 迭代收敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --???--=-=ααααα21231A I B 2分

清华大学贾仲孝老师高等数值分析报告第二次实验

高等数值分析第二次实验作业

T1.构造例子特征值全部在右半平面时, 观察基本的Arnoldi 方法和GMRES 方法的数值性态, 和相应重新启动算法的收敛性. Answer: (1) 构造特征值均在右半平面的矩阵A : 根据实Schur 分解,构造对角矩阵D 由n 个块形成,每个对角块具有如下形式,对应一对特 征值i i i αβ± i i i i i S αββα-?? = ??? 这样D=diag(S 1,S 2,S 3……S n )矩阵的特征值均分布在右半平面。生成矩阵A=U T AU ,其中U 为 正交阵,则A 矩阵的特征值也均在右半平面。不妨构造A 如下所示: 2211112222 /2/2/2/2N N A n n n n ?-?? ? ? ?- ? = ? ? ? - ? ?? ? 由于选择初值与右端项:x0=zeros(2*N,1);b=ones(2*N,1); 则生成矩阵A 的过程代码如下所示: N=500 %生成A 为2N 阶 A=zeros(2*N); for a=1:N A(2*a-1,2*a-1)=a; A(2*a-1,2*a)=-a; A(2*a,2*a-1)=a; A(2*a,2*a)=a; end U = orth(rand(2*N,2*N)); A1 = U'*A*U; (2) 观察基本的Arnoldi 和GMRES 方法 编写基本的Arnoldi 函数与基本GMRES 函数,具体代码见附录。 function [x,rm,flag]=Arnoldi(A,b,x0,tol,m) function [x,rm,flag]=GMRES(A,b,x0,tol,m) 输入:A 为方程组系数矩阵,b 为右端项,x0为初值,tol 为停机准则,m 为人为限制的最大步数。 输出:x 为方程的解,rm 为残差向量,flag 为解是否收敛的标志。 外程序如下所示: e=1e-6; m=700;

数值分析课程报告

插值法和多项式拟合的研究 摘要 在科研和生产实践中,常常需要通过一组测量数据来寻找变量x与y的函数关系近似表达式。解决这类问题的方法有两种:一种是插值法,另一种是拟合法。插值法的原理是用一个简单函数逼近被计算函数,然后用该简单函数的函数值近似替代被计算函数的函数值。拟合法能够是从给定的一组实验数据出发,寻找函数的一个近似表达式,该近似表达式能反映数据的基本趋势而又不一定过全部的点,即曲线拟合。本文主要介绍拉格朗日插值法、埃尔米特插值法、三次样条插值法以及基于最小二乘法的多项式拟合。 关键词:拉格朗日插值,埃尔米特插值,样条插值,多项式拟合

1方法的意义 在许多实际问题及科学研究中,因素之间往往存在着函数关系,然而,这种关系经常很难有明显的解析表达,通常只是由观察与测试得到一些离散数值。有时,即使给出了解析表达式,却由于表达式过于复杂,不仅使用不便,而且不易于进行计算与理论分析。解决这类问题的方法有两种:一种是插值法,另一种是拟合法。插值法的原理是用一个简单函数逼近被计算函数,然后用该简单函数的函数值近似替代被计算函数的函数值。它要求给出函数的一个函数表,然后选定一种简单的函数形式,比如多项式、分段线性函数及三角多项式等,通过已知的函数表来确定一个简单的函数()x ?作为()f x 的近似,概括地说,就是用简单函数为离散数组建立连续模型。插值法在实际应用中非常广泛,但是它也有明显的缺陷,一是测量数据常常带有测试误差,而插值多项式又通过所有给出的点,这样就是插值多项式保留了这些误差;二是如果实际得到的数据过多,则必然得到次数较高的插值多项式,这样近似的效果并不理想。拟合法能够很好的解决这些问题,它从给定的一组实验数据出发,寻找函数的一个近似表达式y=()x ?,该近似表达式能反映数据的基本趋势而又不一定过全部的点,即曲线拟合的问题,函数的近似表达式y=()x ?称为拟合曲线。常用最小而二乘法来确定拟合曲线。 2插值法的介绍 2.1 插值法定义 设 f (x )为[a ,b ]上的函数,在互异点n x x x ,...,,10处的函数值分别为 )(),...,(),(10n x f x f x f ,构造一个简单函数 ?(x ) 作为函数 f (x ) 的近似表达式y = f (x ) ≈ ?(x ),使 )()(i i x f x =? , i =0, 1, 2, …,n (1.0) 则称?(x ) 为关于节点n x x x ,...,,10的插值函数;称n x x x ,...,,10 为插值节点;称 ))((i i x f x , i =1,2,… , n 为插值点;f (x ) 称为被插值函数。式(1.0)称为插值条 件。这类问题称为插值问题。插值的任务就是由已知的观测点,为物理量(未知量)建立一个简单的、连续的解析模型,以便能根据该模型推测该物理量在非观测点

数值分析整理版试题及答案

例1、 已知函数表 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1) 故所求二次拉格朗日插值多项式为 (2)一阶均差、二阶均差分别为 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0,1]上关于()1x ρ=,{}span 1,x Φ=的最佳平 方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有 所以,法方程为

011231261192 34a a ??????????=?????????? ?????????? ,经过消元得012311 62110123a a ??? ???????=???????????????????? 再回代解该方程,得到14a =,011 6 a = 故,所求最佳平方逼近多项式为* 111()46S x x =+ 例3、 设()x f x e =,[0,1]x ∈,试求()f x 在[0,1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近 多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,这样,有 所以,法方程为 解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为 例4、 用4n = 的复合梯形和复合辛普森公式计算积分1 ? 。 解: (1)用4n =的复合梯形公式 由于2h =,( )f x =()121,2,3k x k k =+=,所以,有 (2)用4n =的复合辛普森公式 由于2h =,( )f x =()121,2,3k x k k =+=,()12 220,1,2,3k x k k + =+=,所以,有 例5、 用列主元消去法求解下列线性方程组的解。 解:先消元 再回代,得到33x =,22x =,11x = 所以,线性方程组的解为11x =,22x =,33x = 例6、 用直接三角分解法求下列线性方程组的解。 解: 设 则由A LU =的对应元素相等,有 1114u = ,1215u =,1316u =, 2111211433l u l =?=,3111311 22 l u l =?=, 2112222211460l u u u +=?=-,2113232311 545l u u u +=?=-,

数值分析学习方法

第一章 1霍纳(horner)方法: 输入=c + bn*c bn?1*c b3*c b2*c b1*c an an?1 an?2 ……a2 a1 a0 bn bn?1 bn?2 b2 b1 b0 answer p(x)=b0 该方法用于解决多项式求值问题=anxn+an?1xn?1+an?2xn?2+……+a2x2+a1x+a0 ? 2 注:p为近似值 p(x) 绝对误差: ?|ep?|p?p ?||p?p rp? |p| 相对误差: ?|101?d|p?p rp?? |p|2 有效数字: (d为有效数字,为满足条件的最大整数) 3 big oh(精度的计算): o(h?)+o(h?)=o(h?); o(hm)+o(hn)=o(hr) [r=min{p,q}]; o(hp)o(hq)=o(hs) [s=q+p]; 第二章 2.1 求解x=g(x)的迭代法用迭代规则 ,可得到序 列值{}。设函数g 满足 y 定义在得 。如果对于所有 x ,则函数g 在 ,映射y=g(x)的范围 内有一个不动点; 此外,设 ,存在正常数k<1,使 内,且对于所有x,则函数g 在 内有唯一的不动点p。 ,(ii)k是一个正常数, 。如果对于所有 定理2.3 设有(i)g,g ’(iii ) 如果对于所有x在

这种情况下,p成为排斥不动点,而且迭代显示出局部发散 性。波理 尔 查 . 诺 二 分 法 ( 二 分 法 定) <收敛速度较慢> 试值(位)法:<条件与二分法一样但改为寻求过点(a,f(a))和(b,f(b))的割线l与 x轴的交点(c,0)> 应注意 越来越 小,但可能不趋近于0,所以二分法的终止判别条件不适合于试值法 . f(pk?1) 其中k=1,2,……证明:用 f(pk?1) 牛顿—拉夫森迭代函数:pk?g(pk?1)?pk?1? 泰勒多项式证明 第三章线性方程组的解法对于给定的解线性方程组ax=b a11x1 ? a12x2 ? ? ? a1nxn ? b1 a21x1 ? a22x2 ? ? ? a2nxn ? b2 ? an1x1 ? an2x2 ? ? ? annxn ? bn 一gauss elimination (高斯消元法第一步forward elimination 第二步 substitution 二lu factorization 第一步 a = lu 原方程变为lux=y ; 第二步令ux=y,则ly = b由下三角解出y;第三步 ux=y,又上三角解出x ; 三iterative methods(迭代法) a11x1 ? a12x2 ? ? ? a1nxn ? b1 a21x1 ? a22x2 ? ? ? a2nxn ? b2? ) back 初始值 0,x0,?,x0x1n2 四 jacobi method 1.选择初始值 2.迭代方程为 0,x0,?,x0x1n2 k?1? x1k?1 ? x2

数值分析课程设计(最终版)

本文主要通过Matlab 软件,对数值分析中的LU 分解法、最小二乘法、复化Simpon 积分、Runge-Kutta 方法进行编程,并利用这些方法在MATLAB 中对一些问题进行求解,并得出结论。 实验一线性方程组数值解法中,本文选取LU 分解法,并选取数据于《数值分析》教材第5章第153页例5进行实验。所谓LU 分解法就是将高斯消去法改写为紧凑形式,可以直接从矩阵A 的元素得到计算L 、U 元素的递推公式,而不需要任何步骤。用此方法得到L 、U 矩阵,从而计算Y 、X 。 实验二插值法和数据拟合中,本文选取最小二乘拟合方法进行实验,数据来源于我们课堂学习该章节时的课件中的多项式拟合例子进行实验。最小二乘拟合是一种数学上的近似和优化,利用已知的数据得出一条直线或者曲线,使之在坐标系上与已知数据之间的距离的平方和最小。利用excel 的自带函数可以较为方便的拟合线性的数据分析。 实验三数值积分中,本文选取复化Simpon 积分方法进行实验,通过将复化Simpson 公式编译成MATLAB 语言求积分∫e ;x dx 1 0完成实验过程的同时,也对复化Simpon 积分章节的知识进行了巩固。 实验四常微分方程数值解,本文选取Runge-Kutta 方法进行实验,通过实验了解Runge-Kutta 法的收敛性与稳定性同时学会了学会用Matlab 编程实现Runge-Kutta 法解常微分方程,并在实验的过程中意识到尽管我们熟知的四种方法,事实上,在求解微分方程初值问题,四阶法是单步长中最优秀的方法,通常都是用该方法求解的实际问题,计算效果比较理想的。 实验五数值方法实际应用,本文采用最小二乘法拟合我国2001年到2015年的人口增长模型,并预测2020年我国人口数量。 关键词:Matlab ;LU 分解法;最小二乘法;复化Simpon 积分;Runge-Kutta

数值分析试题及答案

数值分析试题及答案 一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有()和()位有效数字. A.4和3 B.3和2 C.3和4 D.4和4 2. 已知求积公式,则=() A. B.C.D. 3. 通过点的拉格朗日插值基函数满足() A.=0,B.=0, C.=1,D.=1, 4. 设求方程的根的牛顿法收敛,则它具有()敛速。 A.超线性B.平方C.线性D.三次 5. 用列主元消元法解线性方程组作第一次消元后得到的第3个方程(). A.B. C.D. 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得分评卷 人 二、填空题(每小题3分,共15分) 1. 设, 则, . 2. 一阶均差 3. 已知时,科茨系数,那么 4. 因为方程在区间上满足,所以在区间内有根。 5. 取步长,用欧拉法解初值问题的计算公式.填空题答案

1. 9和 2. 3. 4. 5. 得分评卷 人 三、计算题(每题15分,共60分) 1. 已知函数的一组数据:求分段线性插值函数,并计算的近似值. 计算题1.答案 1. 解, , 所以分段线性插值函数为 2. 已知线性方程组 (1)写出雅可比迭代公式、高斯-塞德尔迭代公式; (2)对于初始值,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算(保留小数点后五位数字). 计算题2.答案 1.解原方程组同解变形为 雅可比迭代公式为 高斯-塞德尔迭代法公式 用雅可比迭代公式得 用高斯-塞德尔迭代公式得 3. 用牛顿法求方程在之间的近似根 (1)请指出为什么初值应取2? (2)请用牛顿法求出近似根,精确到0.0001. 计算题3.答案

数值分析每节课的教学重点、难点

计算方法教案新疆医科大学 数学教研室 张利萍

一、课程基本信息 1、课程英文名称:Numerical Analysis 2、课程类别:专业基础课程 3、课程学时:总学时54 4、学分:4 5、先修课程:《高等数学》、《线性代数》、《Matlab 语言》 二、课程的目的与任务: 计算方法是信息管理与信息系统专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握计算方法的常用的基本的数值计算方法 2.掌握计算方法的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 计算方法(数值分析)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

数值分析最佳习题(含答案)

第一章 绪论 姓名 学号 班级 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5105.0-?,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-?=x ,325*102 1102 1---?=?≤-x x 故具有3位有效数字。 2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需 41*102 1 -?≤-ππ,3*3102 1102 1--?+≤≤?-πππ,即14209.314109.3*≤≤π 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +, b a ?有几位有效数字(有效数字的计算) 解:3*1021 -?≤-a a ,2*102 1-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102 1 10211021)()(---?≤?+?≤ -+-≤+-+b b a a b a b a 故b a +至少具有2位有效数字。 2123*****102 1 0065.01022031.1102978.0)()(---?≤=?+?≤ -+-≤-b b a a a b b a ab

故b a ?至少具有2位有效数字。 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算) 解:已知δ=-* *x x x ,则误差为 δ=-= -* **ln ln x x x x x 则相对误差为 * * ** * * ln ln 1ln ln ln x x x x x x x x δ = -= - 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=, 已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2π=的绝对误差 限与相对误差限。(误差限的计算) 解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ 绝对误差限为 πππ252.051.02052)5,20(),(2=??+????≤-v r h v 相对误差限为 %420 1 20525) 5,20() 5,20(),(2 ==??≤ -ππv v r h v 6 设x 的相对误差为%a ,求n x y =的相对误差。(函数误差的计算) 解:%* *a x x x =-, )%(* **** *na x x x n x x x y y y n n n =-≤-= - 7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大(函数误差的计算)

清华大学高等数值计算(李津)实践题目二(SVD计算及图像压缩)(包含matlab代码)

第1部分 方法介绍 奇异值分解(SVD )定理: 设m n A R ?∈,则存在正交矩阵m m V R ?∈和n n U R ?∈,使得 T O A V U O O ∑??=?? ?? 其中12(,, ,)r diag σσσ∑=,而且120r σσσ≥≥≥>,(1,2, ,)i i r σ=称为A 的 奇异值,V 的第i 列称为A 的左奇异向量,U 的第i 列称为A 的右奇异向量。 注:不失一般性,可以假设m n ≥,(对于m n <的情况,可以先对A 转置,然后进行SVD 分解,最后对所得的SVD 分解式进行转置,就可以得到原来的SVD 分解式) 方法1:传统的SVD 算法 主要思想: 设()m n A R m n ?∈≥,先将A 二对角化,即构造正交矩阵1U 和1V 使得 110T B n U AV m n ?? =?? -?? 其中1200n n B δγγδ??? ???=?????? 然后,对三角矩阵T T B B =进行带Wilkinson 位移的对称QR 迭代得到:T B P BQ =。 当某个0i γ=时,B 具有形状12B O B O B ?? =? ??? ,此时可以将B 的奇异值问题分解为两个低阶二对角阵的奇异值分解问题;而当某个0i δ=时,可以适当选取'Given s 变换,使得第i 行元素全为零的二对角阵,因此,此时也可以将B 约化为两个低 阶二对角阵的奇异值分解问题。 在实际计算时,当i B δε∞≤或者() 1j j j γεδδ-≤+(这里ε是一个略大于机器精度的正数)时,就将i δ或者i γ视作零,就可以将B 分解为两个低阶二对角阵的奇异值分解问题。

相关文档