文档库 最新最全的文档下载
当前位置:文档库 › gamesa G87 2mw

gamesa G87 2mw

gamesa G87 2mw
gamesa G87 2mw

G87-2.0 MW Maximum output at

minimum cost per kWh

for medium and

low wind sites

Advantages

s Optimum price-quality ratio provided by Gamesa’s

vertically integrated supply structure

s State-of-the-art blade manufacturing technology

using carbon fibre and pre-preg technology for a

lighter rotor design

s IEC IIA/WZII classes with the largest swept area

s Exceptional service facility through an independent

drive train

s Reduced sound level for standard power level and

different low-noise level versions

s Gamesa Technology with a proven track-record in

complex terrains: active yaw, optimised control,

fast pitch dynamics

1816

17

1413

1098

1

23

4

5

19

6

7

11

12

15

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

1.Wind-turbine description

The Gamesa Eólica s G87 2.0 MW wind-turbine is a three bladed, upwind, pi t ch regulated and active yaw wind-turbine. It has a rotor diameter of87m and uses the control system concept that enables the wind-turbine to operate in a broad range of variation of rotor speed.

The rotor has three-blades with full span control,pitch bearings and the nodular cast iron hub.

The blades are42,5m span and are made of carbon and glass fibre reinforced epoxy using the pre-preg moulding technology.Each blade consists of two blade shells,bonded to a supporting beam.Special steel inserts connect the blade to the blade bearing. This bearing is a 4 point ball type bolted to the hub.

The rotor pitch is variable.This feature provides fine adjustment of the blade-operating angle at all times with respect to power production and noise emission.

At high wind speeds the control system and the pitch system keep the power output at its nominal value,independently of air temperature and air density.At lower wind speeds the variable pitch system and the control system maximise the power output by choosing the combination of rotor speed and pitch angle which give maximum power coefficient.

The main shaft transmits the power to the generator through the gearbox.The gearbox is a3-combined-stages,one planetary and two helical parallel shafts,gearbox.From it the power is transmitted via a flexible coupling to the generator.

The generator is a high effi c iency 4 pol e doubl y fed generator with wound rotor and slip rings.

The wind-turbine primary brake is given by full feathering the blades.The individual pitch system gives a triple redundant safety system.The mechanical brake is a parking disc brake system hydraulically activated and mounted on the gearbox high-speed shaft.

All functions of the wind turbine are monitored and controlled by several microprocessor based control units.The controller system is placed in the nacelle.Blade pitch angle variation is regulated by a hydraulic system actuator which enables the blade to rotate95o.This system also supplies pressure to the brake system and to the yaw retention brake system.

The yaw system consists of four gears electrically operated and controlled by the wind turbine controller based on information received from the ultra-sonic anemometers mounted on top of the nacelle.The yaw gears rotate the yaw pinions,which mesh with a large toothed yaw ring mounted on the top of the tower.The yaw bearing is a plain bearing system with hydraulic and mechanical devices to provide retention torque.

The nacelle cover-made of glass fibre reinforced polyester-protects all the components inside against rain,snow,dust, sun,etc.Access to the nacelle from the tower is through a central opening.The nacelle houses the internal800kg service crane,which can be enlarged to hoist the main components(8000kg).

The steel tubular tower is delivered painted(see Section4.13for more details).GAMESA EOLICA,S.A.offers a service lift in the tubular tower.

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

1.1Control system

The control system ensures that both the rotor speed and the drive torque of the wind turbine always transform into a steady and stable electric power eventually injected into the grid.This control system also obtains a unitary power factor to the grid.

The control system consists of an effective asynchronous generator with wound rotor,slip rings,two4-quadrant converters with IGBT switches,contactors and protection.Because the way this generator is controlled it is seen from the grid(i.e.,from the stator)as a synchronous generator.

The generator is protected against short-circuits and overloading.The temperatures are also continuously monitored by PT100 s in stator hotspot points and bearings.

The generator in the control system is a special asynchronous generator which is able to run with variable speed and simultaneously keep the power constant.This feature is achieved by control of the rotor currents.By means of controlling of the these currents,the power factor can be viewed as a configurable parameter of the control system.As a result the losses in the electrical grid decrease.

Another result of the synchronous generation that characterize s the control system is the soft connection to the grid which means a smooth connection/disconnection to grid.

Wind-turbine G87 2.0 MW operates with a variable generator speed range of 900~1900 rpm for 50Hz (1080~2280 rpm for60Hz).The control system has built in flexibility regarding energy optimisation,low noise during operation and reduction in loads on gearbox and other components.

1.2Type approval

The desi g n assessment of the G87 2.0 MW wi n d turbine is currentl y being carried out according to the IEC 61400 1, Ed.2,Standard as Class II A(67m and78m).

1.3Climatic conditions

The wind turbine is designed for ambient temperatures ranging from 20o C to +30o C. Speci a l precautions must be taken outside these temperatures(see section1.5general reservations).

The wind turbines should be placed in wind farms with a distance of at least5rotor diameters(435m)between each other measured along the predominant wind direction.If wind turbines are placed along a row,perpendicularly to the predominant wind direction,the distance between them should be of at least3rotor diameters(261m).

The relative humidity can be100%(10%of time maximum).Corrosion protection for corrosion class C4or C5-M (outside)and C3(inside)are provided according to ISO12944-2.

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

1.4Grid connection

The wind turbines must be connected to medium-voltage grid at10~33kV.The standard wind turbines is connected to a

20kV grid,other voltage levels inside the indicated range can be developed when asked by the customer.The

maximum voltage of the equipment is36kV(Um).The MV-cable connection is made in the bottom of the tower.

The transformer in the turbine must be adjusted to the grid voltage.When ordering GAMESA EóLICA S.A.will need

precise information about grid voltage,as to chooce the tr ansformer s nominal voltage as well as the type of winding

connection.GAMESA EóLICA,S.A.offers the switch gear as an option.

The wind-turbine may generate reactive energy(see section3.14).Nevertheless,in some occasions,the wind-turbine

will limit the reactive power so as to preserve its operation.

The voltage of the medium voltage grid shall be within the range±5%.Variations within+1/-3Hz(for50and60Hz)are

acceptable.Intermittent or rapid grid frequency fluctuations may cause serious damage to the turbine.

Grid dropouts must,as an average over the entire lifetime of the wind-turbine,only take place once a week.

A ground connection of maximum10must be present.

The earthing system must be accommodated to local soil conditions.The resistance to neutral earth must be according

to the requirements of the local authorities.

1.5General reservations

Regarding heavy icing up,interruptions in operation may be expected.In certain combinations of high wind speeds,high

temperature,low air temperature,low air density and/or low voltage,power derating may happen to ensure that the thermal conditions of the main components such as gearbox,generator,transformer,power cables,etc,are kept within

limits.

It is generally recommended that the grid voltage is as close to nominal as possible.In case of grid dropout and very low

temperatures,a certain time for heating must be expected before the wind turbine can start to operate.

If the terrain within a100m radius of the turbine has a slope of more than10o,particular considerations may be

necessary.

If the wind-turbine is placed in more that1000m above the sea level,a higher temperature rise than usual might occur in

the generator,transformer and other electrical components.In this case a periodic reduction of rated power might occur,

even if the ambient temperature is within the specified limits.Furthermore,also at sites in more than1000m above sea

level,there will be an increased risk of icing-up.

Due to continuous updating of our products,GAMESA EOLICA,S.A reserves the right to change these specifications.

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

2.Wind-turbine elements

Figure1shows the location of the different elements in the nacelle of the G87 2.0MW wind-turbine.

Figure1Side section of G87-2.0MW rotor and nacelle

2.1Rotor

2.1.1General

The rotor of G87-2.0MW consists of three blades attached to a cast iron hub through the blade bearings.The blade coning is2oso that,the blade tip is kept away from the tower.

2.1.2Blades

The blades are42,5m span and a nominal weight of6200kg.Each blade is fitted with a anti-lightni n g system that receive lightning discharges by a receptor at the tip,and four more along the blade.The discharge is conducted via a copper cable through the blade to the hub.

The distance between the blade root and the centre of the hub is1m and,as a result,the diameter of the rotor is87m.

The blades are made of carbon fiber and glass fiber reinforced epoxy.Their manufacture is based on the pre-preg mouldi n g technology.The manufacturing method is automated by the combination of tape Placement and Tape Winding techniques.This assures that the required mechanical properties are obtained each time the process is repeated and improves the quality in relation to others technologi e s.

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

Each blade consists of two shells made separately-, bonded to a supporting internal spar. The rol e of this spar is to provide structural resistance to the whole system,bear the own blade loads and transmit the stresses to the hub.On the other hand,the shells have no structural mission but possess the adequate aero-dynamical shape to convert the kinetic energy of the wind into drive torque to generate electricity.

The internal spar is essentially a closed beam of tubular cross-section and its geometry is adapted to the aero-dynamic profile of the blade at each station.The carbon fiber is located in this spar.That means a higher stiffness with a less weight compared with glass fiber blades.The glass fiber blades are dimensioned by maximum deflection;in long blades this would mean an important increase in weight.The carbon fiber introduction let the blades be dimensioned by stress, optimizing the quantity of material.This fact,together with the important stiffness/weight relation compared to the glass fiber,reduces considerably the final weight of the blade and,consecuently,the loads of the rest of wind turbine components.

The carbon and glass fiber combination is an agreement between structural stiffness and cost.If the blade was all in carbon fiber,its cost would be very high.The hybrid blade design means the use of the most advanced technologies in the sector,not only in design but also in manufacture,with the result of an optimum quality/price relation blade.

The outer part(shells)is a sandwich-like construction formed by a PVC core and glass fibre-epoxy laminates.

The attachment of the blade to the blade bearing is bolted.This is attained by means of90steel threaded inserts embedded in the laminate of the blade root.

2.1.3Hub

The hub is spherical and manufactured in nodular cast iron.It is directly mounted on the main shaft and has a frontal opening for internal inspections.

2.1.4Nose cone

The hub and the blade bearings are entirely enclosed and protected from the outside environmental conditions by the nose cone.It is bolted on the front of the hub and supported by a welded steel tube structure.

2.1.5Blade bearings

The blade bearings fasten the blade with a rotating connection to the hub.The bearing is a double row4-point contact ball bearing with seals.It has smooth holes in the outer ring to connect to the hub and in the inner ring to connect to the blade.

2.2Pitch system

The pitch system is working all the times of operation of the wind turbine:(i)When the wind speed is below the rated one the pitch angle is chosen so the electrical power output is maximised for each wind speed;(ii)When the wind speed is above the rated one the pitch angle is adjusted to yield the rated power.

The pitch movement of the blade is a rotation around its longitudinal axis.This movement in G87-2.0MW wind-turbine is attained by an hydraulic system,which set the three blades at the same pitch angle every time by means of an independent cylinder for each blade.

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

2.3Main shaft

The main shaft transmits the drive torque from the rotor to the gearbox.The shaft is joined to the hub through a bolted flange and is supported by two bearings in cast main bearing houses.All loads,except the driving torque,are transmitted to the main frame through these supports.The main shaft is fixed to the low speed hollow shaft of the gearbox by an hydraulic shrink disc.

The main shaft is manufactured in forged alloy steel.In the centerhole of the hollow shaft there is room for the hoses for hydraulic oil and cables for pitch control system.

2.4Main frame

The machine main frame has been designed to result in a simple and robust foundation suitable for the nacelle components and machinery.It transmits the loads from these elements to the tower through the yaw bearing system. The nacelle main frame is divided in two parts:

(i)The front foundation is a cast piece where the supports of the main shaft and the yaw ring are fixed.

(ii)The rear frame is composed by two main beams joined both at their rear and front ends.This part has been designed as to support the generator(right),controller(left)and the transformer.Between them,the

nacelle floor allows both repair and maintenance tasks to be done.

2.5Nacelle cover

The nacelle housing is the cover for the protection of the mechanical components from the actions of the environment. This cover is manufactured in glass fibre reinforced polyester.Sufficient standing and working area is provided in the inner of the nacelle for service and maintenance work.

A hatch at the front of the cabin gives access to the inside of the nose cone and the hub.A hatch in the ground of the rear part of the nacelle cover can be opened to operate the service crane.A skylight hatch provides diurnal lighting and additional ventilation and enables easy access to the nacelle roof where the wind sensors and the lightning rods are placed.

High-speed and low-speed rotating parts are conveniently covered by protective screens providing adequate safety for maintenance personnel.

2.6Wind measurement

Outside the nacelle,in the rear part,two vertical mast support the ultra-sonic anemometers for measuring the wind speed and direction.

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

2.7Control system

The controller monitors and controls all functions in the G87wind-turbine to ensure that its performance is optimal at any wind speed.It continuously scans the si g nals from the sensors in the wind turbine so that as soon as an error is detected,the appropriate handling takes place.The controller will stop the turbine if the detected error requires so. There is a touch screen where operational data are displayed and which let the interction between user and wind turbine.The controller is designed as to allow remote monitoring and control in case these features are required.It is also supervised by the system watchdog so that,its correct operation is permanently guaranteed.

2.7.1Layout of the controller

The control system hardware is placed in three parts:

1. Nac elle c ontroller,located at the nacelle.

2. Gro und controller with a touch screen,located at the bottom of the tower.

3. Hu b controller,located at the rotating element of the wind-turbine(inside the hub).

The nac elle c ontroller is divided into three parts further:

1.Control section:dealing with tasks of the nacelle,i.e.wind monitori n g,pitch angle change,orientation,inside

temperature control.

2.Frequency converter:dealing with the power control,generator-grid connection/disconnection management.

3.Bars and protection section:dealing with the power output yield with the necessary el e ctrical protections.

2.7.2Control touch terminal

When an operator wants to look at operati o nal data from the turbine,or to start or stop the turbine,he can use the operating panel in the g ro und controller or connect a service panel to the n acel le co ntroller.Figure2shows different operating panel modes.

Figure2.Different operating panel modes

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

2.7.3Wind-turbine control

The rotational speed and the pitch angle of the wind-turbine are modified at every instant depending on the existing wind-speed.The control system chooses the adequate values of these variables.

Depending on the wind-speed4stages can be established:

1.Low wind,with the generator disconnected from the grid.

2.Medium wind,with the generator connected to the grid,but rated power is not accomplished.

3.High wind,the turbine produces rated power.

4.Very high wind(stop wind),the generator is disconnected and the wind-turbine stopped.

Low wind

When the wind-speed is below,but close to,the start-wind-speed,the pitch angle will be approximately set equal to45degrees.This situation will give a sufficiently high start moment to the rotor.

As the wind-speed increases the rotational speed-rotor and generator-also increases,and the pitch angle is shifted down to small angles by the controller until the conditions for generator connection are achieved.

Medium wind

For wind speeds above the start-wind-speed and below the rated-wind-speed the control system works out the most suitable rotor speed-within a certain range of available operating speeds-and pitch angle so that the electrical power yield is maximum for each wind speed.

High wind

When the wind-speed exceeds the rated wind speed,the wind kinetic energy is sufficient for the turbine to produce rated power,and the pitch angle is increased to regulate the power to its rated value.

Very high wind

If the wind-speed is greater than the stop value the generator is disconnected and the control system pitches the blades to full feathered position(~90o).Then,the system will wait until the wind-speed has decreased below the re-start wind-speed to re-start the power generation.

2.8Communication of transformer,control system and medium voltage switch gear

2.8.1Generator rotor supply

The power supply of the rotor of the generator is performed by means of an480V output of the main transformer.

2.8.2Generator cables characteristics

Stator:The generator stator and the power control board located in the nacelle are connected by means of DN-K 0.6/1kV3x240mm2cables which are designed according to the standard UNE21150.4cables(in parallel)are used to supply the stator.

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

Rotor:DN-K0.6/1kV3x70mm2cables are used.

The power control board and the transformer are connected by means of DN-K0.6/1kV1x240mm2cables.4cables in parallel are used for the stator and1for the rotor.

2.8.3Optical fibre

The optical fibre used for communications inside the turbine has a diameter of200~230m,4wires per cable.This fibre is protected against humidity and rodents action.

This fibre is used for the communication between the different processors or between these processors and the user that log in through an operating terminal.

The remote control uses fibre of diameter62,5~125m to communicate different wind-turbines.This fibre is also protected against humidity and rodents action.

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

3.Design parameters

3.1Wind conditions

The wind climate for a given site is normally specified by a Weibull distribution.The Weibull distribution is described by the scale factor A and the shape factor K.The A factor is proportional to the mean wind speed and the K factor defines the shape of the Weibull distribution for different wind speeds.Turbulence is the factor,which describes short-term wind variation/fluctuations.

The design conditions of G87-2.0MW are given below:

Table4 Design parameters of G87 2.0 MW wind-turbine.

Concept Value Units Comments

Class IEC II

A

IEC61400-1Ed.2 Annual mean wind speed8,5m/s Refered to hub height

Weibull shape parameter,k2

Turbulence intensity at15m/s,I1518

Reference wind10min.averaged42,5m/s50years recurrence time

Reference wind3sec.averaged59,5m/s50years recurrence time

Stop/restart wind speed25/20m/s-

The power curve(calculated for a turbulence of10%)together with the C p and C t curves and the annual production of G87 2.0 MW wi n d-turbine are i n cluded in the FT002404document.

3.2Wind condition assessment

The turbines can be placed under various climatic conditions:where the air density,the turbulence intensity,the mean wind speed and the shape factor k are the parameters to be considered.If the turbulence intensity is high the turbine loading increases and the turbine lifetime decreases.On the contrary,the loading will be reduced and the lifetime extended if the mean wind speed or the turbulence intensity,or both,are low.Therefore,the wind-turbines can be placed on sites with high turbulence intensity if the mean wind speed is appropriately low.The climatic conditions have to be examined if the prescribed is exceeded

The characteristic value of hub-height turbulence intensity,I15,at a min.average wind speed of15m/s is calculated by adding the measured standard deviation of the turbulence intensity to the measured or estimated mean value.

For complex terrain,the wind conditions shall be assessed from measurements made at the site.In addition, consideration shall be given to the effect of topography on the wind speed,wind profile,turbulence intensity and flow inclination at each turbine location.

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

4.Technical specifications

Figures3and4show the main dimensions of the G87 2.0MW nacelle-rotor conjunction.Detail of the internal distri b ution of the nacelle can be observed in Figure1.

Figure3Main dimensions of G87-2.0MW wi n d-turbine

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

R43500

42500

Figure4Main dimensions of G87-2.0MW rotor

The technical specifications of the different components of the G87 2.0MW wind-turbine are listed below: 4.1Nose cone

4.2Rotor

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

4.3Blades

4.4Blade bearing

Type4-point ball bearing,double row.

4.5Nacelle cover

4.6Rotor hub

4.7Main shaft

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

4.8Main shaft support

4.9Main shaft bearing

Type Spherical Roller Bearings 4.10Front main frame

4.11Yaw system

4.12Yaw gears

4.13Tower

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

(*)The exact hub height includes0,7m(distance from the foundation section to ground level)and1,7m(distance from top flange to hub).

Título: Title:Características y funcionamiento general del aerogenerador G87-2.0MW50/60Hz Characteristics and general operation of the G87-2.0MW50/60Hz Wind Turbine

4.14Gearbox

4.15Couplings

4.16Generator with control system

4.17Parking brake

电流互感器的基本参数(精)

正确地选择和配置电流互感器型号、参数, 将继电保护、自动装置和测量仪表等接入合适地次级,严格按技术规程与保护原理连接电流互感器二次回路,对继电保护等设备的正常运行, 确保电网安全意义重大。 1. 一次参数电流互感器的一次参 数主要有一次额定电压与一次额定电流。一次额定电压的选择主要是满足相应电网电压的要求,其绝缘水平能够承受电网电压长期运行, 并承受可能出现的雷电过 电压、操作过电压及异常运行方式下的电压, 如小接地电流方式下的单相接地(电 压上升倍。一次额定额定电流的考虑较为复杂,一般应满足以下要求:1 应大于所 在回路可能出现的最大负荷电流, 并考虑适当的负荷增长, 当最大负荷无法确定时, 可以取与断路器、隔离开关等设备的额定电流一致。 2 应能满足短时热稳定、动稳定电流的要求。一般情况下,电流互感器的一次额定电流越大,所能承受的短时热稳定和动稳定电流值也越大。 3 由于电流互感器的二次额定电流一般为标准的 5A 与 1A ,电流互感器的变比基本有一次电流额定电流的大小决定,所以在选择一次电流额定电流时要核算正常运行测量仪表要运行在误差最小范围,继电保护用次级又要满足 10%误差要求。 4 考虑到母差保护等使用电流互感器的需要,由同一母线引 出的各回路,电流互感器的变比尽量一致。 5 选取的电流互感器一次额定电流值应与国家标准 GBl208-1997推荐的一次电流标准值相一致。 2. 二次额定电流在 GB1208— 1997 中,规定标准的电流互感器二次电流为 1A 和 5A 。变电所电流互 感器的二次额定电流采用 5A 还是 1A ,主要决定于经济技术比较。在相同一次额定电流、相同额定输出容量的情况下,电流互感器二次电流采用 5A 时,其体积小,价格便宜,但电缆及接入同样阻抗的二次设备时,二次负载将是 1A 额定电流时的 25 倍。所以一般在 220kV 及以下电压等级变电所中, 220kV 回路数不多, 而 10~110kV 回路数较多,电缆长度较短时,电流互感器二次额定电流采用 5A 的。在 330kV 及以上电压等级变电所, 220kV 及以上回路数较多, 电流回路电缆较长时,电流互感器二次额定电流采用 1A 的。为了既满足测量、计量在正常使用的精度 及读数,又能满足故障大电流下继电保护装置的精工电流及电流互感器 10%误 差曲线要求, 二个回路常采用不同次级、不同变比。也可用中间抽头来选择不同变比。电流互感器的变比也是一个重要参数。当一次额定电流与二次额定电流确定后, 其变比即确定。电流互感器的额定变比等于一次额定电流比二次额定电流。 3.

电感主要参数介绍

电感主要参数介绍 除固定电感器和部分阻流圈为通用元件(只要规格相同,各种电子整机上均可使用)外,其余的均为电视机、收音机等专用元件。专用元件一般都是一个型号对应一种机型(代用除外),购买及使用时应以元件型号为主要依据,具体参数大都不需考虑,若需了解,可查相应产品手册或有关资料,这里不可能一一示例。下面谈谈固定电感器及阻流圈的主要参数及识别。 1.电感量L 电感量L也称作自感系数,是表示电感元件自感应能力的一种物理量。当通过一个线圈的磁通(即通过某一面积的磁力线数)发生变化时,线圈中便会产生电势,这是电磁感应现象。所产生的电势称感应电势,电势大小正比于磁通变化的速度和线圈匝数。当线圈中通过变化的电流时,线圈产生的磁通也要变化,磁通掠过线圈,线圈两端便产生感应电势,这便是自感应现象。自感电势的方向总是阻止电流变化的,犹如线圈具有惯性,这种电磁惯性的大小就用电感量L来表示。L 的大小与线圈匝数、尺寸和导磁材料均有关,采用硅钢片或铁氧体作线圈铁芯,可以较小的匝数得到较大的电感量。L的基本单位为H(亨),实际用得较多的单位为mH(毫亨)和IxH(微亨),三者的换算关系如下:1μH—103→1mH—103→1H。 2.感抗XL 感抗XL在电感元件参数表上一般查不到,但它与电感量、电感元件的分类品质因数Q等参数密切相关,在分析电路中也经常需要用到,故这里专门作些介绍。前已述及,由于电感线圈的自感电势总是阻止线圈中电流变化,故线圈对交流电有阻力作用,阻力大小就用感抗XL来表示。XL与线圈电感量L和交流电频率f成正比,计算公式为:XL (Ω)=2лf(Hz)L(H)。不难看出,线圈通过低频电流时XL小。通过直流电时XL为零,仅线圈的直流电阻起阻力作用,因电阻:—般很小,所以近似短路。通过高频电流时XL大,若L也大,则近似开路。线圈的此种特性正好与电容相反,所以利用电感元件和电容器就可以组成各种高频、中频和低频滤波器,以及调谐回路、选频回路和阻流圈电路等等。 3.品质因数Q 这是表示电感线圈品质的参数,亦称作Q值或优值。线圈在一定频率的交流电压下工作时,其感抗XL和等效损耗电阻之比即为Q值,表达式如下:Q=2лL/R。由此可见,线圈的感抗越大,损耗电阻越小,其Q值就越高。值得注意的是,损耗电阻在频率f较低时可视作基本上以线圈直流电阻为主;当f较高时,因线圈骨架及浸渍物的介质损耗、铁芯及屏蔽罩损耗、导线高频趋肤效应损耗等影响较明显,R就应包括各种损耗在内的等效损耗电阻,不能仅计直流电阻。 Q的数值大都在几十至几百。Q值越高,电路的损耗越小,效率越高,但Q值提高到一定程度后便会受到种种因素限制,而且许多电路对线圈Q值也没有很高的要求,所以具体决定Q 值应视电路要求而定。 4.直流电阻

上海电气风电设备有限公司

上海电气风电设备有限公司 总公司 上海电气集团是中国最大的现代装备制造业集团,产业领域主要包括高效清洁能源、新能源、环保以及工业装备与服务业。集团旗下的上海电气电站集团是国内电站装备制造业规模最大、实力最强的产业集团之一,主营发电设备制造与成套、电站工程总承包、发电设备与电站工程建设相关的服务项目。风电公司介绍 风电作为清洁的可再生能源,近年来已成为能源领域新的投资热点。上海电气风电设备有限公司是由上海电气集团股份有限公司与中国华电工程有限公司共同投资组建的合资公司,是大型风力发电机组设计、制造、销售的专业公司。公司于2006年9月成立,总部位于上海紫竹高科技园区,组装基地分别位于上海闵行经济技术开发区和天津北辰科技园区,公司依托上海电气集团一流的人才资源和装备资源,业已成为国内主要的风电设备制造商之一。 上海电气风电设备有限公司以“自主设计、国际标准、精益制造、卓越服务”为目标,联手世界一流企业、培育高端研发团队、拥有自主创新能力、建设先进组装基地、构建严密质保体系、完善全程服务能力,向世界各地的用户提供更多、更先进可靠的风电设备,立志成为行业领先的、能为客户提供整体解决方案的风机制造商。 系列产品 上海电气现已拥有1.25MW、2MW、3.6MW三个产品,并形成系列化的多款机型,每一款均为特定风资源和气候条件进行优化设计,为用户提供个性化设计和服务。 1.25MW产品因其高可靠性而受到用户好评。1.25MW系列风机有62m、64m、70m三种风轮直径,同时又有65m、68m、91.5m三种不同的轮毂高度可供选配。至今,1.25MW 系列风机已累计生产400多台,遍布内蒙、山西、山东等各个风场,实现了国内首批兆瓦级风机出口。并设计生产了系列化机型:有常温型、低温型、高原型、60赫兹型等。 上海电气成功研制的具有自主知识产权的2MW产品,拥有87米和93米风轮的标准配置,形成耐低温、抗台风、防盐雾等系列化产品,并实现批量生产。大丰样机于2009年年初顺利运行,如东潮涧带风机于2010年年初并网发电,在江苏响水安装了国内首台2MW 海上风机,已有长兴岛、铁岭、天津大神堂等一批2MW风场在进入建设阶段。 上海电气独立研发的3.6MW大型海上风机,风轮直径达116米,是目前中国技术最先进、容量最大的风电机组,代表着中国风机未来的发展方向。将于2010年6月样机下线,8月安装;第二台3.6MW风机计划于今年年底在东海大桥下海。 上海电气立志成为风电行业技术与产品的引领者,加快了产品开发的速度。自主设计的3.6MW海上风机即将下线,今年还将完成2MW风机的扩容,正在研发中的5MW风机也将于明年三季度下线,同时已着手研发更大容量的直趋或半直驱产品。 专业化的研发团队 上海电气风电设备有限公司特别重视掌握风电核心技术,注重自身研发能力的培养。在许可证引进和联合设计的基础上,公司引进国外全套的风机设计分析软件和设计技术,包括61个设计软件、关键数据库以及22门风机设计系统理论培训课程,对技术团队进行了风机设计系统理论的培训, 使技术团队具备了独立设计风机整机、叶片、控制器的能力并具备自行通过国际认证的能力,领先于国内同行。 先进的组装基地 上海电气风电设备有限公司生产基地位于临港,工艺流程及装配技术均按国际标准设置,并拥有领先于国内的测试系统,具有年产1500台的生产能力。位于江苏的第二基地2010年8月竣工,用于生产2MW、3.6MW海上风机,达产后,年销售将逾40亿元。第三基地的建设也在计划中。

常用电感参数(精)

常用电感参数 来源:https://www.wendangku.net/doc/d01588468.html, | 时间:2008年11月17日 电感参数 1 电感量L及精度 电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。线圈电感量的大小,主要决定于线圈的直径、匝数及有无铁芯等。电感线圈的用途不同,所需的电感量也不同。例如,在高频电路中,线圈的电感量一般为0.1uH—100Ho 电感量的精度,即实际电感量与要求电感量间的误差,对它的要求视用途而定。对振荡线圈要求较高,为o.2-o.5%。对耦合线圈和高频扼流圈要求较低,允许10—15%。对于某些要求电感量精度很高的场合,一般只能在绕制后用仪器测试,通过调节靠近边沿的线匝间距离或线圈中的磁芯位置来实现o 2 感抗XL 电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为XL=2πfL 3 品质因素Q 线圈的品质因数 品质因数Q用来表示线圈损耗的大小,高频线圈通常为50—300。对调谐回路线圈的Q值要求较高,用高Q值的线圈与电容组成的谐振电路有更好的谐振特性;用低Q值线圈与电容组成的谐振电路,其谐振特性不明显。对耦合线圈,要求可低一些,对高频扼流圈和低频扼流圈,则无要求。Q 值的大小,影响回路的选择性、效率、滤波特性以及频率的稳定性。一般均希望Q值大,但提高线圈的Q值并不是一件容易的事,因此应根据实际使用场合、对线圈Q值提出适当的要求。 线圈的品质因数为: Q=ωL/R 式中: ω——工作角频; L——线圈的电感量; R——线圈的总损耗电阻线圈的总损耗电阻,它是由直流电阻、高频电阻(由集肤效应和邻近效应引起)介质损耗等所组成。" 为了提高线圈的品质因数Q,可以采用镀银铜线,以减小高频电阻;用多股的绝缘线代替具有同样总裁面的单股线,以减少集肤效应;采用介质损

贴片电感主要参数详解 电感器规格

贴片电感主要参数详解电感器规格 除固定电感器和部分阻流圈为通用元件(只要规格相同,各种电子整机上均可使用)外,其余的均为电视机、收音机等专用元件。专用元件一般都是一个型号对应一种机型(代用除外),购买及使用时应以元件型号为主要依据,具体参数大都不需考虑,若需了解,可查相应产品手册或有关资料,这里不可能一一示例。下面谈谈固定电感器及阻流圈的主要参数及识别。 1.电感量L 电感量L也称作自感系数,是表示电感元件自感应能力的一种物理量。当通过一个线圈的磁通(即通过某一面积的磁力线数)发生变化时,线圈中便会产生电势,这是电磁感应现象。所产生的电势称感应电势,电势大小正比于磁通变化的速度和线圈匝数。当线圈中通过变化的电流时,线圈产生的磁通也要变化,

磁通掠过线圈,线圈两端便产生感应电势,这便是自感应现象。自感电势的方向总是阻止电流变化的,犹如线圈具有惯性,这种电磁惯性的大小就用电感量L 来表示。L 的大小与线圈匝数、尺寸和导磁材料均有关,采用硅钢片或铁氧体作线圈铁芯,可以较小的匝数得到较大的电感量。L的基本单位为H(亨),实际用得较多的单位为mH(毫亨)和IxH(微亨),三者的换算关系如下:1H=103mH=106 μH。 2.感抗XL 感抗XL在电感元件参数表上一般查不到,但它与电感量、电感元件的分类品质因数Q等参数密切相关,在分析电路中也经常需要用到,故这里专门作些介绍。前已述及,由于电感线圈的自感电势总是阻止线圈中电流变化,故线圈对交流电有阻力作用,阻力大小就用感抗XL来表示。XL与线圈电感量L和交流电频率f成正比,计算公式为:XL (Ω)=2лf(Hz)L(H)。不难看出,线圈通过低频电流时XL小。通过直流电时XL为零,仅线圈的直流电阻起阻力作用,因电阻:—般很小,所以近似短路。通过高频电流时XL大,若L也大,则近似开路。线圈的此种特性正好与电容相反,所以利用电感元件和电容器就可以组成各种高频、中频和低频滤波器,以及调谐回路、选频回路和阻流圈电路等等。 3.品质因数Q

中国风电企业排名

1.华锐 2.东方电气 3.金风科技 4.华仪风电 5.湘电股份 风力发电整机制造机构名称 维斯塔斯风力技术公司 新疆金风科技发展公司 四川风瑞能源 GAMESA GE能源集团 华锐风电科技股份有限公司 浙江华仪风能开发有限公司 苏司兰能源有限公司 江西麦德风能设备股份有限公司 常州轨道车辆牵引传动工程技术研究中心 上海电气风电设备有限公司 中国南车株洲电力机车研究所风电事业部 湖南湘电风能有限公司 中船重工(重庆)海装风电设备有限公司 Repower 浙江运达风力发电工程有限公司 上海万德风力发电有限公司 佛山市东兴风盈风电设备制造有限公司 潍坊中云机器有限公司 东方汽轮机有限责任公司 保定惠德风电工程有限公司 哈尔滨哈电风电设备公司 北京北重汽轮电机有限责任公司 沈阳华创风能有限公司 西安维德风电设备有限公司 广东明阳风电有限责任公司 三一电气有限责任公司 中小型风力发电机组(含并网/离网型) 机构名称广州红鹰能源科技公司 扬州神州风力发电有限公司 嘉兴市安华风电设备有限公司 上海思源致远绿色能源有限公司 宁波风神风电科技有限公司 深圳风发科技发展有限公司 广州中科恒源能源科技有限公司 宁夏风霸机电有限公司 上海林慧新能源科技有限公司 西安大益风电科技有限公司 瑞安海立特风力发电有限公司 风能蓄电池机构名称 北京辉泽世纪科技有限公司 叶片及其材料机构名称 重庆国际复合材料有限公司 艾尔姆玻璃纤维制品(天津)有限公 司 上海玻璃钢研究院 江苏九鼎新材料股份有限公司 南京先进复合材料制品有限公司 上海越科复合材料有限公司 中国兵器工业集团第五三科技研究院 威海市碳素渔竿厂 金陵帝斯曼树脂有限公司 中航(保定)惠腾风电设备有限公司 浙江联洋复合材料有限公司 常熟市卡柏(Core Board)复合材料 有限公司 北京恒吉星工贸有限责任公司 风力发电机机构名称 湘潭电机股份有限公司 南车电机股份有限公司 西安捷力电力电子有限公司 兰州电机有限责任公司 东方电机股份有限公司 上海电气集团 盾安电气 齿轮箱/回转支承机构名称 南京高速齿轮制造有限公司 德国GAT传动技术有限公司 洛阳精联机械基础件有限公司 徐州罗特艾德回转支承股份有限公司 舍弗勒中国有限公司 马鞍山方圆回转支承股份有限公司 浙江通力减速机有限公司 变桨系统机构名称 桂林星辰电力电子有限公司 德国GAT传动技术有限公司 路斯特绿能电气系统(上海)有限公 司 电控系统及变流器机构名称 Mita-Teknik公司 德国GAT传动技术有限公司 合肥阳光电源有限公司 上海麦腾电器有限公司 洛阳精联机械基础件有限公司 艾黙生网络能源有限公司 南京环力重工机械有限公司 奔联电子技术有限公司 Elspec中国代表处 北京科诺伟业能源科技有限公司 北京东土科技股份有限公司 阿尔斯通机电(上海)有限公司 大连威科特自控系统有限公司 胜业电器有限公司 研祥智能科技股份有限公司 南京冠亚电源设备有限公司 中电电气集团有限公司 艾黙生网络能源有限公司 北京欧买特数字科技有限公司 北京清能华福风电技术有限公司 刹车系统及联轴器机构名称 安特制动系统(天津)有限公司 德国GAT传动技术有限公司 上海晟达传动设备有限公司 开天传动技术上海有限公司 洛阳精联机械基础件有限公司 焦作市制动器开发有限公司 汉中海利液压控制有限公司 贺德克液压技术(上海)有限公司 意大利阿托斯上海有限公司

电感的主要参数

电感的主要参数 1)μi(导磁率)(Permeability)---这是铁芯的一个重要参数,对于一个带铁芯的电感,铁芯的导磁率越高,电感值会越高。 2)L(电感值)(Inductance)---L=(4πμiN2A/l)*10-9 (H),N-线圈圈数,A-磁路截面积,l-磁路平均长度。电感值与铁芯的μi值成正比,与线圈圈数的平方成正比,与测试频率有关(电感值随测试频率的变化关系常用电感的频率曲线来表示),与环境温度有关,客户通常对电感值的要求是在某一特定频率下合于某一范围。电感值通常是不用计算得出的(因为就算你算得吐血也未必算得准,磁环的可以算得大概准确),而是用仪器测出的。目录上通常是标示L值的公差范围。 3) Q(品质因素)---客户通常对Q值的要求是越高越好, Q=2πfLe/Re (Re是有效电阻,是消耗能量的部份, 有效电阻由DCR、表面效应、铁损所贡献) (Le是真实电感扣除分布电容影响后的值),电子工 程施希望所选定的频率讯号通过,而且更希望所通 过的讯号损失越少越好,故他们希望Q值越高越好。 Q值也是随测试频率而变化的,(Q值随测试频率的 变化关系常用Q值的频率曲线来表示)。目录上通常 以其最小值为标注。 4)DCR(直流电阻)(Direct Current Resistance)---电感在直流电流下测量得之电阻,客户通常对DCR值的要求是越小越好。目录上通常以其最大值为标注。 5) SRF(自共振频率)(Self-Resonant Frequency) ---电感的真实电感与电感的分布电容产生共振 时的频率,客户通常对SRF值的要求是越大 越好。目录上通常以其最小值为标注。 自共振频时电感的表现就像电阻,即 (真实)电感值的感抗(2πfL)与分布电容的容抗

中国风电企业排名

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 中国风电企业排名 1. 华锐 2. 东方电气 3. 金风科技 4. 华仪风电 5. 湘电股份风力发电整机制造机构名称维斯塔斯风力技术公司新疆金风科技发展公司四川风瑞能源 GAMESA GE 能源集团华锐风电科技股份有限公司浙江华仪风能开发有限公司苏司兰能源有限公司江西麦德风能设备股份有限公司常州轨道车辆牵引传动工程技术研究中心上海电气风电设备有限公司中国南车株洲电力机车研究所风电事业部湖南湘电风能有限公司中船重工(重庆)海装风电设备有限公司 Repower 浙江运达风力发电工程有限公司上海万德风力发电有限公司佛山市东兴风盈风电设备制造有限公司潍坊中云机器有限公司东方汽轮机有限责任公司保定惠德风电工程有限公司哈尔滨哈电风电设备公司北京北重汽轮电机有限责任公司沈阳华创风能有限公司西安维德风电设备有限公司广东明阳风电有限责任公司三一电气有限责任公司中小型风力发电机组(含并网/离网型)机构名称广州红鹰能源科技公司扬州神州风力发电有限公司嘉兴市安华风电设备有限公司上海思源致远绿色能源有限公司宁波风神风电科技有限公司深圳风发科技发展有限公司广州中科恒源能源科技有限公司宁夏风霸机电有限公司上海林慧新能源科技有限公司西安大益风电科技有限公司瑞安海立特风力发电有限公司风能蓄电池机构名称北京辉泽世纪科技有限公司叶片及其材料机构名称重庆国际复合材料有限公司艾尔姆玻璃纤维制品(天津) 1 / 5

电阻,电感,电容的主要参数

电阻,电感,电容的主要参数 电阻主要特性参数 1、标称阻值:电阻器上面所标示的阻值。 2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。 允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级 3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。 线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500 非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、100 4、额定电压:由阻值和额定功率换算出的电压。 5、最高工作电压:允许的最大连续工作电压。在低气压工作时,最高工作电压较低。 6、温度系数:温度每变化1℃所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。 7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。 8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。 9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。 电感器的主要参数 电感器的主要参数有电感量、允许偏差、品质因数、分布电容及额定电流等。

DC DC电感选型指南

一:电感主要参数意义 DC-DC外围电感选型需要考虑以下几个参数:电感量L,自谐频率f0,内阻DCR,饱和电流Isat,有效电流Irms。 电感量L:L越大,储能能力越强,纹波越小,所需的滤波电容也就小。但是L越大,通常要求电感尺寸也会变大,DCR增加。导致DC-DC效率降低。相应的电感成本也会增加。 自谐频率f0:由于电感中存在寄生电容,使得电感存在一个自谐振频率。超过此F0是,电感表现为电容效应,低于此F0,电感才表现为电感效应(阻抗随频率增大而增加)。 内阻DCR:指电感的直流阻抗。该内阻造成I2R的能量损耗,一方面造成DC-DC降低效率,同时也是导致电感发热的主要原因。 饱和电流Isat:通常指电感量下降30%时对应的DC电流值。 有效电流Irms:通常指是电感表面温度上升到40度时的等效电流值。 二:DC-DC电感选型步骤 根据DC-DC的输入输出特性计算所需的最小电感量。。(对于电感量的计算,各DC-DC芯片手册上有明确的计算方法,请以手册为准,以下公式只是个举例说明) 对于Buck型DC-DC,计算公式如下 Lmin=【Vout*(1-Vout/Vinmax)】/Fsw*Irpp 其中:Vinmax = maximum input voltage Vout = output voltage fsw = switching frequency Irpp = inductor peak-to-peak ripple current 通常将Irpp控制在50%的输出额定电流Irate。则上述公式变化如下: Lmin=2*【Vout*(1-Vout/Vinmax)】/Fsw*Irate 对于Boost型DC—DC的Lmin电感计算公式如下: Lmin=2*【Vinmax*(1-Vinmax/Vout)】/Fsw*Irate

上海电气300MW CFB 介绍

300MWe循环流化床锅炉技术方案介绍 上海电气电站集团

内容 1、SEC 循环流化床燃烧技术的发展历程; 2、CFB锅炉业绩; 3、300MWe CFB的总体方案; 4、锅炉结构特点和优点; 5、300MWe CFB的系统介绍; 6、锅炉膨胀、密封与防磨; 7、国内300MWe CFB锅炉运行总结及其改进措施; 8、技术性能指标。

1、SEC 循环流化床燃烧技术的发展历程 上海锅炉厂有限公司从70年代起,为发展我国的循环流化床锅炉技术,不断探索,寻求各种途径,先后经历了自行开发研制、国内外联合合作开发和技术引进等阶段。 1.1 70年代起自行研制鼓泡床锅炉获得成功,为开发循环流化床锅炉提供了十分宝贵的经验。 1.2 九十年代中期与中科院工程热物理所及日本三井造船合作开发了新一代的循环流化床锅炉,为我公司CFB成功走向市场和为以后的引进大型CFB锅炉技术奠定了基础。

1、SEC 循环流化床燃烧技术的发展历程 1.3 引进ABB-CE公司50-150MWe CFB技术 1988年以来,技术源于德国LURGI,自己投巨资建立试验中心,形成独有的FLEXTECH CFB 技术; 已有近40台CFB锅炉投入运行: ?科研实力雄厚,技术已经众多实践证明是成熟的; ?业绩较好,煤质经验丰富;已运行锅炉涉及:烟煤、贫煤、无烟煤、褐煤、石油焦,以及一些废弃燃 料;

1、SEC 循环流化床燃烧技术的发展历程 引进ALSTOM (ABB-CE)公司CFB技术的范围及内容: 范围:50MW、100MW、150MW容量(各种燃料)锅炉岛全套技术: 1、锅炉本体的性能计算程序和工程设计标准; 2、煤、石灰石制备输送系统的设计和选型; 3、除渣、除灰系统的设计和选型; 4、烟风系统,包括各种风机的设计和选型; 5、仪表、控制系统的设计和选型; 6、运行调试; 7、特殊部件制造工艺和特殊材料规范:如风帽、分离器、非金属防磨材料等。

电感的主要参数

电感的主要参数 1)??μi(导磁率)(Permeability)---这是铁芯的一个重要参数,对于一个带铁芯的电感,铁芯的导磁率越高,电感值会越高。 2)???? L(电感值)(Inductance)---L=(4πμiN2A/l)*10-9(H),N-线圈圈数,A-磁路截面积,l-磁路平均长度。电感值与铁芯的μi值成正比,与线圈圈数的平方成正比,与测试频率有关(电感值随测试频率的变化关系常用电感的频率曲线来表示),与环境温度有关,客户通常对电感值的要求是在某一特定频率下合于某一范围。电感值通常是不用计算得出的(因为就算你算得吐血也未必算得准,磁环的可以算得大概准确),而是用仪器测出的。目录上通常是标示L值的公差范围。 3) Q(品质因素)---客户通常对Q值的要求是越高越好, Q=2πfLe/Re (Re是有效电阻,是消耗能量的部份, 有效电阻由DCR、表面效应、铁损所贡献) (Le是真实电感扣除分布电容影响后的值),电子工 程施希望所选定的频率讯号通过,而且更希望所通 过的讯号损失越少越好,故他们希望Q值越高越好。 Q值也是随测试频率而变化的,(Q值随测试频率的 变化关系常用Q值的频率曲线来表示)。目录上通常 以其最小值为标注。 4)DCR(直流电阻)(Direct Current Resistance)---电感在直流电流下测量得之电阻,客户通常对DCR值的要求是越小越好。目录上通常以其最大值为标注。 5) SRF(自共振频率)(Self-Resonant Frequency) ---电感的真实电感与电感的分布电容产生共振 时的频率,客户通常对SRF值的要求是越大 越好。目录上通常以其最小值为标注。 自共振频时电感的表现就像电阻,即 (真实)电感值的感抗(2πfL)与分布电容的容抗 (-1/2πfC d )相互抵消,即2πfL-1/2πfC d =0, 所以自共振频率f=1/2π√LC d 。自共振频时电感的Le(有效电感值)为0,所以此时的Q值为0。

各公司2.0MW风机的主要参数

北京北重汽轮电机有限责任公司BZD80-2000型风机,以引进世界上先进风力发电设备制造技术为依托,在2006年1月引进了EU ENERGY WIND Ltd.(原德国Dewind 公司)D8型2000KW双馈式变速恒频风力发电机组成套制造技术。 BZD80-2000技术数据: 风轮直径:80m 额定功率:2000 kW 叶片数量: 3 扫风面积:5027m2 风轮上避雷针保护:有 切入风速: 3 m/s 额定风速:13.5 m/s 切出风速:25 m/s 安全风速:57.4 m/s 额定转速:18.0 min-1 转速范围:11.1~20.7 min-1 转速控制:变桨距,调整叶片 功率调节:变桨距 齿轮箱:一级行星两级平行轴 转速比:1:94.4 主控制系统:液压、叶片变桨距 紧急刹车系统:液压、单支叶片变桨距 停车制动:盘式制动器 发电机:双馈感应式 滑差率:±30% 额定电压:690V 电网频率:50 Hz 逆变器:IGBT逆变器 调制类型:脉宽调制 偏航系统:由电机主动调节 气象传感器:风向、风速和环境温度传感器 远距离监控:自动传输数据 塔架:筒形钢塔架 轮毂高度:80m/100m 总高度:120m/140m 标称电网电压:10/20 kV, 其他可根据需求 额定电流:1675A 功率因数、标准值: 1.0 功率因数、可选项:0.9超前-0.95滞后 失真因数:1%

WINDTEC WT2000sg 运行数据 切入风速: 3.5 m/s 额定风速:12.5 m/s 切出风速:20.0 m/s 风轮 风轮直径:80.42m 扫风面积:5026m2 速率范围:12rpm-19rpm 功率控制方法:变桨控制 转叶 叶片长度:38.39m 材料:环氧玻璃纤维 避雷装置:集成 型号:EU80.1800-3 驱动链 齿轮箱类型:行星齿轮/平行轴齿轮 传动比:可变 齿轮润滑方式:强制润滑 齿轮箱、发电机联结:柔性联轴器 发电机力矩控制:SuperGEAR 机械支撑部件 轮毂类型:刚性 轮毂材料:铸铁 主机类型:焊接结构 制动系统 操作制动器:全跨度叶片变桨系统 结构类型:齿轮箱/伺服电机 机械制动器:盘式制动器 发电机 发电机类型:同步发电机 额定功率:2000KW 附件:IP54 偏航系统 偏航轴承类型:滑动轴承 驱动单元:齿轮电动机 驱动单元数量: 4 稳定:滑动轴承摩擦力与电动机制动共同作用塔架 结构类型:锥筒形钢塔 塔高:78m

风电企业中上市公司介绍

风电企业中上市公司介绍 第一类从事或参股风力发电设备生产的个股.如金风科技(002202),东方电气(600875),华仪电气(600290),湘电股份(600416),长征电气(600112),银星能源(000862),上海电气(601727),特变电工(600089). 第二类从事风力发电设备零部件生产的个股.如长城电工(600192),泰豪科技(600590),汇通集团(000415),鑫茂科技(000836),天奇股份(002009),汇通集团(000415),天威保变(600550),棱光实业(600629),中材科技(002080),九鼎新材(002201),方圆支承(002147), 天马股份(002122),宁波韵升(600366),中科三环(000970). 第三类承建风力发电项目的个股.如海油工程(600583). 第四类经营风力发电场发电业务的个股,以电力股居多.如广州控股(600098),金山股份(600396)能热电(600578),汇通能源(600605),申华控股(600653),国电电力(600795)粤电力A(000539),宝新能源(000690),吉电股份(000875). 各企业基本情况: 1,金风科技(002202):国内最大风力发电机组整机制造商,公司在08年实现了业绩连续第八年的100%增长,公司产品在07年国内新增风电装机容量中占25.1%,国内排名第一.公司在整机制造与销售的基础上,拓展了风电技术服务和风电场开发与销售的盈利模式,提升了公司的综合竞争实力.成功研制国内第一台海上1.5MW风机.截至08年11月公司待执行的在手订单有750kW机组817台,1.5MW机组1221台,此外公司还有已经中标但未签订正式协议的订单910.5MW,相当于607台1.5MW机组.预计公司08年结算750kW风机840台,1.5兆瓦风机500台.未来两年我国风电装机容量仍将保持高速增长,风电机组的市场空间将继续扩大 2,东方电气(600875):集风电,核电,水电,火电设备制造于一身的龙头.2007年公司产出风电机208台,2008年预计1.5MW机型产量将达800台,成为08年国内风电设备最大供应商.09年年产将达到1200台.公司风电方面在手订单200亿元,拥有1MW,1.5MW,2.5MW,3MW涵盖了双馈式,直驱式,半直驱式产品系列的研发能力,2008年预计1.5MW机型产量将达800台,成为国内风电设备最大供应商,预计2009年风电机组将达到1200台.风电项目达产后,未来将形成双馈式1.5兆机组2000台以上,1兆和2.5兆机组500台以上;直驱1.65兆500台以上的生产能力. 3,华仪电气(600290):全资子公司乐清华仪风能开发公司持有浙江华仪金风风电49%股份,国内风电设备老大新疆金风科技持有另外51%股份.华仪电气计划08年-09年完成开发1.2MW,1.5MW风电机组,装机容量达12万kW;2010年开发风场装机容量25万kW,实现工业总产值15亿元.08年6月,公司与华能新能源签订<<战略合作协议>>,在全国范围内就风场建设及风力发电:开发,建设,风力发电设备及所需配套电器设备供应,使用等方面全面合作并形成长期战略伙伴关系.08年7月,公司与吉林省发改委签订风电合作开发协议,共同打造通榆风电装备制造基地,设立风电设备制造企业,主要产品为1.5兆瓦风机整机,年配套能力50万千瓦,09年5月投产.支持全省特别是通榆境内风电开发企业选用该项目所产风电设备.同时建设华仪通榆风电园区,总建设规模70万千瓦(包括1.5兆瓦风机整机项目在内),并将继续扩大建设规模.

电感的参数和识别

电感的参数和识别 除固定电感器和部分阻流线圈为通用元件(只要规格相同,各种电子整机上均可使用)外,其余的均为电视机、收音机等专用元件。专用元件一般都是一个型号对应一种机型(代用除外),购买及使用时应以元件型号为主要依据,具体参数大都不需考虑,若需了解,可查相应产品手册或有关资料,这里不可能一一示例。下面谈谈新晨阳电容电感的固定电感器及阻流圈的主要参数及识别。 一.电感量L 电感量L也称作自感系数,是表示电感元件自感应能力的一种物理量。当通过一个线圈的磁通(即通过某一面积的磁力线数)发生变化时,线圈中便会产生电势,这是电磁感应现象。所产生的电势称感应电势,电势大小正比于磁通变化的速度和线圈匝数。当线圈中通过变化的电流时,线圈产生的磁通也要变化,磁通掠过线圈,线圈两端便产生感应电势,这便是自感应现象。自感电势的方向总是阻止电流变化的,犹如线圈具有惯性,这种电磁惯性的大小就用电感量L来表示。L的大小与线圈匝数、尺寸和导磁材料均有关,采用硅钢片或铁氧体作线圈铁芯,可以较小的匝数得到较大的电感量。L的基本单位为H(亨),实际用得较多的单位为mH(毫亨)和IxH(微亨),三者的换算关系如下:1H=103mH=106 μH。

二.感抗XL 感抗XL在电感元件参数表上一般查不到,但它与电感量、电感元件的分类品质因数Q 等参数密切相关,在分析电路中也经常需要用到,故这里专门作些介绍。前已述及,由于电感线圈的自感电势总是阻止线圈中电流变化,故线圈对交流电有阻力作用,阻力大小就用感抗XL来表示。XL与线圈电感量L和交流电频率f成正比,计算公式为:XL(Ω)=2лf(Hz)L(H)。不难看出,线圈通过低频电流时XL小。通过直流电时XL为零,仅线圈的直流电阻起阻力作用,因电阻:—般很小,所以近似短路。通过高频电流时XL大,若L也大,则近似开路。线圈的此种特性正好与电容相反,所以利用电感元件和电容器就可以组成各种高频、中频和低频滤波器,以及调谐回路、选频回路和阻流圈电路等等。 三.品质因数Q 这是表示电感线圈品质的参数,亦称作Q值或优值。线圈在一定频率的交流电压下工作时,其感抗XL和等效损耗电阻之比即为Q值,表达式如下:Q=2лL/R。由此可见,线圈的感抗越大,损耗电阻越小,其Q值就越高。值得注意的是,损耗电阻在频率f较低时可视作基本上以线圈直流电阻为主;当f较高时,因线圈骨架及浸渍物的介质损耗、铁芯及屏蔽罩损耗、导线高频趋肤效应损耗等影响较明显,R就应包括各种损耗在内的等效损耗电阻,不能仅计直流电阻。Q的数值大都在几十至几百。Q值越高,电路的损耗越小,效率越高,但Q值提高到一定程度后便会受到种种因素限制,而且许多电路对线圈Q值也没有很高的要求,所以具体决定Q值应视电路要求而定。

海上风机发展

海上风机未来发展的重心--大功率海上风机 具体到我国来说,“十二五”期间,我国建立了大功率风电机组整机设计制造技术体系,3~6兆瓦的海上风电机组实现示范应用,大型风电场运行管理等关键技术开始实际应用。 据有关人士介绍,上海电气(601727)已于去年成功引进西门子6兆瓦海上风机机型,湘电风能也开始推广其5兆瓦风机,而陆上风电市场的龙头企业金风科技(002202)也已拥有6兆瓦样机。记者近日从国家能源局官网获悉,国家能源局印发的《能源技术创新“十三五规划”》(以下简称《规划》)提出,“十三五”期间,我国将实现5~6兆瓦等级大型海上智能风电机组应用推广,降低海上风电场的度电成本,实现大型海上风电机组安装规范化和机组运维智能化。 正因如此,此次《规划》就提出,“十三五”期间,我国将完善高可靠性低度电成本海上风电机组整体优化设计技术,应用推广大型海上风电机组的基础工程设计和建造技术,以及大型海上风电场的智能化监控运行维护技术。 在全球范围内,海上风机正朝着更大容量发展。这一趋势近年来在欧洲格外明显。实际上,我国也正朝着研制大功率海上风机方向迈进。湘电风能2015年底中标福建中闽能源福建莆田平海湾50兆瓦海上风电项目,该项目是国内乃至亚洲第一个采用5兆瓦机型的商业化海上风电项目,同时也是全球第一个采用5兆瓦直驱永磁风机的商业化海上风电项目。 此外,突破8兆瓦及以上高可靠性海上风机的关键技术已经被列入中国电机工程学会编制的《“十三五”电力科技重大技术方向研究报告》。按照规划,到2020年我国将具备8兆瓦及以上大型海上风机制造能力,同时突破海上风电施工建设、并网运行关键技术,建成海上风电场全景监视及综合控制系统,在海上风电场施工建设水平、运维检测等方面将赶超欧美先进水平。 据中国气象局测绘计算,我国近海水深5米到25米范围内50米高度风电可装机容量约2亿千瓦;5米到50米水深70米高度风电可装机容量约为5亿千瓦。虽然目前我国仅占全球海上风电8.4%的市场份额,但我国海上风电的发展潜力非常巨大。 首个国家海上风电示范工程——上海东海大桥海上风电场在建设之初,面临着技术、设备、标准等空白。国外风电巨头的技术垄断和价格封锁、海上恶劣的自然环境、我国沿海地区独特的淤泥地质和台风天气等都给这一项目带来了重重困难。在这种情况下,国内整机商和上海勘探设计研究院等科研机构及施工机构紧密协作实现了项目的成功建设,可以说为我国风电产业积累了海上风电安装制造、整机开发、风电运维等多方面的宝贵经验。 不可否认,我国海上风电仍处于起步阶段。与陆上风电相比,海上风电发展更多面临产业自身技术层面的问题,包括机组技术、施工技术、输电技术、运维技术等方面都无法满足海上风电发展的需要。

中国风电机组制造厂名单(最新调整版)

序号 制造企业名称 机型 额定功率 技术来源 双馈异步发电机600KW 德国Jacobs 技术许可证双馈异步发电机750KW/800KW 德国Repower 技术许可证 永磁直驱发电机 1.5MW 消化吸收(Vensys )1200kW 技术,改进提高技术 2华锐风电科技有限公司双馈异步发电机 1.5MW 德国Fuhrlander 技术许可证3东方汽轮机有限公司双馈异步发电机 1.5MW 德国Repower 技术许可证双馈异步发电机750KW 德国Repower 技术许可证鼠笼式异步发电机800KW 引进技术消化吸收改进设计双馈异步发电机 1.5MW 自主设计(英国GH 公司校核) 变桨距风机600KW 永磁直驱风机750KW/900KW/1.5MW/2.0MW 双馈异步感应发电机 1.25MW (英国EU ENERGY WIND ,原德国DEWIND )技术许可证 变桨变速 2.0MW 联合设计(德国Aerodyn) 整机设计 7广东明阳风电技术有限公司变桨变速 1.5MW 联合设计(德国Aerodyn) 8湖南湘电风能有限公司永磁直驱发电机 2.0MW (日本原弘产收购荷兰Zephyros)技术许可证 变桨变速 1.5MW 引进沈阳工业大学技术变桨变速直驱 2.0MW 自主研发 整机设计 10北京北重汽轮电机有限公司变桨变速 2.0MW (英国EU ENERGY WIND ,原德国DEWIND )技术许可证 11浙江华仪风电有限公司双馈异步发电机 1.5MW 德国Aerodyn 联合设计 双馈异步发电机 1.0MW 自主研发双馈异步发电机 1.5MW 自主研发 13中船重工(重庆)海装风电设备有限公司 双馈异步发电机 2.0MW 与德国AERODYN 公司合作设计14国电联合动力技术有限公司双馈 1.5MW 与德国Aerodyn 公司联合设计 15四川风瑞能源实业有限公司变桨恒频同步850KW/2.0MW 德国富瑞西亚16株洲南车电机股份有限公司变浆变速 1.65MW 奥地利windtec 联合设计 17哈尔滨风电设备股份有限公司 永磁直驱发电机 1.2MW 自主研发18久和能源 变桨同步850KW/2.0MW 德国Windrad 公司19中钢集团西安重机有限公司变桨变速直驱 1.5MW 沈阳工大技术转让定桨定速 1.0MW 瑞典Delta 技术许可证变桨变速 1.5MW 引进沈阳工大技术21兰州电机有限公司双馈异步发电机 1.0MW 引进沈阳工业大学技术22宁夏银星能源股份有限公司变桨变速 1.0MW 引进日本三菱技术23保定天威风电科技有限公司变桨变速 1.5MW 与英国GH 联合设计 24沈阳中科天道新能源装备股份有限公司 变桨变速 1.5MW 自主研发25 浙江天洁新能源股份有限公司 双馈异步发电机 1.5MW 引进沈阳工业大学技术 西班牙安讯能集团技术 上海电气风电设备有限公司江苏新誉风力发电设备有限公司中国风电机组制造厂名单 145691220沈阳华创风能有限责任公司武汉国测诺德新能源有限公司 新疆金风科技股份有限公司浙江运达风力发电工程有限公司 中国航天万源国际(集团)有限公司

风电行业排名

风电企业排名 超大型风力发电机构: 维斯塔斯风力技术公司 新疆金风科技发展公司 四川风瑞能源 GAMESA GE能源集团 华锐风电科技股份有限公司 浙江华仪风能开发有限公司 苏司兰能源有限公司 江西麦德风能设备股份有限公司 常州轨道车辆牵引传动工程技术研究中心 上海电气风电设备有限公司 中国南车株洲电力机车研究所风电事业部 湖南湘电风能有限公司 中船重工(重庆)海装风电设备有限公司 Repower 浙江运达风力发电工程有限公司 上海万德风力发电有限公司 佛山市东兴风盈风电设备制造有限公司 潍坊中云机器有限公司 东方汽轮机有限责任公司 保定惠德风电工程有限公司 哈尔滨哈电风电设备公司 北京北重汽轮电机有限责任公司 沈阳华创风能有限公司 西安维德风电设备有限公司 广东明阳风电有限责任公司 三一电气有限责任公司 中小型风力发电机组(含并网/离网型)机构名称:广州红鹰能源科技公司 扬州神州风力发电有限公司 嘉兴市安华风电设备有限公司

上海思源致远绿色能源有限公司 宁波风神风电科技有限公司 深圳风发科技发展有限公司 广州中科恒源能源科技有限公司 宁夏风霸机电有限公司 上海林慧新能源科技有限公司 西安大益风电科技有限公司 瑞安海立特风力发电有限公司 风能蓄电池机构名称: 北京辉泽世纪科技有限公司 叶片及其材料机构名称: 重庆国际复合材料有限公司 艾尔姆玻璃纤维制品(天津)有限公司 上海玻璃钢研究院 江苏九鼎新材料股份有限公司 南京先进复合材料制品有限公司 上海越科复合材料有限公司 中国兵器工业集团第五三科技研究院 威海市碳素渔竿厂 金陵帝斯曼树脂有限公司 中航(保定)惠腾风电设备有限公司 浙江联洋复合材料有限公司 常熟市卡柏(Core Board)复合材料有限公司北京恒吉星工贸有限责任公司 风力发电机机构名称: 湘潭电机股份有限公司 南车电机股份有限公司 西安捷力电力电子有限公司 兰州电机有限责任公司 东方电机股份有限公司 上海电气集团

相关文档