文档库 最新最全的文档下载
当前位置:文档库 › 椭圆类型题

椭圆类型题

椭圆类型题
椭圆类型题

类型一:椭圆的标准方程(说明:椭圆的标准方程有两个,因而要考虑两种情况.) 1、已知方程22

111x y k k

+=+-表示椭圆,则k 的取值范围是( )

A -1

B k>0

C k ≥0

D k>1或k<-1

2、求满足以下条件的椭圆的标准方程:长轴长为10,短轴长为6

类型二:椭圆的离心率

1、椭圆22

221(0)x y a b a b +=>>的左右焦点分别是F 1、F 2,过点F 1作x 轴的垂线交椭圆于P 点, 若∠F 1PF 2=60°,则椭圆的离心率为_________

2、已知正方形ABCD ,则以A 、B 为焦点,且过C 、D 两点的椭圆的的离心率为_______

3、 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.

4、已知椭圆1982

2=++y k x 的离心率2

1

=e ,求k 的值.

类型三:椭圆与直线

1.椭圆与直线的位置关系的判定: 例1.当m 为何值时,直线y x m =+与椭圆22

1169

x y

+=相交?相切?相离?

例2.如图,已知椭圆

22

14520

x y +=的焦点分别是1F 、2F ,过中心O 作直线与椭圆相交于A 、B 两点,若要使2ABF ?的面积是20,求该直线方程. (430x y ±=.)

说明:

2.弦长问题:

例3.求直线24y x =-被椭圆22

4199

x y +=所截得的弦长.

说明:

3.中点弦问题

例1.求以椭圆22

185

x y +=内的点(2,1)A -为中点的弦所在直线方程.

类型四:焦半径问题 P 是椭圆

2

22

2b

y a

x +

=1)0(>>b a 上一点,E 、F 是左、右焦点,e 是椭圆的离心率,则(1)P ex a PE +=||,

(2)P ex a PF -=||。

1、用于求椭圆离心率e 的取值范围 例1:已知)0,(),0,(21c F c F -为椭圆

2

22

2b

y a

x +

=1)0(>>b a 的焦点,若椭圆上恒存在点P ,使21PF PF ⊥,

求离心率e 的取值范围。

2、用于求焦半径的取值范围 例1:若),(00y x P 是椭圆115202

22

2=+y x 上的点,F 为椭圆的焦点,求|PF|的取值范围。

3、用于求两焦半径之积 例、若)0,(),0,(21c F c F -为椭圆

2

22

2b y a x +=1)0(>>b a 的左、右焦点,),(00y x P 为椭圆上任意一点,求

||||21PF PF ?的最值。

4、用于求点的坐标

例1、 若),(00y x P 为椭圆19

252

2=+y x 上的点,21,F F 为椭圆的焦点,且21PF PF ⊥,则P 的横坐标为

_________。

例2、已知椭圆

1342

2=+y

x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.

5、用于证明定值问题 已知),(111y x P ),(222y x P 为椭圆

2

22

2b y a x +=1)0(>>b a 上两点,)0,(0a P 为椭圆的顶点,F 为焦点,若

|P |||||201F F P F P 、、

成等差数列,求证:21x x +为定值。

类型五:椭圆的最值问题

(一)焦点三角形角度最值

1. 已知椭圆C :22

221(0)x y a b a b

+=>>两个焦点为12,F F ,如果曲线C 上存在一点Q ,使1

2FQ F Q ⊥,求椭圆离心率的最小值。

{

2

2} 2. 21F F 、为椭圆()0122

22>>=+b a b

y a x 的左、右焦点,如果椭圆上存在点P ,使?=∠9021PF F

求离心率e 的取值范围。 {???

?

?

??122,} 3. 若B A ,为椭圆)0(12222>>=+b a b

y a x 的长轴两端点,Q 为椭圆上一点,使0

120=∠AQB ,求

此椭圆离心率的最小值。 {

13

6

<≤e }

(二)一动点两定点最值 1. 若椭圆

13

4

22=+

y x 内有一点()1,1P ,F 为右焦点,椭圆上的点M 使得||2||MF MP +的值最

小,则点M 的坐标为

3

2. 已知112

16,)3,2(2

2=+-y x F A 是

的右焦点,点M 为椭圆的动点,求MF MA 2+的最小值,并求出此时点M 的坐标。

3、 定点(2, 1)A ,1F 为椭圆22

:

12516

x y C +=的左焦点,点P 为C 上,则13||5||PA PF +的最小值

4、 P(-2,3),F 2为椭圆116

252

2=+y x 的右焦点,点M 在椭圆上移动,求︱MP ︱+︱MF 2︱的最值

最大值12,最小值8

5、 P(-2,6),F 2为椭圆116

252

2=+y x 的右焦点,点M 在椭圆上,求︱MP ︱+︱MF 2︱最值。

最大值10+37,最

小值61 (一)

点到线最值---------参数法

1、求椭圆14

22

=+y x 上点M(x,y)到直线l :x+2y=4的距离的最值。 {5

10254+,5

10254-}

2. 椭圆2

2

7428x y +=上的点到直线:32160l x y --=的距离最短. 1013

24

3. 椭圆22

1164

x y +=

上的点到直线20x y +=的最大距离及相应坐标. 10

)2,22(--

(二)面积最值(组合式)---------参数法

1. 椭圆1222

=+y x 的内接矩形面积的最大值. 22 2. 点P 在椭圆

22

12516

x y +=上运动,则x y ?的最大值。 10 3. 椭圆122

22=+b

y a x 与x 轴、y 轴正方向相交于A 、B 两点,在椭圆的劣弧AB (第一象限内)上取一

点C ,使四边形OACB 的面积最大,求最大面积。

4.设(,)P x y 是椭圆

22

16436

x y +=上一点,那么22x y -的最大值是 .22x y +的最大值是 最小值是 。 20, 36, 64 (三)

分式最值---------斜率法

1、 若点(,)x y 在椭圆2

2

44x y +=上,求

1

2y x --最大值为_____ _,最小值为___ __.3132+,3

132- 2、若点(,)x y 在椭圆11422=+y x 上,求3

-x y

最大值为_____ _,最小值为___ __. 0 (四)

点到点最值---------二次函数法

1、 求定点A(2,0)到椭圆19

162

2=+y x )上的点之间的最短距离。 2

结论:椭圆122

22=+b

y a x 上的点M(x,y)到定点A(m,0)或B(0,n)距离的最值问题,可以用两点间距离

公式表示︱MA ︱或︱MB ︱,通过动点在椭圆上消去y 或x,转化为二次函数求最值,注意自变量的取值范围。

椭圆典型题型归纳(供参考)

椭圆典型题型归纳 题型一. 定义及其应用 例1.已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程; 练习: 1.6=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 2.10=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 4.1m =+表示椭圆,则m 的取值范围是 5.过椭圆22941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的 另一个焦点2F 构成的2ABF ?的周长等于 ; 6.设圆22 (1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ; 题型二. 椭圆的方程 (一)由方程研究曲线 例1.方程22 11625 x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹; (二)分情况求椭圆的方程 例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程; (三)用待定系数法求方程 例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程; 例4.求经过点(2,3)-且与椭圆22 9436x y +=有共同焦点的椭圆方程; 注:一般地,与椭圆22221x y a b +=共焦点的椭圆可设其方程为22 2221()x y k b a k b k +=>-++; (四)定义法求轨迹方程; 例5.在ABC ?中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C -,求满足b a c >>

(完整版)椭圆常见题型总结

椭圆常见题型总结 1、椭圆中的焦点三角形:通常结合定义、正弦定理、余弦定理、勾股定理来解决; 椭圆 22 2 21(0)x y a b a b +=>>上一点00(,)P x y 和焦点1(,0)c F -,2(,0)c F 为顶点的12PF F ?中,12F PF α=∠,则当P 为短轴端点时α最大,且 ① 122PF PF a +=; ②22 2 12122cos 4c PF PF PF PF α=+-; ③12 121 sin 2PF F S PF PF α?= =2tan 2 b α?(b 短轴长) 2、直线与椭圆的位置关系:直线y kx b =+与椭圆22 221(0)x y a b a b +=>>交于 1122(,),(,)A x y B x y 两点,则12AB x =-=3、椭圆的中点弦:设1122(,),(,)A x y B x y 是椭圆22 221(0)x y a b a b +=>>上不同两点, 00(,)M x y 是线段AB 的中点,可运用点差法可得直线AB 斜率,且20 20 AB b x k a y =-; 4、椭圆的离心率 范围:01e <<,e 越大,椭圆就越扁。 求椭圆离心率时注意运用:c a e = ,222c b a += 5、椭圆的焦半径 若00(,)P x y 是离心率为e 的椭圆22 221(0)x y a b a b +=>>上任一点,焦点 为1(,0)c F -,2(,0)c F ,则焦半径10PF a ex =+,10PF a ex =-; 6、椭圆标准方程的求法 ⑴定义法:根据椭圆定义,确定2 a ,2 b 值,结合焦点位置直接写出椭圆方程; ⑵待定系数法:根据焦点位置设出相应标准方程,根据题中条件解出2 a ,2 b ,从而求出标准方程; ⑶在不知道焦点的情况下可设椭圆方程为221Ax By +=;

椭圆知识点及经典例题

椭圆知识点 知识要点小结: 知识点一:椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的标准方程 1.当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中2 22b a c -= 2.当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中2 22b a c -=; 3.椭圆的参数方程)(sin cos 为参数?? ? ?? ?==b y a x 注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和2 2 2 b a c -=; 3.椭圆的焦点总在长轴上. 当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质 椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、 或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆122 22=+b y a x 是以x 轴、y 轴为对称轴 的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

椭圆题型总结(较难)

椭圆题型总结 一、焦点三角形 1. 设F 1、F2是椭圆12 322 =+y x 的左、右焦点,弦AB 过F 2,求1ABF △的面积的最大值。 (法一)解:如图,设2(0)xF B ααπ∠=<<,22||||AF m BF n ==,, 根据椭圆的定义 ,1||AF m = ,1||BF n =,又12||2F F =,在ΔAF 2F 1和ΔBF 2F 1中应用余弦定理,得 22 22)44cos )44cos m m m n n n αα ?=+-??=++??, ∴m = ,n =∴1 1211 ||||2()sin 22 F AB B A S F F y y m n α?=?-=??+ α= =令sin t α=,所以01t <≤,∴2 1()22t g t t t t = =++在(01],上是增函数 ∴当1t =,即2 πα= 时,max 1()3 g t =,故1ABF △ (法二)解:设AB :x=my+1,与椭圆2x 2+3y 2=6联立,消x 得 (2m 2+3)y 2+4my-4=0 ?∵?AB 过椭圆内定点F2,∴?Δ恒大于0.设A(x 1,y 1),B(x2,y 2),则 ?Δ=48(m2+1) 1ABF S ?=|y 1-y 2| = = 令 t =m 2+1≥1,m 2=t-1, 则1ABF S ?? = ∈[1,+∞) f(t)=144t t ++在t∈[1,+∞)上单调递增,且f(t)∈[9,+∞) ∴?t =1即m=0时,ΔABF 1 注意:上述AB 的设法:x =my+1,方程中的m相当于直线AB 的斜率的倒数,但又包含斜率不存在的情况,即m=0的时候。在直线斜率不等于零时都可以这样设,往往可使消元过程简单化,而且避免了讨论。

椭圆练习题(经典归纳)

初步圆锥曲线 感受:已知圆O 以坐标原点为圆心且过点1 3, 22?? ? ??? ,,M N 为平面上关于原点对称的两点,已知N 的坐标为30,3? ? - ? ??? ,过N 作直线交圆于,A B 两点 (1)求圆O 的方程; (2)求ABM ?面积的取值范围 二. 曲线方程和方程曲线 (1)曲线上点的坐标都是方程的解; (2)方程的解为坐标的点都在曲线上. 三. 轨迹方程 例题:教材P .37 A 组.T3 T4 B 组 T2 练习1.设一动点P 到直线:3l x =的距离到它到点()1,0A 的距离之比为3 3 ,则动点P 的轨迹方程是____ 练习2.已知两定点的坐标分别为()()1,0,2,0A B -,动点满足条件2MBA MAB ∠=∠,则动点M 的轨迹方程为___________ 总结:求点轨迹方程的步骤: (1)建立直角坐标系 (2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示) (3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 四. 设直线方程 设直线方程:若直线方程未给出,应先假设. (1)若已知直线过点00(,)x y ,则假设方程为00()y y k x x -=-; (2)若已知直线恒过y 轴上一点()t ,0,则假设方程为t kx y +=; (3)若仅仅知道是直线,则假设方程为b kx y += 【注】以上三种假设方式都要注意斜率是否存在的讨论;

(4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设 直线为x my t =+。【反斜截式,1 m k = 】不含垂直于y 轴的情况(水平线) 例题:圆C 的方程为:.0222=-+y x (1)若直线过点)(4,0且与圆C 相交于A,B 两点,且2=AB ,求直线方程. (2)若直线过点)(3,1且与圆C 相切,求直线方程. (3)若直线过点) (0,4且与圆C 相切,求直线方程. 附加:4)4(3:22=-+-y x C )(. 若直线过点)(0,1且与圆C 相交于P 、Q 两点,求CPQ S ?最大时的直线方程. 椭 圆 1、椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离c 2叫椭圆的焦距。若M 为椭圆上任意一点,则有 21||||2MF MF a +=. 注意:212F F a >表示椭圆;212F F a =表示线段21F F ;212F F a <没有轨迹; 2、椭圆标准方程 椭圆方程为12 2 222=-+c a y a x ,设2 2c a b -=,则化为()012222>>=+b a b y a x 这就是焦点在x 轴上的椭圆的标准方程,这里焦点分别是1F ()0,c -,2F ()0,c ,且22c a b -=. 类比:写出焦点在y 轴上,中心在原点的椭圆的 标准方程()22 2210y x a b a b +=>>. 椭圆标准方程:22 221x y a b +=(0a b >>)(焦点在x 轴上) 或122 22=+b x a y (0a b >>)(焦点在y 轴上)。 注:(1)以上方程中,a b 的大小0a b >>,其中222b a c =-; (2)要分清焦点的位置,只要看2x 和2y 的分母的大小,“谁大焦点在谁上”

椭圆知识点归纳总结和经典例题

椭圆的基本知识 1.椭圆的定义:把平面与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 12 2=+b a (a > b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx2+ny2=1(m>0,n>0) 不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线 向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解: (相 关点法)设点M (x , y ),点P (x 0, y 0), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得 x 2 +(2y )2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b )、B 2(0, b )是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a . 短轴的长等于2b .a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2 , 即c 2=a 2-b 2 . 7.椭圆的几何性质:

椭圆常见题型总结

椭圆常见题型总结 1椭圆中的焦点三角形: 通常结合定义、正弦定理、余弦定理、勾股定理来解决; 0)上一点P(x 0, y 0)和焦点F i ( c,0) , F 2(C ,0)为顶点的 ① PF [ PF 2 2a ; 人任孑),B(X 2, y 2)两点,贝U AB| J i|x 1 x 2| J ik 2J (x 1 X 2)24x 1x 2 2 2 3、椭圆的中点弦: 设A(X i , yj, B(X 2,y 2)是椭圆 务% 1(a b 0)上不同两点, a b M(x °,y °)是线段AB 的中点,可运用 点差法可得直线 AB 斜率,且k AB 4、椭圆的离心率 求椭圆离心率时注意运用: e C , a 2 b 2 C 2 a 2 2 若P(x 0, y 0)是离心率为e 的椭圆^2 1(a a b 椭圆 x 2 y2 !(a b a b PF i F 2 中,F 1PF 2 ,则当P 为短轴端点时 最大,且 ②4C 2 2 PF i 2 PF 2 2 PF 1 PF 2 COS ③ S PF 1F 2 1 1|PF i |PF 2 sin 2 =b tan ( b 短轴长) 2 2、直线与椭圆的位置关系: 直线y 2 kx b 与椭圆笃 a 2 b 1(a b 0)交于 b 2X o ; ~2~ ; a y 。 范围:0 e 1, e 越大,椭圆就越扁。 5、椭圆的焦半径 b 0)上任一点,焦点

为 F i ( c,0) , F 2C O ),则焦半径 PF i a ex o , PR a ex o ; 6、椭圆标准方程的求法 ⑴定义法:根据椭圆定义,确定 a 2, b 2值,结合焦点位置直接写出椭圆方程; ⑵待定系数法:根据焦点位置设出相应标准方程,根据题中条件解出 准方程; ⑶在不知道焦点的情况下可设椭圆方程为 Ax 2 By 2 1; 椭圆方程的常见题型 2 x 2、已知x 轴上一定点 A (1,0),Q 为椭圆 y 2 1上的动点,贝U AQ 中点M 的轨迹方程 4 的轨迹方程是( ) 2 x 2 “ C y 1 4 6、设一动点P 到直线x 3的距离与它到点 A (1,0)的距离之比为-.3,则动点P 的轨迹方 2 2 a , b ,从而求出标 1、点P 到定点F (4,0)的距离和它到定直线 10的距离之比为 1:2,则点P 的轨迹方程 3、平面内一点 M 到两定点F 2(0, 5)、F 2(0,5)的距离之和为 10,则M 的轨迹为( A 椭圆 B 圆 4、经过点(2, 3)且与椭圆9x 2 4y 2 2 2 2 2 A 乞匕1 B x L 1 15 10 10 15 C 直线 D 线段 36有共冋焦点的椭圆为 ( ) 2 2 2 2 C0匕1 x D — 工1 5 10 10 5 2 2 5、已知圆x y 1,从这个圆上任意一点 P 向y 轴做垂线段 PR ,则线段PR 的中点M A 4x 2 y 2 1 B x 2 4y 2 1

直线与椭圆经典例题

【直线与椭圆】典例精讲 已知直线:1l y kx =+与椭圆2 2 :14y C x +=相交于两点,A B . (1)若AB 的中点的横坐标等于 14,求k 的值; (2)若AB 的中点在直线14x = 上,求k 的值; (3)若AB 的中点在直线12y = 上,求k 的值; (4)若AB 的中点的横坐标大于 15 ,求k 的取值范围;

(5)求AB 的中点横坐标的取值范围; (6)求A B x x 的取值范围; (7)若AB 的中点在圆2212 x y +=上,求k 的值; (8)若AB 的中点与短轴右顶点的连线斜率为1-,求k 的值;

(9)若0OA OB =,求k 的值; (10)设点(2,0)N ,若0NA NB =,求k 的值; (11)设点(2,0)N ,若ABN 为直角三角形,是否与(13)同解,为什么?

(12)设1(,0)2 P ,若PA PB =,求k 的值; (13)设过AB 的中点且与l 垂直的直线为m ,求直线m 与x 轴交点横坐标的取值范围; (14)设直线l 与y 轴交于点M ,若2AM MB =,求k 的值;

(15)若AB 求k的值; (16)求OAB面积的最大值及此时k的值;

1. 如图,,A B 是椭圆2 2:13 x W y +=的两个顶点,过点A 的直线与椭圆W 交于另一点C . (Ⅰ)当AC 的斜率为3 1时,求线段AC 的长; (Ⅱ)设D 是AC 的中点,且以AB 为直径的圆恰过点D . 求直线AC 的斜率. 2. 已知直线:l y x n =+与椭圆:G 22(3)(3)m x my m m -+=-交于两点,B C . (Ⅰ)若椭圆G 的焦点在y 轴上,求m 的取值范围; (Ⅱ)若(0,1)A 在椭圆上,且以BC 为直径的圆过点A ,求直线l 的方程. 3. 已知椭圆)0(12222>>=+b a b y a x 的长轴长为22,离心率22=e ,过右焦点F 的直线l 交椭圆于P ,Q 两点。(Ⅰ)求椭圆的方程;(Ⅱ)当直线l 的斜率为1时,求△POQ 的面积;(Ⅲ)若以OP ,OQ 为邻边的平行四边形是矩形,求满足该条件的直线l 的方程。 x y O A B C D

椭圆常考题型汇总及练习进步

椭圆常考题型汇总及练习 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数 ()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距 ()c 2. 椭圆的几何性质:以 ()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用 于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e =,()10,0<<∴>>e c a Θ (2)22F OB Rt ?, 2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且 22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -= 越小, 椭圆越扁;当e 接近于0时,c 越接近于0,从而2 2c a b -=越大,椭圆越接近圆。

椭圆经典例题分类汇总

椭圆经典例题分类汇总 1.椭圆第一定义的应用 例1椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02, A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+y x ; (2)当()02, A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 例2已知椭圆19822=++y k x 的离心率2 1=e ,求k 的值. 分析:分两种情况进行讨论. 解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由2 1= e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12. 由21= e ,得4191=-k ,即4 5-=k . ∴满足条件的4=k 或45-=k . 说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论. 例3 已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 解:由?? ???-≠-<-<-,35,03,05k k k k 得53<>b a 这个条件,当b a =时,并不表示椭圆.

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的 焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

特别解析:椭圆经典例题分类

特别解析:椭圆经典例题分类 题型一 .椭圆定义的应用 例1 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02, A 为长轴端点时,2=a ,1=b ,椭圆的标准方程为:1142 2=+y x ; (2)当()02, A 为短轴端点时,2=b ,4=a ,椭圆的标准方程为:116 42 2=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 例2 已知椭圆 19822=++y k x 的离心率2 1 =e ,求k 的值. 分析:分两种情况进行讨论. 解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12 -=k c .由2 1 =e ,得4=k . 当椭圆的焦点在y 轴上时,92 =a ,82 +=k b ,得k c -=12 . 由21= e ,得4191=-k ,即4 5-=k . ∴满足条件的4=k 或4 5 -=k . 说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论. 例3 已知方程 1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 解:由?? ? ??-≠-<-<-,35,03,05k k k k 得53<>b a 这个条件,当b a =时,并不表示椭圆. 例4 已知1cos sin 2 2 =-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.

高中数学椭圆题型完美归纳(经典)

椭圆题型归纳 一、知识总结 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形, 可设方程为221(0,0)mx ny m n +=>>不必考虑焦点位置,求出方程。 3.范围. 椭圆位于直线x =±a 和y =±b 围成的矩形里.|x|≤a ,|y|≤b . 4.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 5.顶点 椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ). 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴.。 长轴的长等于2a . 短轴的长等于2b .

|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2,即c 2=a 2-b 2. 6.离心率 7.椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8.椭圆22 221x y a b +=(a >b >0)的焦半径公式10||MF a ex =+,20 ||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ). 9.AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2 OM AB b k k a ?=-,即0 2 02y a x b K AB -=。 )10(<<= e a c e

椭圆综合专题整理(供参考)

椭 圆专题总结 一、直线与椭圆问题的常规解题方法: 1.设直线与方程; (提醒:①设直线时分斜率存在与不-存在;②设为y=kx+b 与x=my+n 的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组; 4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型: ①“以弦AB 为直径的圆过点0”(提醒:需讨论K 是否存在) ②“点在圆内、圆上、圆外问题” ?“直角、锐角、钝角问题” ?“向量的数量积大于、等于、小于0问题” ?12120x x y y +>>0; ③“等角、角平分、角互补问题” ?斜率关系(120K K +=或12K K =); ④“共线问题” (如:AQ QB λ= ?数的角度:坐标表示法;形的角度:距离转化法); (如:A 、O 、B 三点共线?直线OA 与OB 斜率相等); ⑤“点、线对称问题” ?坐标与斜率关系; ⑥“弦长、面积问题”?转化为坐标与弦长公式问题(提醒:注意两个面积公式 的 合理选择); 6.化简与计算; 7.细节问题不忽略;

①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无 关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求 出定点;⑵也可先取参数的特殊值探求定点,然后给出证明, 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、 三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性, 关键是积累“转化”的经验; 椭圆中的定值、定点问题 一、常见基本题型: 在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的。 (1)直线恒过定点问题 1、已知点00(,)P x y 是椭圆2 2:12 x E y +=上任意一点,直线l 的方程为0012 x x y y +=,直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。

高中数学椭圆经典例题(学生 +老师)

(教师版)椭圆标准方程典型例题 例1已知椭圆的一个焦点为(0,2)求的值. 分析:把椭圆的方程化为标准方程,由,根据关系可求出的值.解:方程变形为.因为焦点在轴上,所以,解得. 又,所以,适合.故. 例2已知椭圆的中心在原点,且经过点,,求椭圆的标准方程.分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法, 求出参数和(或和)的值,即可求得椭圆的标准方程.解:当焦点在轴上时,设其方程为. 由椭圆过点,知.又,代入得,,故椭圆的方程为. 当焦点在轴上时,设其方程为. 由椭圆过点,知.又,联立解得,,故椭圆的方程为. 例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹. 分析:(1)由已知可得,再利用椭圆定义求解. (2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程. 解:(1)以所在的直线为轴,中点为原点建立直角坐标系.设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点.因,,有, 故其方程为. (2)设,,则.① 由题意有代入①,得的轨迹方程为,其轨迹是椭圆(除去轴上两点). 例4已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 解:设两焦点为、,且,.从椭圆定义知.即. 从知垂直焦点所在的对称轴,所以在中,, 可求出,,从而. ∴所求椭圆方程为或.

例5已知椭圆方程,长轴端点为,,焦点为,,是椭圆上一点,,.求:的面积(用、、表示). 分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积.解:如图,设,由椭圆的对称性,不妨设在第一象限. 由余弦定理知: ·.① 由椭圆定义知:②,则得. 故. 例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程. 分析:关键是根据题意,列出点P满足的关系式. 解:如图所示,设动圆和定圆内切于点.动点到两定点, 即定点和定圆圆心距离之和恰好等于定圆半径, 即.∴点的轨迹是以,为两焦点, 半长轴为4,半短轴长为的椭圆的方程:. 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标

椭圆与双曲线常见题型总结(附答案)

椭圆与双曲线常见题型总结(附答案)

椭圆与双曲线常见题型归纳 题型一:弦的垂直平分线问题 弦的垂直平分线问题和对称问题是一种解题思维,首先弄清楚哪个是弦,哪个是对称轴,用到的知识是:垂直(两直线的斜率之积为-1)和平分(中点坐标公式)。 例题1、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点, 在x 轴上是否存在一点E(0 x ,0),使得ABE ?是等边三角形,若存在,求出0 x ;若不存在,请说明理由。 分析:过点T(-1,0)的直线和曲线N :2 y x =相交A 、B 两点, 则直线的斜率存在且不等于0,可以设直线的方程,联立方程组,消元,分析类一元二次方程,看判别式,运用韦达定理,得弦的中点坐标,再由垂直和中点,写出垂直平分线的方程,得出E 3 倍。运用弦长公式求弦长。 解:依题意知,直线的斜率存在,且不等于0。设直线:(1)l y k x =+, k ≠,1 1 (,)A x y ,2 2 (,)B x y 。 由2 (1) y k x y x =+?? =? 消y 整理,得2 2 22(21)0 k x k x k +-+= ① 由直线和抛物线交于两点,得2 242(21)4410 k k k ?=--=-+>即2 104 k << ② 由韦达定理,得: 2122 21 ,k x x k -+=-121 x x =。则线段AB 的中点为

22 211(,)22k k k --。 线段的垂直平分线方程为:2 2 1112()22k y x k k k --=-- 令y=0,得0 211 22x k = -,则2 1 1 (,0)22E k -ABE ?Q 为正三角形,∴2 1 1(,0)22 E k -到 直线AB 的距离d 为 32 AB 。 2 2 1212()()AB x x y y =-+-Q 22141k k -= +g 212k d k +=222 23141122k k k k k -+∴+=g 解得39 13 k =± 满足②式此时0 53 x = 。 思维规律:直线过定点设直线的斜率k ,利用韦达定理法,将弦的中点用k 表示出来,再利用垂直关系将弦的垂直平分线方程写出来,求出了横截距的坐标;再利用正三角形的性质:高是边长的 3倍,将k 确定,进而求出0 x 的坐标。 例题2、已知椭圆 12 22 =+y x 的左焦点为F ,O 为坐标原点。 (Ⅰ)求过点O 、F ,并且与2x =-相切的圆的方程; (Ⅱ)设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围。

椭圆练习题(经典归纳)

椭圆练习题(经典归纳)标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

初步圆锥曲线 感受:已知圆O 以坐标原点为圆心且过点12? ?? ,,M N 为平面上关于原点对称的两点,已知N 的坐 标为0,? ?? ,过N 作直线交圆于,A B 两点 (1)求圆O 的方程; (2)求ABM ?面积的取值范围 二. 曲线方程和方程曲线 (1)曲线上点的坐标都是方程的解; (2)方程的解为坐标的点都在曲线上. 三. 轨迹方程 例题:教材 A 组.T3 T4 B 组 T2 练习1.设一动点P 到直线:3l x =的距离到它到点()1,0A 的距离之比为3 ,则动点P 的轨迹方程是____ 练习2.已知两定点的坐标分别为()()1,0,2,0A B -,动点满足条件2MBA MAB ∠=∠,则动点M 的轨迹方程为___________ 总结:求点轨迹方程的步骤: (1)建立直角坐标系 (2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示) (3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 四. 设直线方程 设直线方程:若直线方程未给出,应先假设. (1)若已知直线过点00(,)x y ,则假设方程为00()y y k x x ; (2)若已知直线恒过y 轴上一点()t ,0,则假设方程为t kx y +=; (3)若仅仅知道是直线,则假设方程为b kx y += 【注】以上三种假设方式都要注意斜率是否存在的讨论; (4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设

椭圆经典例题答案版

椭圆标准方程典型例题 例1 已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值. 分析:把椭圆的方程化为标准方程,由2=c ,根据关系2 2 2 c b a +=可求出m 的值. 解:方程变形为 1262 2=+m y x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2 262=-m ,5=m 适合.故5=m . 例2 已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程. 分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法, 求出参数a 和b (或2 a 和2 b )的值,即可求得椭圆的标准方程. 解:当焦点在x 轴上时,设其方程为()0122 22>>=+b a b y a x . 由椭圆过点()03,P ,知10922=+b a .又b a 3=,代入得12=b ,92 =a ,故椭圆的方程为19 22=+y x . 当焦点在y 轴上时,设其方程为()0122 22>>=+b a b x a y . 由椭圆过点()03,P ,知10922=+b a .又b a 3=,联立解得812=a ,92 =b ,故椭圆的方程为19 8122=+ x y . 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 分析:(1)由已知可得20=+GB GC ,再利用椭圆定义求解. (2)由G 的轨迹方程G 、A 坐标的关系,利用代入法求A 的轨迹方程. 解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC , 知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b , 故其方程为 ()0136 1002 2≠=+y y x . (2)设()y x A ,,()y x G '',,则 ()0136 1002 2≠'='+'y y x . ① 由题意有??? ????='='33 y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).

2014年高考椭圆综合题做题技巧与方法总结

2014年高考椭圆综合题做题技巧与方法总结 知识点梳理: 1. 椭圆定义: (1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点. 当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在; 当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<>=+b a b y a x )0(12 22 2>>=+b a b x a y 性 质 参数关系 222c b a += 焦点 )0,(),0,(c c - ),0(),,0(c c - 焦距 c 2 范围 b y a x ≤≤||,|| b x a y ≤≤||,|| 顶点 ),0(),,0(),0,(),0,(b b a a -- )0,(),0,(),,0(),,0(b b a a -- 对称性 关于x 轴、y 轴和原点对称 离心率 )1,0(∈=a c e

准线 c a x 2 ±= c a y 2 ±= 考点1 椭圆定义及标准方程 题型1:椭圆定义的运用 [例1 ] 椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 A .4a B .2(a -c) C .2(a+c) D .以上答案均有可能 [解析]按小球的运行路径分三种情况: (1)A C A --,此时小球经过的路程为2(a -c); (2)A B D B A ----, 此时小球经过的路程为2(a+c); (3)A Q B P A ----此时小球经过的路程为4a,故选D 总结:考虑小球的运行路径要全面 练习 1.短轴长为5,离心率3 2 = e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A.3 B.6 C.12 D.24 [解析]C. 长半轴a=3,△ABF 2的周长为4a=12 2.已知P 为椭圆22 12516 x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆 22(3)4x y -+=上的点,则PM PN +的最小值为( ) A . 5 B . 7 C .13 D . 15 [解析]B. 两圆心C 、D 恰为椭圆的焦点,10||||=+∴ PD PC ,PM PN +的最小值为10-1-2=7 题型2 求椭圆的标准方程 [例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程. 【解题思路】将题中所给条件用关于参数c b a ,,的式子“描述”出来 [解析]设椭圆的方程为122 22=+b y a x 或)0(12222>>=+b a a y b x , O x y D P A B C Q

相关文档
相关文档 最新文档