文档库 最新最全的文档下载
当前位置:文档库 › 电导法测临界教书浓度cmc的值

电导法测临界教书浓度cmc的值

电导法测临界教书浓度cmc的值
电导法测临界教书浓度cmc的值

摘要本文采用电导法测定表面活性剂的临界胶束浓度(critical micelle concentration,CMC)。实验中通过测定不同温度下不同浓度的十二烷基硫酸钠和十二烷基苯磺酸钠水溶液的电导率,以电导率对浓度作曲线图,在临界胶束浓度(十二烷基硫酸钠和十二烷基苯磺酸钠的临界胶束浓度分别为 1.6mol?m-3和8.2 mol?m-3)附近,曲线有明显的转折点,从而得到在实验条件下十二烷基硫酸钠和十二烷基苯磺酸钠的临界胶束浓度,即CMC值。并且根据所做的电导率-浓度曲线图分析得到温度对十二烷基硫酸钠和十二烷基苯磺酸钠临界胶束浓度的影响:临界胶束浓度(CMC)随温度的升高而增大。

关键词电导法十二烷基硫酸钠十二烷基苯磺酸钠临界胶束浓度温度

目录

1.实验内容................................................................................................................................................ - 5 -

1.1仪器和试剂................................................................................................................................. - 5 -

1.2实验步骤..................................................................................................................................... - 5 -

1.2.1十二烷基硫酸钠水溶液CMC的测定 ............................................................................... - 5 -

1.2.2十二烷基苯磺酸钠水溶液CMC的测定 ........................................................................... - 6 -

1.3数据记录..................................................................................................................................... - 7 -

2.结果与讨论............................................................................................................................................ - 8 -

2.1数据的处理................................................................................................................................. - 8 -

2.2讨论............................................................................................................................................. - 9 -

2.2.1误差分析........................................................................................................................... - 9 -

2.2.2温度对十二烷基硫酸钠水溶液CMC的影响 ................................................................. - 10 -

2.2.3温度对十二烷基苯磺酸钠水溶液CMC的影响 ............................................................. - 10 -

3.结论.......................................................................................................................................................- 11 -参考文献.................................................................................................................................................. - 12 -

引言

表面活性剂(surfactant),是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。在水性体系中,极性基团是一些亲水基,非极性的则是憎水基或亲油基。在非水性体系中,极性基团是憎油基,非极性的为亲油基。表面活性剂按其化学结构分类,特别是极性基团包括:阴离子、阳离子、电中性粒子和非离子。表面活性剂由于具有润湿或抗粘、乳化或破乳、起泡或消泡以及增溶、分散、洗涤、防腐、抗静电等一系列物理化学作用,使得它具有这些基本功能的表面活性剂相应地可用作润湿剂、渗透剂、再润湿剂、发泡剂、稳泡剂、乳化剂、分散剂、增溶剂、洗涤剂、清洗剂等。由表面活性剂的基本性质和基本功能可以产生多种派生功能, 主要有以下一些柔软、平滑、缓染、抗静电、杀菌、防结块、防结晶、增塑、抗氧化、催化、离子交换等。这些功能产生的主要原因是由于表面活性剂的界面吸附, 在界面上形成表而活性剂的分子膜, 使界面减摩、润滑, 或保护界面, 使不与其它分子如水、油、空气等接触, 有的则是由于离子性质, 不同电荷离子相互吸引, 同电荷离子相互排斤所产生。

CMC测定的原理:凡能显著降低水的表面张力的物质都称为表面活性剂。当表面活性剂溶入极性很强的水中时,在低浓度是成分散状态,并且三三两两地把亲油集团靠拢而分散在水中,部分分子定向排列于液体表面,产生表面吸附现象。当溶液表面吸附达到饱和后,进一步增加浓度时,表面活性剂分子会立刻自相缔合,即疏水亲油的集团相互靠拢,而亲水的极性基团与水接触,这样形成的缔合体称为胶束。以胶束形式存在与水中的表面活性物质是比较稳定的,表面活性物质在水中形成胶束所需的最低浓度称为临界胶束浓度(critical micelle concentration,CMC)。在CMC点上由于溶液的结构改变导致其物理及化学性质如表面张力,电导,渗透压,浊度,光学性质等与浓度的关系曲线出现明显的转折,这种现象是测定CMC的实验依据,也是表面活性剂的一个重要特征。临界胶束浓度CMC可看作是表面活性剂对溶液的表面活性的一种量度。因为CMC 越小,则表示此种表面活性剂形成胶束所需浓度越低,达到表面饱和吸附的浓度越低。临界胶束浓度还是使含有表面活性剂水溶液的性质发生显著变化的一个“分水岭”。体系的多种性质在CMC附近都会发生一个比较明显的变化。我们可以采用的方法有:电导法、表面张力法、光散射法、比色法(染料吸附法)、浊度法。

电导率法测临界胶束浓度的实验原理:对于离子型表面活性剂,当溶液浓度很稀时,

电导的变化规律与一般强电解质相似,表面活性剂完全解离为离子,随着温度上升,电导率近乎直线上升,但当溶液浓度达到临界胶束浓度时,随着胶束的形成,胶束定向移动速率减慢,K仍随着浓度增大而上升,但变化幅度变小,摩尔电导率也急剧下降,利用K-C曲线的转择点求CMC。

温度对表面活性剂水溶液CMC的影响是复杂的,开始时CMC随温度升高而下降,中间经过一最小值,然后随温度的升高而增大。因为温度升高既可使亲水基水化程度减小,促进胶团的形成,同时又会使疏水基周围的结构水破坏,妨碍胶团的形成。这两个相反的效应的相对大小决定温度升高是使CMC减少还是增加。对离子型表面活性剂,最低的CMC值对应温度在20-30 ℃范围内,而对于非离子型表面活性剂,最低CMC约在50 ℃附近。

1.实验内容

1.1仪器和试剂

DDS-11A型电导率仪1 台;DJS-1C型铂黑电极 1支;容量瓶(1000mL)2只;容量瓶(50mL)8只;移液管(5mL) 1 支;移液管(10mL) 1 支;移液管(25mL) 1 支;蒸馏水;滤纸。

十二烷基硫酸钠(分析纯);十二烷基苯磺酸钠(分析纯)。

1.2实验步骤

1.2.1十二烷基硫酸钠水溶液CMC的测定

1、配制溶液。

准确称取十二烷基硫酸钠5.7678g于100ml烧杯中,加入蒸馏水50ml,搅拌溶解。待冷却到室温后转移至1000ml容量瓶中,用蒸馏水稀释至刻度,得到0.020mol·L-1的溶液,作为母液。

配置8个不同浓度的十二烷基硫酸钠水溶液。用移液管将20ml、30ml、35ml、40ml、45ml、50ml、60 ml、70 ml标准液分别移到8个100ml的容量瓶中,用蒸馏水稀释至刻度,得到浓度分别为0.004 mol·L-1、0.006 mol·L-1、0.007 mol·L-1、0.008 mol·L-1、0.009 mol·L-1、0.010 mol·L-1、0.012 mol·L-1和0.014 mol·L-1的溶液。

2、将超级恒温槽与恒温电导池接通,调节恒温槽水温至测定需要的温度。

3、用蒸馏水淌洗电导池和电导电极三次(注意不要直接冲洗电极,以保护铂黑),再用0.002mol·L-1 的十二烷基硫酸钠溶液淌洗三次。往电导池中倒入适量 0.002 mol·L-1 的十二烷基硫酸钠溶液(使电极板全部浸入溶液中),插入电导电极,至少恒温15 min。

4、打开电导率仪的电源开关,将“量程选择”旋钮扳到最大测量档。将“校正-测量”开关扳到“校正”位置。将“温度补偿”旋钮调到“25℃”。根据所用电极上标明的电极常数,调节“常数校正”旋钮至相应数值。

5、将“校正-测量”开关扳到“测量”位置,调节“量程”旋钮,根据仪器显示数字的效位数确定适当量程,此时,仪器所显示的数值即为该溶液的电导率。

6、将“校正-测量”开关扳到“校正”位置,倒掉电导池中的溶液。用下一个较浓

的溶液淌洗电导池和电极三次,倒入适量该溶液,插好电极,恒温15 min 后,按“5”所述步骤测定其电导率。如此,按由稀到浓的顺序,测定其它浓度溶液的电导率。

7、调节水浴温度分别为25 ℃、30 ℃、45 ℃,测定不同温度下的十二烷基硫酸钠水溶液的电导率。

1.2.2十二烷基苯磺酸钠水溶液CMC的测定

1、配制溶液。

准确称取十二烷基苯磺酸钠5.7678g于100ml烧杯中,加入蒸馏水50ml,搅拌溶解。待冷却到室温后转移至1000ml容量瓶中,用蒸馏水稀释至刻度,得到0.020mol·L-1的溶液。

用移液管准确移去100ml已配好的0.020 mol·L-1的十二烷基苯磺酸钠溶液于1000ml的容量瓶中,用蒸馏水稀释至刻度,得到0.002 mol·L-1的溶液(注:为了满足实验过程中所需的溶液用量,需要稀释两次,共得到2000ml0.002 mol·L-1的十二烷基苯磺酸钠溶液),作为母液。

配置8个不同浓度的十二烷基苯磺酸钠水溶液。用移液管将50ml、60ml、70ml、75ml、80ml、85ml、90ml、100ml标准液分别移到8个100ml的容量瓶中,用蒸馏水稀释至刻度,得到浓度分别为0.0010 mol·L-1、0.0012 mol·L-1、0.0014 mol·L-1、0.0015 mol·L-1、0.0016 mol·L-1、0.0017 mol·L-1、0.0018 mol·L-1和0.0020 mol·L-1的溶液。

2.重复1.2.1中“5、6和7”所述的操作步骤,测定十二烷基苯磺酸钠的电导率。

3.实验结束后用蒸馏水洗净试管和电极。

注意事项:

1、稀释十二烷基硫酸钠溶液时,应防止振摇猛烈,产生大量气泡影响测定。

2、测定时, 可用电导电极搅拌溶液的同时测定电导率, 直至电导率不再变化后记录数据。

3、每次测定后,必须用下一个待测溶液充分荡洗电极和烧杯,以免溶液浓度变化引起测定误差。

4、作图时应分别对图中转折点前后的数据进行线性拟合,找出两条直线,这两条直线的相交点所对应的浓度才是所求的水溶性表面活性剂的临界胶束浓度。

1.3数据记录

室温:25.4°C 大气压:101.17Kp

表1 十二烷基硫酸钠在不同温度下的电导率

表2 十二烷基苯磺酸钠在不同温度下的电导率

2.结果与讨论

2.1数据的处理

分别以表1和表2中十二烷基硫酸钠和十二烷基苯磺酸钠的浓度c为横坐标,水溶液的电导率κ为纵坐标,作不同温度下十二烷基硫酸钠和十二烷基苯磺酸钠的浓度- 电导率图,分别为图1和图2:

图1 不同温度下十二烷基硫酸钠的浓度-电导率图

根据图1可以得出在25°C、30°C、35°C和40°C下十二烷基硫酸钠水溶液的临界胶束浓度(CMC)分别为0.0081 mol·L – 1、0.0082 mol·L – 1、0.0084 mol·L –1和0.0088 mol·L – 1。

图2 不同温度下十二烷基苯磺酸钠的浓度- 电导率

根据图2可以得出在25°C、35°C和45°C下十二烷基苯磺酸钠水溶液的临界胶束浓度(CMC)分别为0.00155 mol·L –1、0.00158 mol·L –1和0.00160 mol·L –1。

2.2讨论

2.2.1误差分析

1.因为温度对电导率有影响,所以实验过程中温度的波动对实验结果有影响。

2.配制溶液浓度的准确度,影响κ-c作图,从而方程的确定受影响,产生误差。

3.读数。

(1)十二烷基磺酸钠溶液自身表面活性剂的性质很易起泡沫,不容易准确量取。

(2)稳定读数仍有一定偏差,应改为稳定后读取3组数据,取平均值。

(3)估读。

4. 电导法测定表面活性剂电导率,过量无机盐使其灵敏度下降,故配制溶液和清洗电极时应使用蒸馏水。

5.若前面实验结束后,未用下一组标准溶液充分淌洗电导池和电导电极,则会使溶液的浓度降低,从而使测得的溶液的电导率减小。

2.2.2温度对十二烷基硫酸钠水溶液CMC的影响

以图1中得出的不同温度下十二烷基硫酸钠水溶液的临界胶束浓度(CMC)对温度做图得图3:

图3 十二烷基硫酸钠的CMC值随温度的变化关系图

由图3可以看出:十二烷基苯磺酸钠水溶液的CMC值随温度的升高而增大。

2.2.3温度对十二烷基苯磺酸钠水溶液CMC的影响

以图2中得出的不同温度下十二烷基苯磺酸钠水溶液的临界胶束浓度(CMC)对温度做图得图4:

图4 十二烷基苯磺酸钠的CMC值随温度的变化关系图由图4可以看出:十二烷基苯磺酸钠水溶液的CMC值随温度的升高而增大。

3.结论

在25°C、30°C、35°C和40°C下十二烷基硫酸钠水溶液的临界胶束浓度(CMC)分别为0.0081 mol·L –1、0.0082 mol·L –1、0.0084 mol·L –1和0.0088 mol·L – 1;在25°C、35°C和45°C下十二烷基苯磺酸钠水溶液的临界胶束浓度分别为0.00155 mol·L – 1、0.00158 mol·L – 1和0.00160 mol·L – 1。

因此可以得出:在所讨论的温度范围内,随温度的升高十二烷基硫酸钠和十二烷基硫酸钠苯磺酸钠水溶液的CMC增大。

参考文献

[1] 唐林,孟阿兰,刘洪天.物理化学实验[M].北京:化学工业出版社,2012.117-118.

[2]陈晓波,龚良.发电导测定十二烷基苯磺酸钠的临界胶束浓度[J].吉林林学院学报,1997,14(3):167-176.

[3]库尔班江·肉孜,塔力哈提,阿布都吾甫尔.摩尔电导率法测定表面活性剂的临界胶束浓度[ J].新疆工学院学报1999,20(2):145-147.

[4]蔡亮.电导法测定临界胶束浓度及胶束电动力学模型的建立[ J].大学化学,2003,18(1):53-56.

[5]邹耀红.电导率法测定表面活性剂的临界胶束浓度[ J].大学化学,1997,12(6):46-48.

附录:

图1 不同温度下十二烷基硫酸钠的浓度-电导率图

图2 不同温度下十二烷基苯磺酸钠的浓度- 电导率

分光光度法测定水中铁离子含量.

专业项目课程课例 项目十二分光光度法测定水中铁离子含量 一、项目名称:分光光度法测定水中铁离子含量 二、项目背景分析 课程目标:本课程是培养分析化学操作技能和操作方法的一门专业实践课,以定量分析的基本理论为基础,以实验强化理论,以期提高化工工作者的分析操作能力。 功能定位:在定量分析中我们常常用到分光光度分析法,它具有操作简便、快速、准确等优点,在工农业生产和科学研究中具有很大的实用价值。是仪器分析的基础实验,也是一种重要的定量分析方法。分光光度法测定水中铁离子含量的测定项目综合训练了学生分光光度计使用、系列标准溶液配制、标准曲线绘制等多个技能。 学生能力:学生通过相关基础学科的学习已经具备了相应的化学知识和定量分析知识,也具备一定的独立操作和思维能力。 项目实施条件:该项目是仪器分析的基础实验,一般中职学校具备相关的实训实习条件,学生有条件完成相应的实习任务。 三、教学目标 1、了解721可见分光光度计的构造 2、了解分光光度法测定原理 3、掌握721可见分光光度计的操作方法 4、掌握分光光度法测定分析原始记录的设计 5、掌握分光光度法测定分析报告的设计 6、掌握分光光度法测定水中铁离子含量的测定方法 7、掌握分光光度法测定水中铁离子含量的分析原始记录和分析报告的填写 四、工作任务 1

2 五、参考方案 参考方案一 1、邻二氮杂菲-Fe 2+ 吸收曲线的绘制 用吸量管吸取铁标准溶液(20μg/mL )0.00、2.00、4.00mL ,分别放入三个50mL 容量瓶中,加入1mL 10%盐酸羟胺溶液,2mL 0.1%邻二氮杂菲溶液和5mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用3cm 比色皿,以试剂空白(即在0.0mL 铁标准溶液中加入相同试剂)为参比溶液,在440~560nm 波长范围内,每隔20~40nm 测一次吸光度,在最大吸收波长附近,每隔5~10nm 测一次吸光度。在坐标纸上,以波长λ为横坐标,吸光度A 为纵坐标,绘制A 和λ关系的吸收曲线。从吸收曲线上选择测定Fe 的适宜波长,一般选用最大吸收波长λmax 。 2、标准曲线的制作 用吸量管分别移取铁标准溶液(20μg/mL )0.00、2.00、4.00、6.00、8.00、10.00mL ,分别放入6个50mL 容量瓶中,分别依次加入1.00mL 10%盐酸羟胺溶液,稍摇动;加入2.00mL 0.1%邻二氮杂菲溶液及5.00mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用1cm 比色皿,以试剂空白(即在0.00mL 铁标准溶液中加入相同试剂)为参比溶液,选择λmax 为测定波长,测量各溶液的吸光度。在坐标纸上,以含铁量为横坐标,吸光度A 为纵坐标,绘制标准曲线。 3、水样中铁含量的测定 取三个50mL 容量瓶,分别加入5.00mL (或10.00mL 铁含量以在标准曲线范围内为合适)未知试样溶液,按实验步骤2的方法显色后,在λmax 波长处,用1cm 比色皿,以试剂空白为参比溶液,平行

影响电阻或电阻率测试的主要因素

影响电阻或电阻率测试的 主要因素 一、环境温湿度 一般材料的电阻值随环境温湿度的升高而减小。相对而言,表面电阻(率)对环境湿度比较敏感,而体电阻(率)则对温度较为敏感。湿度增加,表面泄漏增大,体电导电流也会增加。温度升高,载流子的运动速率加快,介质材料的吸收电流和电导电流会相应增加,据有关资料报道,一般介质在70C时的电阻值仅有20C时的10%。因此,测量材料的电阻时,必须指明试样与环境达到平衡的温湿度。 二、测试电压(电场强度) 介质材料的电阻(率)值一般不能在很宽的电压范围内保持不变,即欧姆定律对此并不适用。常温条件下,在较低的电压范围内,电导电流随外加电压的增加而线性增加,材料的电阻值保持不变。超过一定电压后,由于离子化运动加剧,电导电流的增加远比测试电压增加的快,材料呈现的电阻值迅速降低。由此可见,外加测试电压越高,材料的电阻值越低,以致在不同电压下测试得到的材料电阻值可能有较大的差别。 值得注意的是,导致材料电阻值变化的决定因素是测试时的电场强度,而不是测试电压。对相同的测试电压,若测试电极之间的距离不同,对材料电阻率的测试结果也将不同,正负电极之间的距离越小,测试值也越小。 三、测试时间 用一定的直流电压对被测材料加压时,被测材料上的电流不是瞬时达到稳定值的,而是有一衰减过程。在加压的同时,流过较大的充电电流,接着是比较长时间缓慢减小的吸收电流,最后达到比较平稳的电导电流。被测电阻值越高,达

到平衡的时间则越长。因此,测量时为了正确读取被测电阻值,应在稳定后读取数值或取加压1分钟后的读数值。 另外,高绝缘材料的电阻值还与其带电的历史有关。为准确评价材料的静电性能,在对材料进行电阻(率)测试时,应首先对其进行消电处理,并静置一定的时间,静置时间可取5分钟,然后,再按测量程序测试。一般而言,对一种材料的测试,至少应随机抽取3~5个试样进行测试,以其平均值作为测试结果。 四、测试设备的泄漏 在测试中,线路中绝缘电阻不高的连线,往往会不适当地与被测试样、取样电阻等并联,对测量结果可能带来较大的影响。为此: 为减小测量误差,应采用保护技术,在漏电流大的线路上安装保护导体,以基本消除杂散电流对测试结果的影响; 高电压线由于表面电离,对地有一定泄漏,所以尽量采用高绝缘、大线径的高压导线作为高压输出线并尽量缩短连线,减少尖端,杜绝电晕放电; 采用聚乙烯、聚四氟乙烯等绝缘材料制作测试台和支撑体,以避免由于该类原因导致测试值偏低。 五、外界干扰 高绝缘材料加上直流电压后,通过试样的电流是很微小的,极易受到外界干扰的影响,造成较大的测试误差。热电势、接触电势一般很小,可以忽略;电解电势主要是潮湿试样与不同金属接触产生的,大约只有20mV,况且在静电测试中均要求相对湿度较低,在干燥环境中测试时,可以消除电解电势。因此,外界干扰主要是杂散电流的耦合或静电感应产生的电势。在测试电流小于10-10A或测量电阻超过1011欧姆时;被测试样、测试电极和测试系统均应采取严格的屏蔽措施,消除外界干扰带来的影响。

电导的测定及其应用实验报告

电导的测定及其应用 以C 对 作图,其直线的斜率为 心,如知道值,就可算出K 0 三、实验仪器、试剂 仪器:梅特勒326电导率仪1台,电导电极1台,量杯(50ml )2只,移液管(25ml )3只,洗 瓶1只,洗耳球1只 试剂:10.00 (mol ? m -3) KCl 溶液,100.0 (mol ? m -3) HAc 溶液,电导水 四、实验步骤 、实验目的 1、测量KCI 水溶液的电导率,求算它的无限稀释摩尔电导率。 2、用电导法测量醋酸在水溶液中的解离平衡常数。 3、掌握恒温水槽及电导率仪的使用方法。 二、实验原理 1、电导G 可表示为: 式中,k 为电导率,电极间距离为 I ,电极面积为 A , l/A 为电导池常数 Kcell ,单位为m -1 。 本实验是用一种已知电导率值的溶液先求出 Kcell ,然后把欲测溶液放入该电导池测出其电导值 G ,根据(1)式求出电导率 k 。 A ~ 摩尔电导率与电导率的关系: 1 式中C 为该溶液的浓度,单位为 mol ? m -3 2、 总是随着溶液的浓度降低而增大的。 对强电解质稀溶液, " 1;, K " 式中 是溶液在无限稀释时的极限摩尔电导率。 至C=0处,可求得 。 A 为常数, 故将,对,c 作图得到的直线外推 4 CX> i I i OT 3、对弱电解质溶液, " ■ ■ 式中 、分别表示正、负离子的无限稀释摩尔电导率。 在弱电解质的稀薄溶液中,解离度与摩尔电导率的关系为: 对于 HAc , 1 (6) HAc 的可通过下式求得: - ' CA= 把⑷代入(1) 得: UA 八(A ;『仏亠心 或

电导的测定及其应用实验报告.doc

电导的测定及其应用 一、实验目的 1、测量KCl水溶液的电导率,求算它的无限稀释摩尔电导率。 2、用电导法测量醋酸在水溶液中的解离平衡常数。 3、掌握恒温水槽及电导率仪的使用方法。 二、实验原理 1、电导G可表示为:(1) 式中,k为电导率,电极间距离为l,电极面积为A,l/A为电导池常数Kcell,单位为m-1。 本实验是用一种已知电导率值的溶液先求出Kcell,然后把欲测溶液放入该电导池测出其电导值G,根据(1)式求出电导率k。 摩尔电导率与电导率的关系:(2) 式中C为该溶液的浓度,单位为mol·m-3。 2、总是随着溶液的浓度降低而增大的。 对强电解质稀溶液,(3) 式中是溶液在无限稀释时的极限摩尔电导率。A为常数,故将对c作图得到的直线外推至C=0处,可求得。 3、对弱电解质溶液,(4) 式中、分别表示正、负离子的无限稀释摩尔电导率。 在弱电解质的稀薄溶液中,解离度与摩尔电导率的关系为:(5) 对于HAc,(6) HAc的可通过下式求得: 把(4)代入(1)得:或 以C对作图,其直线的斜率为,如知道值,就可算出K o 三、实验仪器、试剂 仪器:梅特勒326电导率仪1台,电导电极1台,量杯(50ml)2只,移液管(25ml)3只,洗瓶1只,洗耳球1只 试剂:10.00(mol·m-3)KCl溶液,100.0(mol·m-3)HAc溶液,电导水 四、实验步骤

1、打开电导率仪开关,预热5min。 2、KCl溶液电导率测定: ⑴用移液管准确移取10.00(mol·m-3)KCl溶液25.00 ml于洁净、干燥的量杯中,测定其电导率3次,取平均值。 ⑵再用移液管准确移取25.00 ml电导水,置于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。 ⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再准确移入25.00 ml电导水,只于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。 ⑷重复⑶的步骤2次。 ⑸倾去电导池中的KCl溶液,用电导水洗净量杯和电极,量杯放回烘箱,电极用滤纸吸干 3、HAc溶液和电导水的电导率测定: ⑴用移液管准确移入100.0(mol·m-3)HAc溶液25.00 ml,置于洁净、干燥的量杯中,测定其电导率3次,取平均值。 ⑵再用移液管移入25.00 ml已恒温的电导水,置于量杯中,搅拌均匀后,测定其电导率3次,取平均值。 ⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再移入25.00 ml电导水,搅拌均匀,测定其电导率3次,取平均值。 ⑷再用移液管准确移入25.00 ml电导水,置于量杯中,搅拌均匀,测定其电导率3次,取平均值。 ⑸倾去电导池中的HAc溶液,用电导水洗净量杯和电极;然后注入电导水,测定电导水的电导率3次,取平均值。 ⑹倾去电导池中的电导水,量杯放回烘箱,电极用滤纸吸干,关闭电源。 五、数据记录与处理 1、大气压:102.08kPa 室温:17.5℃实验温度:25℃ 已知:25℃时10.00(mol·m-3)KCl溶液k=0.1413S·m-1;25℃时无限稀释的HAc水溶液的摩尔电导率=3.907*10-2(S·m2·m-1) ⑴测定KCl溶液的电导率: ⑵测定HAc溶液的电导率: 电导水的电导率k(H2O)/ (S·m-1):7 *10-4S·m-1

分光光度法(附答案)

分光光度法(附答案) 一、填空题1. 分光光度法测定样品的基本原理是利用朗伯-比尔定律,根据不同浓度样品溶液对光信号具有不同的_____,对待测组分进行定量测定。答案:吸光度(或吸光性,或吸收) 2. 分光光度法测定样品时,比色皿表面不清洁是造成测量误差的常见原因之一,每当测定有色溶液后,一定要充分洗涤。可用_____涮洗,或用_____浸泡。注意浸泡时间不宜过长,以防比色皿脱胶损坏。 答案:相应的溶剂(1+3)HNO 3 3. 分光光度法测定土壤中总砷时,制备土壤样品过程中,需取过2mm筛的土样,用玛瑙研钵将其研细至全部通过_____mm筛后,备用。答案:0.149 4. 光度法测定森林土壤全磷的样品,在碱熔完成后,应加入_____℃的水溶解熔块,并用硫酸和热水多次洗涤坩埚。答案:80 二、判断题 1. 应用分光光度法进行试样测定时,由于不同浓度下的测定误差不同,因此选择最适宜的测定浓度可减少测定误差。一般来说,透光度在20%~65%或吸光值在0.2~0.7之间时,测定误差相对较小。( ) 答案:正确 2. 分光光度法主要应用于测定样品中的常量组分含量。( ) 答案:错误正确答案为:分光光度法主要应用于测定样品中的微量组分。 3. 应用分光光度法进行样品测定时,同一组比色皿之间的差值应小于测定误差。( ) 答案:错误正确答案为:测定同一溶液时,同组比色皿之间吸光度相差应小于0.005,否则需进行校正。4. 应用分光光度法进行样品测定时,摩尔吸光系数随比色皿厚度的变化而变化。( ) 答案:错误正确答案为:摩尔吸光系数与比色皿厚度无关。 5. 分光光度法测定土壤中总砷时,在样品中加入酸,并在电热板上加热,目的是分解有机物和氧化样品中各种形态存在的砷,使之成为可溶态的砷。()答案:正确 6. 分光光度法测定土壤中总砷时,应直接称取新鲜的土样进行测定。()答案:错误正确答案为:应称取风干或冷冻干燥的样品测定。 7. 分光光度法测定土壤样品中总砷时,有机物会干扰测定,应加酸并加热分解,以消除其于扰。() 答案:正确 8. 硼氢化钾-硝酸银分光光度法测定土壤中总砷时,样品消解过程中所加的酸分别是盐酸、硝酸和磷酸。()答案:错误正确答案为:样品消解所加的酸分别是盐酸、硝酸和高氯酸。 9. 分光光度法测定生活垃圾或土壤中砷时,若所用试剂中含有少量氰化物,可用乙酸铅脱脂棉吸收去除。()答案:错误正确答案为:乙酸铅脱脂棉吸收去除的是试剂中的硫化物。 10. 光度法测定土壤中全氮时,如需提供烘干基含量,则应测定土壤水分,并进行折算。(答案:正确 11. 光度法测定土壤中包括硝态和亚硝态氮的全氮时,若铁粉中含有大量的碳会干扰测定,所以在选择时应注意。()答案:错误正确答案为:若铁粉含有大量的氮会干扰测定,所以在选择时应注意。

电导分析2.

电导分析法(2) 课题导入: 前面学过了电导分析法的基本原理,以及电导和浓度的关系。下面我们继续学习怎样利用电导进行浓度的测量。 三、溶液电导的测量 电导是电阻的倒数,因此测量电导实际上就是测量它的电阻。 电导的测量装置包括电导池和电导仪。 1.电导池 电导池是有两个电导电极构成。电导电极一般由两片平行的铂制成的。 测量电导的铂黑电极,表面积大,电流密度小,极化作用也就小,用于测量电导率高的溶液。在测量低电导率的溶液时,铂黑对电解质有强烈的吸附作用而出现不稳定现象,这时不宜用光亮铂电极。 2.溶液电导的测量方法 电阻分压法,平衡电桥法,不平衡电桥法。平衡电桥法的原理如下:

四、影响溶液电导测量的因素 1.电极极化的影响 所谓极化是指电导池中发生的电解现象。因为溶液电解后,使阳极的电位值增加,阴极的电位值减小,即两极分化,极化由此得名。影响电导测量的极化有浓差极化和化学极化。 若电导池上加一直流电压,电导池中即发生电解作用,电极反应速率要比离子迁移速率快得多,瞬时后,阳极或阴极的表面附近溶液中离子供不应求,导致电极周围的离子浓度比电导池中溶液的离子浓度低得多,形成浓差极化。电流密度越大,浓差极化越严重。浓差极化的存在使电极与溶液的接触面之间没有平衡状态存在,造成误差。 化学极化是由于电解物在电极与溶液之间形成电阻。例如,测量NaCl溶液的电导时,带负电荷的C1移向正极后失去电子变成C12,Cl2附着在电极表面形成一层气泡,使电极与溶液隔绝,相当于电阻增加。 消除浓差极化和化学极化的主要措施是用交流电源供电。因交流电源不断改变外加电压的方向,使每次电流流动所引起的极化,被下次电流流动反方向抵消,所以发生的浓差极化也相应抵消。 此外,也可用加大电极表面积的办法,即在电极表面镀上一层粉末状的铂黑以加大电极表面积,减小电流密度。但测量低电导时,铂黑会吸附大量溶液,使电导不稳定,影响结果的准确性。

-实验_电导法测定乙酸电离平衡常数

实验六 电导法测定乙酸电离平衡常数 报告人: 同组人: 实验时间2010年06月12日 一.实验目的: 1.掌握电导、电导率、摩尔电导率的概念以及它们之间的相互关系。 3.掌握电导法测定弱电解质电离平衡常数的原理。 二.实验原理: 1.电离平衡常数K c 的测定原理 在弱电解质溶液中,只有已经电离的部分才能承担传递电量的任务。在无限稀释的溶液中可以认为弱电解质已全部电离,此时溶液的摩尔电导率为∞∧m ,可以用离子的极限摩尔电导率相加而得。而一定浓度下电解质的摩尔电导率∧m 与无限稀释的溶液的摩尔电导率∞∧m 是有区别的,这由两个因素造成,一是电解质的不完全离解,二是离子间存在相互作用力。二者之间有如下近似关系: ∞∧ ∧= m m α (1) 式中为弱电解质的电离度。 对AB 型弱电解质,如乙酸(即醋酸),在溶液中电离达到平衡时,其电离平衡常数K c 与浓度c 和电离度α的关系推导如下: CH 3COOH →CH 3COO - + H + 起始浓度 c 0 0 平衡浓度 c (1-α) c α c α 则 a ca K c -=12 (2) 以式(1)代入上式得:) (Λm m 2ΛΛΛc K m m c -=∞∞ (3) 因此,只要知道∧m ∞ 和∧m 就可以算得该浓度下醋酸的电离常数K c 。 将式(2)整理后还可得: (4) 由上式可知,m m 1/Λm 作图可得一条直线,由 直线斜率可测出在一定浓度范围内c K 的平均值。 2.摩尔电导率∧m 的测定原理 电导是电阻的倒数,用G 表示,单位S (西门子)。电导率则为电阻率的倒数,用k 表 示,单位为G·m -1 。 摩尔电导率的定义为:含有一摩尔电解质的溶液,全部置于相距为1m 的两个电极之间,这时所具有的电导称为摩尔电导率。摩尔电导率与电导率之间有如下的关系。 ∧m = κ/c (5) 式中c 为溶液中物质的量浓度,单位为mol·m -3 。 在电导池中,电导的大小与两极之间的距离l 成反比,与电极的面积A 成正比。 G = κA/ l (6) 由(6)式可得 κ=K cell G (7)

紫外可见分光光度法含量测定

【含量测定】照紫外-可见分光光度法(附录V A)测定。 1.仪器与测定条件:室温:____℃相对湿度:____% 分析天平编号:;水浴锅编号:; 紫外可见分光光度计编号:; 2.对照品溶液的制备: 取西贝母碱对照品适量,精密称定,加三氯甲烷制成每1ml含_______mg的溶液,即得。 3. 供试品溶液的制备: 取本品粉末(过三号筛)约______g,精密称定,置具塞锥形瓶中,加浓氨试液3ml,浸润1小时。加三氯甲烷-甲醇(4:1)混合溶液40ml,置80℃水浴加热回流2小时,放冷,滤过,滤液置50ml量瓶中,用适量三氯甲烷-甲醇(4:1)混合溶液洗涤药渣2~3次,洗液并入同一量瓶中,加三氯甲烷-甲醇(4:1)混合溶液至刻度,摇匀,即得。 4.标准曲线的制备: 精密量取对照品溶液0.1ml、0.2ml、0.4ml、0.6ml、1.0ml,置25ml具塞试管中,分别补加三氯甲烷至10.0ml,精密加水5ml、再精密加0.05%溴甲酚绿缓冲液(取溴甲酚绿0.05g,用0.2mol/L氢氧化钠溶液6ml使溶解,加磷酸二氢钾1g,加水使溶解并稀释至100ml,即得)2ml,密塞,剧烈振摇,转移至分液漏斗中,放置30分钟。取三氯甲烷液,用干燥滤纸滤过,取续滤液,以相应的试剂为空白。 5.测定法: 照紫外-可见分光光度法(附录ⅤA),在nm波长处测定吸光度,以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。依法测定吸光度,从标准曲线上读出供试品溶液中含西贝母碱的重量,计算,即得。 6.结果与计算 6.1 标准曲线制备:

对照品批号 纯 度 S 对照品来源 干燥条件 对照品称重W 对(mg) 各浓度点稀释倍数f 对 溶液浓度C 对(ug/ml) 吸光度A 对 线性回归方程 A=( )C +/-( ) r =( ) 计算公式: W S C f ?= 对对对 C 对= 6.2 样品测定: 水分Q 取样量W 样(g ) 样品稀释倍数f 样 样品吸光度A 样 样品平均吸光度A 样 浓度C(ug/ml) 含量X (%) 平均含量X (%) 计算公式:() %100Q 110W f C X 6 ?-???= 样样 样 X 1= X 2= 7.本品按干燥品计算,含总生物碱以西贝母碱(C 27H 43NO 3)计,不得少于0.050%。 结果: 规定 检验人: 检验日期: 复核人: 复核日期:

影响绝缘电阻测量结果的因素有哪些

影响绝缘电阻测量结果的因素有哪些 有些绝缘物体(如:塑料、瓷等)在直流电压作用下,其电导电流瞬间即可达到稳定值,但对于发电机、变压器、电动机、电缆等电器设备,它们的绝缘是由复合介质构成,在直流电压作用下,会产生多种极化现象。极化开始时电流很大,随着加压时间的增大,电流值下降,绝缘电阻相应增大,这种现象称为吸收现象。在吸收现象中,衰减最快的电流称为电容电流,随时间缓慢变化的电流称为吸收电流,最后不随时间变化的稳定电流是由介质的电导所决定的称为电导电流。一般设备的容量愈大,这种现象愈明显。由于吸收电流随时间变化,所以在测试绝缘电阻和泄漏电流时要规定时间。当绝缘受潮或脏污后,泄漏电流增加,吸收现象不明显。 影响绝缘电阻测量结果的因素主要有温度、湿度和放电时间。由于温度升高使介质极化加剧,致使电导增加、电阻降低,因而绝缘电阻随温度升高而降低。绝缘因表面吸潮或瓷绝缘表面形成水膜会使绝缘电阻显著降低。此外,当绝缘在相对湿度较大时会吸收较多的水分,使电导增加,绝缘电阻降低。测试绝缘电阻相当于在绝缘上施加了直流高压电荷,因而试品被充电,测试完毕之后应将试品充分放电,且放电时间应大于充电时间,而不致因残余电荷没能放尽,而使在重复测量时所得到的充电电流和吸收电流比前一次测量值小,因而造成吸收比减小,绝缘电阻值增大的现象。 影响绝缘电阻测量结果的因素有哪些? 1.电池电压不足,电池电压欠压过低,造成电路不能正常工作,所以测出的读数是不准确的。 2.测试线接法不正确,误将L、G、E三端接线接错,或将G、L连线G、E连线接在被测试品两端。 3.G端连线未接被测试品由于受污染潮湿等因素,造成电流泄漏引起的误差,造成测试不准确,此时必须接好G端连线防止泄漏电流引起误差。 4.干扰过大,如果被测试品受环境电磁干扰过大,造成仪表

实验九电导法测定弱电解质的解离平衡常数

实验十一 电导率的测定及应用 一 实验目的 1. 测定KCl 水溶液的电导率,求算它的无限稀释摩尔电导率; 2. 用电导法测定醋酸在水溶液中的解离平衡常数; 3. 掌握DDS 一11A 型电导率仪的测量原理和使用方法; 二 实验原理 1. 电解质溶液的导电能力通常用电导G 来表示,它的单位是西门子(Siemens),用符号S (西)表示。若将某.电解质溶液放入两平行电极之间,设电极间距为l ,电极面积为A ,则电导可表示为: G =к l A (11一1) (11一1)式中,к为该电解质溶液的电导率,单位为S ·m -1,它的数值与温度、溶液组成及电解质种类有关;l/A 称为电导池常数;它的单位为m -1。 在讨论电解质溶液的导电能力时,常用摩尔电导率Λm 这个物理量,它与电导率к、溶液浓度c 之间的关系如下: Λm =к/c (11一2) 摩尔电导率的单位为S ·m 2·mol -1. 2. Λm 总是随溶液浓度的降低而增大。对强电解质稀溶液而言,其变化规律用科尔劳施(Kohlrausch)经验公式表示: c A m m -Λ=Λ∞ (11一3) (11一3)式中,Λ m ∞ 为无限稀释摩尔电导率。对特定的电解质和溶剂来说,在一定温度下, A 是一个常数。所以将Λ m 对c 作图得到的直线外推,可求得该强电解质溶液无限稀释摩 尔电导率 Λm ∞ 。 3. 对弱电解质,其Λm ∞ 无法利用(11一3)式通过实验直接测定,而是根据离子独立运动定律,应用强电解质无限稀释摩尔电导率计算出弱电解质无限稀释摩尔电导率,也可以从正、负两种离子的无限稀释摩尔电导率加和求得: ∞ --∞++∞Λ+Λ=Λ,,m m m νν (11一4) (11一4)式中,∞+Λ,m ,∞ -Λ,m 分别表示正、负离子的无限稀释摩尔电导率。不同温度下醋酸溶液Λ m ∞ 见表11一1。 表11一1不同温度下醋酸溶液的Λ m ∞

紫外分光光度法测定未知物

紫外分光光度法测定未知物 1.仪器 1.1紫外分光光度计(UV-1801型);配石英比色皿(1cm)2个 1.2容量瓶(100mL):10个;容量瓶(250mL)1个 1.3吸量管(10mL、5mL):各1支 1.4移液管(20mL、25mL、50mL):各1支 2.试剂 2.1标准溶液(1mg/mL):维生素C、水杨酸、苯甲酸、山梨酸、邻二氮菲分别配成1mg/mL的标准溶液,作为储备液。 2.2未知液:浓度约为(40~60ug/mL)。(其必为给出的五种物质之一) 3.实验操作 3.1比色皿配套性检查 石英比色皿装蒸馏水,以一只比色皿为参比,在测定波长下调节透射比为100%,测定其余比色皿的透射比,其偏差应小于0.5%,可配成一套使用。 3.2未知物的定性分析 将五种标准储备液均稀释成10ug/mL的试液(配制方法由选手自定)。以蒸馏水为参比,于波长200~350nm范围内扫描五种溶液,绘制吸收曲线,根据所得到的吸收曲线对照标准谱图,确定被测物质的名称,并依据吸收曲线确定测定波长。五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参考考考考附图附图附图附图。。。。 3.3未知物定量分析 根据未知液吸收曲线上测定波长处的吸光度,确定未知液的稀释倍数,并配制待测溶液3份,进行平行测定。 推荐方法 3.3.1维生素C含量的测定:准确吸取1mg/mL的维生素C标准储备液50.00mL,在250mL容量瓶中定容(此溶液的浓度为200ug/mL)。再分别准确移取1、2、4、6、8、10mL上述溶液,在100mL容量瓶中定容(浓度分别为2、4、8、12、16、20 ug/mL)。准确移取20.00mL维生素C未知液,在100mL容量瓶中定容,于

电导测定及应用

实验十 电导测定及应用 一、实验目的 1. 用电导法测定电解质溶液的摩尔电导,计算弱电解质溶液的电离平衡常数。 2. 掌握电导率仪的使用方法。 二、实验原理 电解质溶液是靠正负离子的迁移来传递电流,其导电能力与离子所带电荷,温度及溶液浓度有关,因此通常用摩尔电导来衡量电解质溶液的导电能力。摩尔电导率Λm 是指把含有1mol 的电解质溶液置于相距为单位距离的电导池的两个平行电极之间,这时所具有的电导。Λm 与浓度c 的关系为Λm =k / c 。 在弱电解质溶液中,只有已电离的部分才能承担传递电量的任务。在无限稀释的溶液中可认为弱电解质已全部电离,此时溶液的摩尔电导率为Λm ∞ ,可用离子的极限摩尔电导率相加而得。根据离子独立移动定律 Λm ∞=Λm ∞,+ +Λm ∞,— Λm ∞,+ 与Λm ∞,—分别表示正负离子在无限稀释时的摩尔电导率。而一定浓度下的电解质的摩尔电导率Λm 与无限稀释溶液中的摩尔电导率Λm ∞是有差别的,由两个因素造成的,一是电解质的不完全离解,二是离子间存在着相互作用力,所以Λm U+∞=U+,U-∞=U-,即 对于AB Kc,与浓度C 及电离度α有如下关系 在一定温度下,由实验测量不同浓度下的Λm 值,可得到Kc 值。 三、仪器与药品 1. 电导率仪 1台 2. 恒温槽 1台 3. 移液管(10ml ) 5支 4. 带塞(木塞)的试管 5支 5. 0.1000mol/l HAc 溶液 四、实验步骤: 1. 调节恒温槽温度为(25±0.1)℃。

2. 按要求接通电导率仪 3. 用移液管取20ml0.1mol/l的HAc溶液放入清洁干燥的试管中,将电极先用电导水荡洗并用滤纸吸干(滤纸切勿触及铂黑!),然后用待测溶液冲洗后,放入待测液中恒温10min,测量其电导率,重复一次。 4. 再用移液管从该溶液中吸取10ml溶液放入干净的试管中,加入10ml电导水作为下一个浓度的待测液,混合均匀,待温度恒定后,测其电导率。如此操作,共稀释4次。倒去醋酸,洗净电导池最后用电导水淋洗。注入20ml电导水,测其电导率。 实验完毕,将仪器复原,器皿洗净。 五、数据记录与处理 已知298.2K时,无限稀释溶液中离子的无限稀释离子摩尔电导率(数据在手册中查找)计算醋酸的Λm∞ 计算各浓度醋酸的电解度和离解常数K 六、注意事项 1. 本实验配置溶液时,均需用电导水。 2. 测电导水的电导时,铂黑电极要用电导水冲洗干净,使用电极时不可互换。 3. 浓度和温度是影响电导的主要因素,故移液管当清洁。温度对电导有较大影响,所以整个实验必须在同一温度下进行。每次用电导水稀释溶液时,需温度相同。因此可以预先把电导水装入锥形瓶,置于恒温槽中恒温。 七、思考题 1. 本实验为什么要使用铂黑电极?使用铂黑电极应注意些什么? 2. 实验最后为什么要测定水的电解率? 3. 铂电极镀铂黑的目的是什么?

电导测定的基本原理

电导测定的应用 基本原理: 1.弱电解质电离常数的测定 本实验是通过对不同浓度HAc溶液的电导率的测定来确定电离平衡常数 对于HAc,在溶液中电离达到平衡时,电离平衡常数Kc与原始浓度C和电离度α有以下关系: HAc H+ + Ac- t=0 C 0 0 C(1-α) Cα Cα t=t 平衡 K= (Cα)2 =Cα 2 (1) C(1-α) 1-α 当T一定时,K一般为常数,因此,在确定c之后,可通过电解质α的测定求得K。电离度α等于浓度为c时的摩尔电导率Λm与溶液无限稀释时的摩尔电导率之比,即 α=Λm/Λ∞m (2) 将(2)代入(1) K= CΛ2m/ [Λ∞m(Λ∞m-Λm)] (3) 整理得 CΛm = K(Λ∞m)2 (4) Λm- KΛ∞m 以CΛm对1/Λm作图,其直线的斜率为K(Λ∞m)2 ,如知道Λ∞m值(可有文献查得),就可算出K。 文献:25℃时无限稀释的HAc水溶液的摩尔电导率=3.907*10-2(S·m2·m-1) 电解质溶液的导电能力通常用电导G来表示,若将电解质溶液放入两平行电极之间,设电极的面积为A,两电极的间的距离为l,则溶液的电导G为: G = к(A / l) (5) 即к= G * 1 / A = G K cell 来表示,它的式中к为该溶液的电导率,其单位是S.m-1;l/A为电导池常数,以K cell 单位为m-1。 由于电极的l和A不易精确测量,因此在实验中用一种已知电导率的溶液先求出电导池的常数Kcell,然后再把欲测的的溶液放入该电导池中测出其电导值,在根据上式求出其电导率。 在讨论电解质溶液的电导能力时常用摩尔电导率(Λm)这个物理量。摩尔电导率与电导率的关系:

紫外分光光度法测定蛋白质含量实验报告.docx

紫外分光光度法测定蛋白质含量 一、实验目的 1.学习紫外光度法测定蛋白质含量的原理; 2.掌握紫外分光光度法测蛋白质含量的实验技术。 二、实验原理 1.测蛋白质含量的方法主要有:①测参数法:折射率、相对密度、紫外吸收等;②基于化学反应:定氮法、双缩脲法、Folin―酚试剂法等。本实验采用紫外分光光度法。 2.蛋白质中的酪氨酸和色氨酸残基的苯环中含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280nm附近(不同蛋白质略有不同)。在最大吸收波长处,吸光度与蛋白质溶液的浓度服从朗伯―比尔定律。 利用紫外吸收法测蛋白质含量的准确度较差,原因有二:①对于测定那些与标准蛋白质中酪氨酸和色氨酸含量差异较大的蛋白质,有一定误差,故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质;②样品中含有的嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。 三、仪器与试剂 TU―1901紫外可见分光光度计、标准蛋白质溶液3.00mg·mL-1、0.9%NaCl 溶液、试样蛋白质溶液。 10mL比色管、1cm石英比色皿、吸量管。 四、实验步骤 1.绘制吸收曲线 用吸量管吸取2mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在190~400nm间每隔5nm测一次吸光度Abs,记录数据并作图。 2.绘制标准曲线 用吸量管分别吸取1.0、1.5、2.0、2.5、3.0mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在波长280nm处分别测其吸光度,记录数据并作图。 3.样品测定 取适量浓度试样蛋白质溶液,在波长280nm处测其吸光度,重复三次。在已经得到标准曲线的情况下,为了使测量结果准确度高,待测溶液的浓度需在标准曲线的线性范围内,所以,先测定试样蛋白质原液的吸光度(1.363),估算浓度为2.0960 mg·mL-1,再将原试液稀释至5倍(即取2mL试液,用0.9%NaCl 溶液稀释至刻度,摇匀),估算浓度为0.4192 mg·mL-1,测吸光度,重复三次五、数据处理与结果分析

纯水电导率分析仪的电导率测量影响因素

纯水电导率分析仪的电导率测量影响因素 超纯水测量设备用户可选测量参数:电导、温度、电阻、电导率、盐度、电阻率和总溶解固体 RRT电阻比率技术()提供的超纯水测量准确性 新型内置温度传感器的测量管 多点校准使得同一个测量管可以准确涵盖宽范围的样品测量 从超纯水到3S的水体,内置自动量程选择功能 非散失性存储器可储存100组读数和6个电导管资料 线性和非线性温度补偿 三种温度补偿选择:输入线性温度补偿系数、预置非线性温度补偿曲线(两条)、自行设置非线性补偿曲线(六条) 微处理器操控、超大液晶显示、触感式按键、选单驱动式操作软件、双向RS232接口电导率测量主要用来检测水的纯净度,是检测水中离子杂质的一种有效、简便和可靠方法。纯水电导率分析仪分为现场测量、实验室测量、在线测量等几种类型。但并不是每种仪表都适用于超纯水/高纯水电导率测量。 在理论上纯净的水中只有两种离子,他们是水分解产生的H+和OH-。电导率是的0.055μS/cm对应不含任何杂质的水样在25℃下的电导率。 超纯水的电导率由于很小,所以比较难以显示。因此往往用电阻率(MΩ.cm)来表示其纯净度。电阻率为电导率的倒数。 温度对电导率的影响 电导率在很大程度上受水样温度的影响,水样温度越高则离子活性越高,电导率越高。我们通常使用温度系数α来表征电导率受温度的影响状况,不同介质的温度系数不同,超纯水与糖浆的温度系数较高,而低浓度酸碱溶液的温度系数相对较低。 实际上,介质的温度系数α不是常数而是随温度的变化而变化。需要注意,任意温度时的温度系数总是以25℃参考温度为基准,也就是说α(T)并不是电导率—温度曲线在温度T

电导的测定及应用实验报告

实验名称电导的测定及其应用 一、实验目的 1、测量KCl水溶液的电导率,求算它的无限稀释摩尔电导率; 2、用电导法测量醋酸在水溶液中的解离平衡常数; 3、掌握恒温水槽及电导率仪的使用方法。 二、实验原理 1、电导G:对于电解质溶液,常用电导表示其导电能力的大小。电导 G就是电阻R的倒数,即G=1/R。电导的单位就是西门子,常用S表 示。1S=1Ω-1 2、电导率或比电导:κ=Gl/A (2、5、1) 其意义就是电极面积为及1m2、电极间距为lm的立方体导体的电导, 单位为S·m-1。 对电解质溶液而言,令l/A = K cell,K cell称为电导池常数。 所以κ=G l/A =G K cell 3、摩尔电导率:Λm=κ/ C (2、5、2) 强电解质稀溶液的摩尔电导率Λm与浓度有如下关系: Λm=Λ∞m- A C(2、5、3) Λ∞m为无限稀释摩尔电导率。可见,以Λm对C作图得一直线,其截距即为Λ∞m。 弱电解质溶液中。在无限稀释的溶液中可认为弱电解质已全部电离。此时溶液的摩尔电导率为Λ∞m =V+ Λm ,++ V- Λm ,-(2、5、4) 根据电离学说,可以认为,弱电解质的电离度α等于在浓度时的摩尔电导Λ与溶液在无限稀释时的电导Λ∞m之比,即:α=Λm/ Λ∞m(2、5、5) 4、弱电解质电离平衡常数:弱电解质AB型的电离平衡常数:Kθ=(Cα2)/Cθ(1-α)(2、 5、6) 所以,通过实验测得α即可得Kθ值。 把(2、5、4)代入(2、5、6)式可得 Kθ=(CΛ∞m2)/ Λ∞m Cθ(Λ∞m-Λm) (2、5、7) 或CΛm=(Λ∞m2) KθCθ1/Λm -Λ∞m KθCθ 以CΛm对1/Λm作图,其直线的斜率为(Λ∞m2) KθCθ,如知道Λ∞m值,就可算出Kθ。 三、实验仪器、试剂 仪器:梅特勒326电导率仪1台;电导电极一只,量杯(50mL)2个;移液管(25mL)3只; 洗瓶一只;洗耳球一只。 药品:10、00(mol/m3)KCl溶液;0、093mol/dm3)HAc溶液;电导水。 四、实验步骤 1、打开电导率仪开关,预热5min。

电导法测定酶活力

电导法测定酶活力 摘要 我们已经测定了脲酶,脂肪酶,葡萄糖苷酶水解过程中的电导率的变化,这些变化严格地与前两个体系中碳酸铵的释放和第三个体系中氨基的数目成正比。电导率的方法运用在酶和各种生理液浓度的测定中。 引言 Sjoquist,Oker-Blom,Henri,des Bancels 和Bayliss 证实了用电导法测定酶活性的可能性。最近,Northrop在他的课程中也用了这种方法研究胃蛋白酶,测定了卵蛋白盐酸盐的的水解,解释了水解底物的依赖性电离,并研究有关机制的胰蛋白酶消化的动力学。Euler 欧拉一直采用这种方法研究甘肽的水解。Bayliss通过研究脲酶,脂肪酶,葡萄糖苷酶的行为证实了电导率的可能性,但没有报道过任何与这些系统相关的研究。 以电导判断为目的,酶反应可以归类为:(1)那些释放强烈电子的,(2)释放那些弱离的电解质,(3)那些传统被认为非电解质的。脲脲酶,sinigrin- myrosin,和丙酮醛-乙二醛是属于第一类,而蛋白质水解系统,会有氨基酸的产生,属于第二类。第三组的代表是碳水化合物和大多数的葡萄糖苷酶,作用于他们各自的底物,释放糖类。该反应属于第一组,显然最适合电导研究。第二组反应有一定的局限性和一定的困难,但是随后能使用一个敏感的设备。第三组反应,就目前来说,超过了其研究的范围,在他们的使用范围内,有一定的优势,在硼酸盐,硫酸盐,和钼酸存在条件下,多元醇像糖一样表现出导电性增强。 最强烈的反对意见,提出了该方法不能研究缓冲系统。反应过程中不仅有因为反应的变化,而且有水解产物的累积,为了确定酶的活性,我们必须关注最初阶段的反应过程,使干扰因素控制在最小值。在这段阶段,电导率的方法也许是唯一一个有任何的优势且可以应用方法。因为它能够给人们提供早期反应阶段的大量数值。由于在这些反应中介质的pH值很少有变化,Northrop在pH值6.2至6.4胰蛋白酶明胶的水解不伴pH值的改变而改变。在低浓度电解质中杂质的存在不影响测量,因为可以选择适当的电导率细胞给出须需要的精度。 与其他物理方法相比,电导率测量有着在反应过程中不受干扰和能适用于极小批量底物中的优势。 实验部分 用目前的方法对脲-脲酶,精氨酸-精氨酸酶-脲酶,蛋白胨-胰蛋白酶-激酶和杨素- 苦杏仁酶进行了研究。 通常采用Kohlrausch电桥法测量电导率。一个校准Kohlrausch滑线,4号电阻箱和一个Arrhenius-Ostwald细胞组成了电路的元件。一个5毫升整数倍的底物溶液对工作是必要的。采用铂电极,提供的细胞是在水中浸泡,恒温维持在30.0 ℃±0.1 ℃。当高频电流源和一个电话的听筒用于零点检测时,提供1000 Hz的音频振荡器被使用。该导电细胞的电容通过一个与电阻箱并联的的空气冷凝器平衡。在反应开始,在很短的时间间隔内读数,后来时间间隔较长。利用相对应的酶底物浓度,大量的实验同时在单一的反应容器进行时。对在一定的时间间隔内从反应容器中倒出的等份反应混合物进行分析。因此该反应过程可由一个完全独立的化学方法而知。 脲-脲酶。利用丙酮使一个百分之一的尿素溶液(Kahlbaum)和大豆脲酶的水溶液沉淀。由Sastri 1935年提出的方法有碳酸铵的释放,包括在丙酮中用标准酒精盐酸溶液(0.1 N)滴定等份反应混合物。 精氨酸-精氨酸酶-脲酶。精氨酸碳酸盐是在5%的d-精氨酸中通入二氧化碳至饱和制备而成的。过量的二氧化碳是通过电解溶液中的氢冒泡而赶出的。因此获得的精氨酸碳酸盐溶液呈稳定电导率值。水溶性萃取液丙酮使公羊肝中的提取物沉淀,因此可作为精氨酸酶的来源。因为脲酶几乎瞬间水解、随着精氨酸分解逐步释放,我们需要使用过多的脲酶以确保反

分光光度法测定DNA的浓度和纯度Word版

分光光度法测定DNA的浓度和纯度 【目的要求】: 了解:分光光度法测定DNA浓度和纯度的原理; 掌握:分光光度法测定DNA浓度和纯度的技术方法; 熟悉:分光光度法测定DNA浓度和纯度的实验操作步骤和注意事项。 【实验原理】: 前面提取得到的DNA的浓度和纯度都是未知的,在后续的DNA酶切、连接及转化等实验中需要一定的浓度和纯度要求,因此要测定DNA的浓度和纯度。 测定DNA的方法通常有:紫外分光光度法;琼脂糖凝胶电泳法(也叫荧光光度法) (1)紫外分光光度法: 组成DNA的碱基均具有一定的吸收紫外线特性,最大吸收值在波长为250~270nm之间,腺嘌呤的最大紫外线吸收值在260.5nm,胞嘧啶:267nm,鸟嘌呤:276nm,胸腺嘧啶:264.5nm,尿嘧啶:259nm。这些碱基与戊糖、磷酸形成核苷酸后其最大吸收峰不会改变,但核酸的最大吸收波长是260nm,吸收低谷在230nm。这个物理特性为测定核酸溶液浓度提供了基础。在波长260nm紫外线下,10OD值的光密度相当于双链DNA浓度为 50μg/ml;单链DNA或RNA为40μg/ml;单链寡聚核苷酸为20μg/ml。可以此来计算核酸样品的浓度。 分光光度法不但能够确定核酸的浓度,还可以通过测定在260nm和280nm的紫外线吸收值的比值(A260/A280)估计核酸的纯度。DNA的比值为1.8,RNA的比值为2.0。若DNA比值高于1.8,说明制剂中RNA尚未除尽。RNA、DNA溶液中含有酚和蛋白质将导致比值降低。270nm存在高吸收表明有酚的干扰。当然也会出现既含蛋白质又含RNA的DNA溶液比值为1.8的情况,所以有必要结合凝胶电泳等方法鉴定有无RNA,或用测定蛋白质的方法检测是否存在蛋白质。紫外分光光度法只用于测定浓度大于0.25μg/ml的核酸溶液。 (2)琼脂糖凝胶电泳法(荧光光度法):

电导的测定及其应用实验报告

电导得测定及其应用 一、实验目得 1、测量KCl水溶液得电导率,求算它得无限稀释摩尔电导率。 2、用电导法测量醋酸在水溶液中得解离平衡常数. 3、掌握恒温水槽及电导率仪得使用方法。 二、实验原理 1、电导G可表示为:(1) 式中,k为电导率,电极间距离为l,电极面积为A,l/A为电导池常数Kcell,单位为m-1. 本实验就是用一种已知电导率值得溶液先求出Kcell,然后把欲测溶液放入该电导池测出其电导值G,根据(1)式求出电导率k。 摩尔电导率与电导率得关系:(2) 式中C为该溶液得浓度,单位为mol·m-3。 2、总就是随着溶液得浓度降低而增大得。 对强电解质稀溶液,(3) 式中就是溶液在无限稀释时得极限摩尔电导率。A为常数,故将对作图得到得直线外推至C=0处,可求得。 3、对弱电解质溶液,(4) 式中、分别表示正、负离子得无限稀释摩尔电导率。 在弱电解质得稀薄溶液中,解离度与摩尔电导率得关系为: (5) 对于HAc,(6) HAc得可通过下式求得: 把(4)代入(1)得: 或 以C对作图,其直线得斜率为,如知道值,就可算出K o 三、实验仪器、试剂 仪器:梅特勒326电导率仪1台,电导电极1台,量杯(50ml)2只,移液管(25ml)3只,洗瓶1只,洗耳球1只 试剂:10、00(mol·m-3)KCl溶液,100、0(mol·m—3)HAc溶液,电导水 四、实验步骤 1、打开电导率仪开关,预热5min。 2、KCl溶液电导率测定: ⑴用移液管准确移取10、00(mol·m-3)KCl溶液25、00ml于洁净、干燥得量杯中,测定其电导率3次,取平均值。 ⑵再用移液管准确移取25、00 ml电导水,置于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值. ⑶用移液管准确移出25、00 ml上述量杯中得溶液,弃去;再准确移入25、00 ml电导水,只于

相关文档
相关文档 最新文档