文档库 最新最全的文档下载
当前位置:文档库 › 2013年高炉炼铁技术进展

2013年高炉炼铁技术进展

2013年高炉炼铁技术进展
2013年高炉炼铁技术进展

2013年高炉炼铁技术进展

1 2013年我国高炉炼铁生产现状

1.1 2013年我国炼铁生产情况

2013年我国生铁产量为70897万t,比2012年增长6.24%;重点统计单位产生铁61147万t,比2012年增长7.22%;其他企业产生铁9750万t,比2012年增长0.45%。重点企业生铁产量增幅大于其他企业,说明我国炼铁产业集中度升高。生铁产量的增长拉动了国产铁矿石产量的增长和铁矿石进口量的增长。2013年我国铁矿石产量为145101万t,比2012年增长9.94%;铁矿石进口量为81315万t,比2012年增长9.4%。

2013年河北省产铁17028万t,比2012年增长3.22%,居全国首位,占全国总产量的24.02%;山东省产生铁6580万t,比2012年增长1.92%,居全国第三位,占全国总产量的9.28%;江苏省产生铁6691万t,比2012年增长11.49%,居全国第二位,占全国总产量的9.44%。辽宁省产生铁5698万t,比2012年下降7.23%,居全国第四位,占全国总产量的8.04%。

2013年我国有18家钢铁企业生铁产量超过1000万t。2013年鞍钢生铁产量为2373.24万t, 居全国首位;沙钢生铁产量为1875.59万t,居第二位。生铁产量500万-1000万t的企业有27家。

1.2 高炉炼铁部分技术经济指标在进步

2013年我国重点钢铁企业高炉燃料比为547.36kg/t,比2012年下降0.43kg/t;入炉焦比为362.63kg/t,比2012年下降1.68kg/t;喷煤比为149.09kg/t,比2012年下降0.32kg/t;焦丁比为35.64 kg/t,比2012年升高1.46kg/t;入炉矿品位为56.35%,比2012年下降0.49%;热风温度为1169.90℃,比2012年下降24.49℃;利用系数为2.46t/(m3·d),比2012年下降0.04t/(m3·d)。2013年我国重点钢铁企业高炉技术经济指标多数在优化,具体情况见表1。

表12013年我国重点钢铁企业高炉技术经济指标

据统计,2013年我国重点钢铁企业中有44家企业燃料比和煤比有所下降,有40家企业焦比下降。这是在入炉矿含铁品位和风温同时下降条件下实现的。取得较好成绩的主要原因是炼铁企业加大了对优化配矿的研究,在原料质量下降、使用百家矿、成分波动大的情况下,实现了烧结矿和焦炭质量提高,提高了高炉操作水平,确保了高炉生产稳定顺行。

目前,因进口矿价格与价值发生巨大扭曲,使我国球团矿比烧结矿价格贵,致使球团矿减产,2013年我国约7000万t球团生产能力放空。高品位块矿涨价且供应紧张,严重影响了炼铁炉料结构的优化,不利于炼铁系统节能减排。

2 高炉燃料比小幅下降

2013年重点钢铁企业中有28家燃料比上升,这说明部分炼铁企业指标在恶化,企业之间技术发展很不平衡。钢铁企业实现减量化用能的重点工作是要在努力降低炼铁燃料比上下功夫。2013年我国重点钢铁企业焦炭质量得到改善:M40为86.46%,比2012年升高0.18%。M10为6.32%,比2012年降低0.07%。焦炭灰分为12.47%,比2012年下降0.09%。硫分0.77%,比2012年升高0.03%。烧结矿质量有所下降:铁品位为54.38%,比2012年下降0.55%;转鼓强度为79.69%,比2012年下降0.79%;烧结矿碱度与2012年持平。

2013年我国重点钢铁企业有44家企业高炉燃料比下降,与2012年相比,燃料比降幅较大的企业有:冷水江、唐钢、苏钢、国丰、成钢等。

2013年燃料比较低的企业有:宝钢、首钢、邯钢、韶钢。

高炉工序能耗占钢铁联合企业总能耗的50%以上,高炉炼铁用能有78%是来自碳素燃烧。所以,降低高炉燃料比是钢铁企业节能减排工作的重点,也是减少污染物排放的主要手段。现在,我国高炉燃料比高于国际先进水平50-80kg/t。

下面分类介绍炼铁企业燃料比变化的情况。

(1)18家企业焦比和煤比同时下降,使燃料比下降。

高炉原燃料质量得到改善、热风温度的提高、操作水平提高等因素,可以实现焦比和煤比同时下降,进而使燃料比下降。2013年有18家企业属于这种情况,说明我国炼铁技术在提高。

(2)焦比下降幅度大于煤比升高幅度,使燃料比下降。

降低炼铁燃料比主要是要降低焦比。提高喷煤比后,要实现煤粉替代焦炭的高置换比,才会使燃料比不升高。这也是最优、最经济提高喷煤比的标准。提高热风温度是提

高喷煤比的优先条件,也是提高煤粉置换比的重要条件。大多数钢铁企业尽最大努力用这种办法来降低炼铁燃料比,这符合炼铁技术发展大方向。提高炼铁精料水平是降低燃料比的重要手段之一和有效的措施,特别是要提高焦炭质量。2013年有14家企业实现了焦比下降幅度大于煤比升高幅度,使炼铁燃料比得到下降。

(3)煤比下降幅度大于焦比升高幅度,风温提高,使燃料比下降。

这种情况是风温变化、高炉操作水平提高和原燃料质量改善等方面的体现。高炉操作要进行科学布料,提高煤气利用率,降低生铁含硅量等。

(4)与2012年相比,2013年有28家重点钢铁企业燃料比升高。

2013年燃料比升高的企业数量大大少于燃料比降低的数量,体现出重点钢铁企业炼铁生产技术的进步。技术进步得益于生产条件的改善、高炉操作水平的提高等。

与此同时,2013年我国有10家企业煤比和焦比同时升高,有13家企业焦比升幅大于煤比降幅,有4家企业煤比升幅大于焦比降幅。造成这些企业燃料比上升的主要原因是原燃料质量恶化,或高炉顺行状态不好,不得不退煤比,提高焦比,以维持高炉顺行。个别企业有炉况处理不当的现象。

3 炼铁工序能耗取得较好成绩

2013年我国重点钢铁企业炼铁工序能耗为398.09kgce/t,比2012年降低4.39kgce/t。指标较好的企业是:涟钢、安钢、新冶钢、敬业、建龙、沙钢。钢铁企业炼铁工序能耗最高值达474.03 kgce/t。

目前,部分钢铁企业的能源统计数据存在问题。一些企业没按国家和行业标准、规范进行能源数据统计。部分钢铁企业燃料比变化幅度与工序能耗变化幅度矛盾。出现燃料比上升,而炼铁工序能耗反而下降的现象。个别钢铁企业统计的燃料比中不含小块焦。一些钢铁企业高炉使用低品位铁矿石,燃料比和炼铁工序能耗理应是比较高的,但出现统计数据偏低的虚假现象。

炼铁工序能耗占联合企业总能耗的50%。所以,钢铁工业要降低吨钢综合能耗就必须努力降低炼铁工序能耗。高炉炼铁所需能量有78%是来自碳素燃烧。因此,炼铁燃料比低是炼铁工序能耗低的前提。要贯彻精料方针,努力提高热风温度,提高高炉操作水平。有TRT装置的企业,炼铁工序能耗要低一些。钢铁企业节能工作要从源头抓起,首先是要实现减量化用能(降低燃料比),然后是提高能源利用效率(提高风温和高炉煤气利用水平),第三是提高二次能源回收利用水平(安装TRT装置,水渣余热回收等)。

4 焦比下降

2013年我国重点钢铁企业高炉焦比362.63kg/t,与2012年相比降低1.68kg/t。2013年有40家企业焦比下降。降幅较大的企业有:冷水江、西林、成钢等。

2013年焦比较低的企业有:宝钢、武钢、兴澄、青岛、邢钢、首钢等。

国际领先水平的焦比是低于300kg/t。目前,我国还没有一座高炉年平均焦比低于300kg/t,而且约有16家企业高炉的焦比在400kg/t以上,企业最高的焦比为484.12kg/t。

支撑焦比下降的重要技术条件是:提高入炉矿含铁品位,改善原燃料质量,提高热风温度,提高高炉操作水平(高煤气利用率、低硅铁冶炼、高顶压),以及设备大型化等。

2013年我国有32家企业炼铁焦比上升。焦比升高的主要原因是高炉稳定顺行不好,炉料质量波动大,或高炉操作出现失误,被迫提高焦比,提高炉料透气性。高炉炼铁是以精料为基础,精料技术水平对高炉指标的影响率在70%。

5 喷煤比降低

2013年我国重点钢铁企业高炉喷煤比为149.09kg/t,比2012年下降0.32kg/t。与2012年相比,有29家企业喷煤比提高,提高煤比较多的企业有:重钢、西钢、沙钢、南京、冶钢、昆钢。

提高喷煤比的技术条件是:炉缸热量充沛。其措施有:高风温,富氧,脱湿鼓风;炉料转鼓强度高,入炉矿含铁品位高,渣铁比低,炉料透气性好,优化高炉操作,炉内煤气分布均匀;各风口煤粉喷吹均匀,喷吹煤质量好;矿石冶金性能好,使软熔带低且窄等。

2013年我国重点钢铁企业中喷煤比较高的企业有:营口中板、合钢、德龙、邢钢、长治、武钢等。

目前,我国高炉喷煤比呈下降的趋势。炼铁企业因原燃料质量恶化,高炉生产不稳定,已不再追求过高的喷煤比,而是寻求经济喷煤比,提高煤粉的置换比,实现炼铁成本最优化。

当前,钢铁企业已不再追求单一指标的先进,而是根据企业自身条件,寻找最经济喷煤比,最低燃料比,寻求最大经济效益。宝钢将喷煤比从200kg/t,降低到160kg/t左右,实现经济燃料比及最低炼铁成本。

6 热风温度呈下降趋势

2013年我国重点钢铁企业高炉热风温度为1169.90℃,比2012年降低24.49℃,这是统计范围变化造成的。2013年有50家企业热风温度得到提高,提高较多的企业有:天管、西钢、武钢、涟钢、永钢等。

提高热风温度的技术措施是:热风炉拱顶使用耐高温的硅砖,热风炉拱顶在烧炉和送风时的温差小于100-150℃,热风炉送风时间要控制在40-60min;热风炉蓄热砖要用高蓄热面积的格子砖(由7孔改为19-37孔砖),并涂上能吸热高辐射材料;提高热风炉废气温度(400-450℃),单烧高炉煤气的热风炉采用煤气和空气双预热技术;高炉和送风系统能够使用和接受高风温等。目前,我国一些企业热风温度偏低和热风炉寿命偏低的主要原因是使用的耐火砖质量差。

一些企业为降低投资,购买质量差的耐火砖,使风温达不到高风温水平,造成高炉长期得不到高风温、炼铁焦比高,其经济代价巨大,得不偿失。

2013年我国重点钢铁企业高炉热风温度较高的企业有:首钢公司、淮钢、宝钢、太钢等。

高风温是廉价的能源(用45%高炉煤气换来的),是炼铁的重大节能技术措施。风温提高100℃,可降低燃料比15kg/t。我国高炉炼铁技术与国际先进水平相比,最大差距是热风温度偏低(约差80-100℃),企业要在提高风温上下大功夫。

7 高炉休风率升高

2013年我国重点钢铁企业高炉休风率为1.82%,与2012年相比升高0.15%。休风率较低的企业有:川威、三明、衡管、永钢、攀钢。2013年我国重点钢铁企业高炉休风率偏高是一些企业压产,高炉作业率下降造成的。

高炉休风率低是高炉能够生产稳定顺行的主要标志,是高炉操作水平高和设备运行状态良好等方面的综合体现。高炉操作要实现生产稳定顺行,需要原燃料质量稳定,高炉操作不出现大的失误;设备管理要实行定检定修制度。

8 节能减排取得新进展

8.1 余热回收

目前,我国高炉有TRT近700套,煤气干法除尘597套,吨铁发电量得到提高。但平均发电量只有32度左右,尚有三分之一没达到设计能力。

目前,约有150座烧结机进行了烟气余热回收(但大多数没有达到设计能力)。主要是设计选取的烟气量和温度偏高,实际操作达不到,要进行补气工作。

2013年我国重点钢铁企业高炉煤气放散率为3.29%,比2012年降低0.65 %;焦炉煤气放散率为1.24%,比2012年增加0.24%。

8.2 环保治理

目前,我国烧结烟气脱硫设备有450多套,80%采用湿法,约有一半设备没有达到国家规定的排放指标,有60%采用石灰石膏法。由于各企业的情况差别较大,目前没有一套成熟的烧结烟气脱硫技术可以全面推广。国家已经提出烟气要进行脱硝,单纯脱硫已经不行了。我国已成功开发出活性炭烟气治理技术装备,价格比引进的低60%以上,可实现脱硫、脱硝、脱二噁英,以及脱除重金属,应大力推广。

炼铁的发展

炼铁的发展 由于人类对铁的需要量不断增加,人们把视线投向了地球本身,希望能在地球中找到所需要的铁,而不再是坐等“天外来客”的馈赠。为此人们作了不懈的努力。当人们学会了从矿石中提炼出铁以后,青铜时代就让位于铁器时代。在人类历史上,起过革命作用的原材料中铁应该居首位,无论在世界的哪个地区,冶铁技术的发明都是划时代的重大事件。 据研究,铁的大量出现是在公元前八世纪。在霍萨巴德的王宫贡物中(公元前720-705年)就发现了160吨铁,其中多是铁棒。公元前800年,欧洲转入早期铁器时期。炼铁知识传到不列颠,大约是在公元前500年。与此同时,约公元前400年,已由伊朗自东传到印度,也可能传到中国。欧洲早期铁器时代带触角木剑柄的剑与中国商周青铜剑之间就有很大的相似性。 制铁技术分为两部分:即冶炼和热锻。可能首先掌握并用于陨铁。 纯铁的熔点为1540℃。这个温度在公元19世纪前是不可能达到的。因此早期生产的锻铁都是固态铁。用木炭火在约1200℃的温度下,把铁矿石还原成基本上是纯的固态铁。还原出来的铁呈团块状,称为“坯铁”。这是一种固态铁、渣和未烧完木炭屑的混合物。有时要把这种坏铁破碎,靠敲击使小铁块相互分开。这种小铁块可以与其它部分区别开来。因为它们是可锻的,在敲击下变平。然后把它们放在锻炉加热,经过热锻,小铁块就能被锻接成大块。 早期的冶铁技术,大多采用“固体还原法”,即冶铁时,将铁矿石和木炭一层夹一层地放在炼炉中,点火焙烧,在650 ̄1000℃温度下,利用炭的不完全燃烧,产生一氧化碳,遂使铁矿石中的氧化铁被还原成铁。但是由于炭火温度不够高,致使被还原出的铁只能沉到炉底而不能保持熔化状态流出。人们只好待把铁炼成,炼炉冷却后,再设法将铁取出。这种铁块表面因夹杂渣滓而显粗糙,有的还不如青铜坚韧。后人们发现,炼出的铁反复加热,压延锤打,才能柔韧不脆。人们还发现再将红热的锻铁猛淬入冷水会变成坚韧的好铁,这种铁比青铜好。 最原始的炼铁炉是碗式炉。它只不过是在地上或岩石上挖出一个坑,风可以从鼓风器通过风嘴直接鼓入,碎矿石和木炭混装或分层装在烧红的炭火上,最高温度至少应达1150℃。这种炼炉没有出渣口,炉渣向下流到底部结成渣饼或渣底,有时则结成圆球,即渣球或渣粒。坯铁留在渣上面,在冶炼过程结束后,打

高炉炼铁炼钢工艺

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要

方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

炼铁高炉冶金技术的应用与发展

炼铁高炉冶金技术的应用与发展 改革开放以来,随着我国经济社会的高速发展,我国的冶金技术取得了巨大的进步,使得冶金炼铁效率得到了极大的提高,钢铁的生产质量也有了质的飞跃,有效的支撑了我国社会主义事业的发展,满足了经济社会发展的需要。 标签:炼铁高炉;冶金技术;应用;发展 前言 近年来,我国炼铁行业在经济快速发展的带动下,各方面都取得不错的进步,冶金技术在炼铁高炉中的普遍应用,更是明显的提高了经济效益,不仅促进了炼铁的发展,还促进了炼铁技术向节能环保方面的发展,在一定程度上提高了企业的竞争力,适应了经济市场的环境变化。因此,对炼铁高炉中的冶金技术有必要进行总结和进一步研究。 1 冶金技术及我国高炉炼铁的发展概况 从上世纪70年代末,我国全面引进先进的钢铁生产装备和技术开始,到现在发展了30多年,其技术日臻完善,提高了钢铁生产的效率。进入新世纪以来我国高炉炼铁利用系数呈现先升后降的趋势,显示出我国钢材业由供不应求逐渐转向供大于需的局面。并且根据有关数据显示,随着市场竞争和环保的需求,我国高炉炼铁的燃料也出现喷煤比高,焦比和燃料比降低的态势。而一些先进的高炉炼铁的燃料比已经低于490.00kg/t,焦比将近300kg/t,而高炉煤比则控制在一定的范围内,说明随着先进的冶金技术大规模的应用于高炉炼铁,我国高炉炼铁技术已经有了一个质的提升。 冶金技术主要是指从铁矿石等矿物中提取金属及其金属化合物,然后使用科学的加工方法将提取出的金属或其化合物制成具有一定性能的金属材料的过程和工艺。通常,常见的现代冶金技术主要有三种,即湿法冶金技术、电冶金技术和火法冶金技术。 首先,湿法冶金技术是指在溶液里进行冶金的过程,其温度一般要求不高。湿法冶金技术的步骤主要有:第一,浸出,是指使用能与矿石中金属反应的溶液,对矿石进行浸泡反应,金属通常以离子的形式呈现在溶液中,然后提取分离出来的金属。需要注意的是,在对比较复杂的矿石提取时,需要对矿石进行预处理,使金属成为混合物后在进行浸出提取。第二,净化,该过程主要对分离出来的含有金属的溶液进行处理,去除杂质的过程。第三,制备金属,对不含杂质的溶液进行电离、氧化还原反应等方法提取出所需要金属的过程。 其次,电冶金技术是指利用电能将所需金属提取出来的一种方法。电冶金技术可以分为电热和电化冶金两种,电热冶金主要是指将电能转化为热能来提取金属的过程,而电化冶金技术是指将溶液或熔体中的金属通过电化学反应进行提

高炉炼铁工艺关键技术介绍

高炉炼铁工艺关键技术介绍 王维兴<中国金属学会北京100711) 136********yejinbu@https://www.wendangku.net/doc/d41798675.html, 钢铁工业是国民经济的基础产业,也是能源消耗的大户,约占我国总能耗的16.3%,占全国GDP的3.2%。随着我国工业化进程的快速发展,钢铁需求量还要增长,随之带来能耗的急剧增加,污染物排放加剧,产业发展与资源环境的矛盾日趋尖锐。因此,推进钢铁行业节能减排,对加快钢铁工业结构调整,切实转变钢铁工业发展方式,促进节约、清洁和可持续发展具有重要意义。 目前,铁矿石的价值与价格发生严重扭曲,铁矿石价格高居不下和钢材价格下跌,使钢铁企业微利或亏损。这种态势将会维持较长时间。为此,企业要加快技术改造、产品升级、结构调整,进行精细化管理,用系统工程<技术、经济、管理向结合,统筹规划等),科学地、可持续地发展企业。 炼铁系统能耗、污染物排放、生产成本约占钢铁联合企业的70%。所以,炼铁系统要完成钢铁企业节能减排,降低生产成本的重任。高炉的能耗占钢铁企业总能耗的近50%。高炉炼铁所需能源78%是由碳素<焦炭和煤粉=燃料比)燃烧提供的,热风提供19%的能量,炉料化学反应热占3%。因此,降低燃料比是炼铁节能减排、降低生产成本的主攻方向。 高炉炼铁是以精料为基础。精料水平对炼铁指标的影响率在70%,高炉操作占10%,企业管理占10%,设备运行状态占5%,外界因素占5%。当前,铁矿石品位下降是国内外大趋势,适度使用低

品位矿;我们应在“稳”、“均”、“少”、“好”等方面下功夫。 炼铁系统的关键生产技术介绍: 1.烧结、球团工序 低质矿预处理、预混合和强力混合技术、烧结机厚料层、防漏风、余热回收利用和高效低成本烟气净化技术。烧结机大型化、现代化的集成技术。 <1)加快推广的关键技术 1)原料综合技术经济评价技术(采购、物流、贮运和钢铁冶炼最终效益>和管理技术; 2)原、燃、辅料的高效加工(破碎、细磨、干燥、再细磨>技术; 3)高精度及微量精确自动称量配料设备及技术; 4)高效强力混合、高效强化造球和大型圆盘造球机高效強化造球、生球筛分、破碎技术; 5)高配比褐铁矿、高铁、低硅烧结技术; 6)提高烧结烟气和冷却废气的余热发电效率。 7)成熟、先进、经济的烧结烟气综合治理技术<脱硫、脱硝、除二噁英、除尘等)。 <2)需积极探索、研发、加快烧结工程化的关键技术 1)新型低漏风率、长寿命、高质量和高效节能型大型烧结机、带式焙烧机、链箅机-回转窑氧化球团成套设备设计和制造技术;

钢铁生产新技术

钢铁生产新技术 摘要:无论是长流程钢厂还是短流程钢厂,其消耗大量原燃辅料生产出钢铁产品的特点,决定了其必须把节能减排作为实现“绿色钢铁”和可持续发展的重要内容。钢铁工业做好节能减排工作,除了要拥有先进的管理理念,不断采用节能减排新技术设备、优化现有工艺设备也是重要的方面。钢铁生产流程复杂,生产工序比较多,包括烧结、焦化、炼铁、炼钢、连铸、热轧和冷轧等,只有做好每个工序的节能减排工作以及工序之间的科学衔接,才能真正实现钢铁生产的节能减排。 关键词:钢铁,生产流程,节能减排,科学衔接 正文:从广义的角度来看,炼铁生产分为三个工序:烧结、焦化和炼铁。在钢铁企业中,炼铁系统的能耗约占70%左右,单是高炉就占了总能耗的50%左右。另外,烧结、焦化系统生产过程中产生的排放物对环境也会造成较大的影响。因此,做好炼铁生产的节能减排工作,对降低吨铁成本、提高钢铁企业的竞争力、建设节约型企业、改善环境均具有非常重要的意义。 1、烧结工序 对于烧结过程来说,除尘和废气处理是比较重要的两个方面。其中,废气处理是目前钢铁行业面临的一个重大课题。除一氧化碳、二氧化碳、硫氧化物和氮氧化物这类典型的燃烧产物外,烧结过程中还会产生二口恶英、呋喃等产物,其回收处理需要安装综合气体净化设备。近年来,有关方面不断进行工艺技术创新,谋求先进适用的解决方案,并取得一系列进展。 [1] MEROS工艺。MEROS(Maximized Emission Reduction of Sintering)通过一系列处理工艺,能将烧结废气中的粉尘、酸性气体、有害金属元素和有机复合物等脱除到令企业满意的水平。MEROS工艺由下述工序组成:吸收剂喷入烧结废气流当中,在调节反应器内进行废气调节,在布袋除尘器内进行废气除尘,粉尘循环返回废气流中,用增压风机从MEROS系统中抽取烧结废气。2005年~2006年,经过在建成的示范工厂进行的大量试验,验证了MEROS工艺在技术和经济上的可行性。随着工业规模的MEROS装置的运行,工厂的排放不仅可以满足今天的环保标准,而且还可以满足将来的环保标准。 eposint系统。在eposint工艺中,从选定风箱中抽出烟气用于再循环。该工艺可以灵活应对各种不同运行工况,并可极大地减少从烟囱外排废气中的粉尘和污染物单位排放量。 EOS系统。EOS是一种回收利用烧结工序废气的优化排放的烧结技术系统,在有关钢厂应用后表明,可明显减少废气排放量。 [2] 此外,日本有关钢厂还开发成功高温还原性能好的低二氧化硅、低氧化镁和低氧化铝的烧结矿技术,保证了高炉的顺行和节能。同时,利用环形炉对高炉不便利用的含锌高的粒尘,在脱锌处理的同时制成直接还原球团矿,加入高炉后比烧结矿的节焦效果更好。 2、焦化工序 对于焦化工序来说,近年来比较成熟的先进技术有: 干熄焦。干熄焦是干法熄灭炽热焦炭的简称,英文缩写为CDQ。干法就是不用水熄红焦,其原理是用冷惰性气体在专有的容器内与炽热的红焦进行热交换。焦炭冷却后,循环的惰性气体将焦炭热量带出并进行回收,对钢铁企业有较大的节能和环保效益。 煤干燥和预成型技术。该技术可以实现节能和扩大廉价非黏结煤的利用。 SCOPE21焦炉。该新型焦炉是为了提高焦炉生产效率而开发的新一代焦炉设备,该焦炉设备可以大幅缩短生产时间,生产效率较一般焦炉提高2.4倍,能源消耗降低20%。[3] 3、高炉炼铁 对于高炉生产而言,近年来有以下几个趋势值得关注: 大型化、高效化。这是近年来以及未来高炉设备的主要发展趋势。目前,世界上5000

高炉炼铁简介

高炉炼铁简介 高炉炉前出铁 高炉生产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从位于炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅助燃料)中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气,在炉内上升过程中除去铁矿石中的氧,从而还原得到铁。炼出的铁水从铁口放出。铁矿石中不还原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。简史和近况早期高炉使用木炭或煤作燃料,18世纪改用焦炭,19世纪中叶改冷风为热风(见冶金史)。20世纪初高炉使用煤气内燃机式和蒸汽涡轮式鼓风机后,高炉炼铁得到迅速发展。20世纪初美国的大型高炉日产生铁量达450吨,焦比1000公斤/吨生铁左右。70年代初,日本建成4197立方米高炉,日产生铁超过1万吨,燃料比低于500公斤/吨生铁。中国在清朝末年开始发展现代钢铁工业。1890年开始筹建汉阳铁厂,1号高炉(248米,日产铁100吨)于1894年5月投产。1908年组成包括大冶铁矿和萍乡煤矿的汉冶萍公司。1980年,中国高炉总容积约8万米,其中1000米以上的26座。1980年全国产铁3802万吨,居世界第四位。 高炉炼铁面临淘汰中国钢铁业急需升级换代 高炉炼铁技术,适合于那些工业化初步发展的国家,生产大路货、初级钢材,但在发达国家,高炉技术正面临淘汰。电炉技术炼钢是当今世界趋势。电炉炼铁可以提升钢材质量和特殊性能,减少原材料和电力等的浪费。在订单经济时代,生产要根据市场需求变化,但高炉炼铁技术周期长,生产产品低级,且生产的产品还需要一道甚至更长的加工链条。电炉炼钢则可缩短钢材冶炼周期,可根据订单安排生产,原材料和动力资源浪费少,不再如高炉炼铁那样存在大量的产品积压情况。当今社会进入材料时代后,市场需要的钢材不再是传统的材料,高炉炼铁生存空间更大为缩小,且附加值很低,以中国钢铁业为例,全国钢铁产业利润还不如开采铁矿的赚钱,原因就是因为高炉炼铁技术低级落后,不能生产高附加值产品。我们固然赞美中国钢铁业对国家的贡献,但不能躺在功劳薄上睡大觉,高炉炼铁技术已经进入死胡同。作为世界上第一钢铁生产大国,世界铁矿第一进口大国,世界钢铁业初级钢材第一出口大国,世界钢铁第一进口大国,世界钢铁产业人数最多的国家,世界钢铁厂最多的国家,中国必须认真思考中国钢铁业的下一步发展战略。不能以推动就业为借口,把钢铁业的发展寄托在国家的巨型投资拉动钢铁业的繁荣,而要认真的思考减少污染,提高产品附加值和适应市场的实际需求,实现钢铁业的产业升级,效益升级。 编辑本段主要产铁国家产量和技术经济指标

北欧国家高炉炼铁技术发展趋势

北欧国家高炉炼铁技术发展趋势 1 技术发展 芬兰鲁基(Ruukki)公司的1号高炉于2010年大修,2号高炉将于2011年大修。另外,2011年烧结厂关闭后,这两座高炉将全部使用球团矿冶炼。 在钢铁联合企业,高炉炼铁是能耗最高的环节。为了保持竞争力,必须减少高炉能耗和还原剂的使用。例如,鲁基和瑞典欧维克(Ovako)公司开发了喷吹重油技术来降低焦比,而瑞典SSAB公司乌克瑟勒松德(Oxelosund)厂采用了氧煤喷枪。同时,由于使用了高品位的铁矿石,北欧高炉普遍实现了低渣量冶炼。 2 氧煤喷枪 喷吹燃料代替部分焦炭,可以大幅度提高高炉利用系数和能源效率。喷吹燃料的高效燃烧是根本性的,是高喷吹量的主要问题。为了改善煤的燃烧,瑞典国家冶金研究院于20世纪90年代初开发了氧煤喷枪。通过单风口喷吹试验,SSAB公司乌克瑟勒松德厂4号高炉全部更换为氧煤喷枪。氧煤枪是内管走煤粉、外管通旋流氧气的同轴套管式直管,氧气对枪管同时起冷却作用。单风口大量喷煤试验表明燃烧十分稳定。乌克瑟勒松德4号高炉换成氧煤枪后,喷煤量由35kg/t增加到喷煤系统最大能力135kg/t。SSAB报告显示,在没有炉顶加压和没有无料钟布料条件下,高炉操作稳定,燃料比(煤+焦)较低,约为465kg/t。另外,由于减少了炉尘量,电除尘效果得到改善,高炉透气性提高。 试验高炉 1997年瑞典矿业公司(LKAB)投资500万欧元,在位于吕勒奥市的瑞典国家冶金研究院建造了试验高炉,这也是北欧研发投入最大的项目。该试验高炉工作容积为9立方米,日产铁水35吨。虽然当时建造试验高炉的目的只是为了LKAB公司内部球团的研究开发,但经过5个炉役的试验,其潜能就得到了发挥。LKAB公司和客户以及其他厂商(包括北欧和欧盟国家)在此做了大量研发项目的试验,包括矿石、焦炭、新型无料钟炉顶、高喷油和富氧、杂料喷吹、测量技术等,至今共进行了25个炉役的试验,每次试验平均运行8个星期。 风口喷吹造渣剂 风口喷吹碱性造渣剂是很有意义的技术开发,工作人员对喷吹高炉炉尘和转炉渣进行了实验室研究和半工业试验。 工作人员在试验高炉和SSAB公司吕勒奥3号高炉上进行了高炉炉尘喷吹试验,主要目的是为了循环利用和回收炉尘中的碳等能源。尽管存在管道磨损问题,但试验表明了该技术的可行性和有效性。喷吹转炉渣时,沿高炉高度方向,从炉腹到风口,炉渣的化学性能得到改善,特别是在使用高铁球团的低渣量冶炼时更是如此。通过风口喷吹造渣剂可以消除极端炉渣成分不合理而对高炉操作产生的影响。煤粉中的酸性灰分在回旋区外围形成不透液的凝固层,阻碍风口高度的煤气流分布。 同样,在使用高铁球团时加入石灰石和其他碱性熔剂,由于炉渣碱度特别高,炉腹渣的黏度和熔点会升高,也影响气流分布。通过喷吹转炉渣和其他碱性物料,可调节高炉炉渣成分,消除风口酸性渣和炉腹碱性渣的极端状况。 在LKAB试验高炉上成功进行了转炉渣喷吹试验,吨铁喷吹量为36.9kg,取得了渣比从136kg/t降低到101kg/t、焦比下降11kg/t的良好效果。同时,铁水硅含量降低了28%,并保持稳定。此外,排碱量和铁水硫含量并未受到明显影响。研究表明,与单独喷煤相比,煤粉和转炉渣混合喷吹会使回旋区疏松、深度变长。影响大规模试验的因素是须将大量转炉渣磨细。 2 含铁原料有效利用 目前北欧国家炼铁所用的铁矿石绝大部分来自瑞典LKAB公司位于拉普兰地区(Lapland)的高品位磁铁矿,该矿区的大规模开采始于20世纪初期,球团矿生产始于1955

非高炉炼铁工艺发展现状

万方数据

万方数据

非高炉炼铁工艺发展现状 作者:王振智 作者单位:中冶天工上海十三冶建设有限公司设备安装分公司,上海,201900 刊名: 中国高新技术企业 英文刊名:CHINA HIGH TECHNOLOGY ENTERPRISES 年,卷(期):2011(2) 参考文献(7条) 1.王保利发展直接还原铁是解决废钢资源短缺的有效途径 1998(02) 2.钱晖;周渝生HYL-III直接还原技术[期刊论文]-世界钢铁 2005(01) 3.Oehlberg R J;Arthur G.McKee FIOR process for direct reduction of iron ore 1974(04) 4.阴继翔煤基直接还原技术的发展[期刊论文]-太原理工大学学报 2000(03) 5.Borl é e J;Steyls D;Colin R COMET:a coal-based process for the production of high quality DRI from iron ore fines 1999(03) 6.余琨原矿原煤冶炼-21世纪与高炉竞争的炼铁方式[期刊论文]-东北大学学报(自然科学版) 1998(04) 7.徐国群Corex技术的最新发展与发展前景[期刊论文]-炼铁 2004(23) 本文读者也读过(7条) 1.宁振.郑志强.NING Zhen.ZHENG Zhiqiang浅谈非高炉冶炼技术的发展前景[期刊论文]-科技传播2011(11) 2.崔胜楠.杨吉春对非高炉炼铁技术发展现状的综述[期刊论文]-科技信息2011(6) 3.唐恩.周强.翟兴华.阮建波适合我国发展的非高炉炼铁技术[期刊论文]-炼铁2007,26(4) 4.储满生.赵庆杰.CHU Man-sheng.ZHAO Qing-jie中国发展非高炉炼铁的现状及展望[期刊论文]-中国冶金2008,18(9) 5.庞建明.郭培民.赵沛.Pang Jianming.Guo Peimin.Zhao Pei煤基直接还原炼铁技术分析[期刊论文]-鞍钢技术2011(3) 6.花皑.崔于飞.吴培珍.李可卿.HUA Ai.CUI Yu-fei.WU Pei-zhen.LI Ke-qing直接还原铁的制造工艺及设备[期刊论文]-工业加热2011,40(1) 7.周渝生.钱晖.张友平.冯华堂非高炉炼铁技术的发展方向和策略[期刊论文]-世界钢铁2009,9(1) 本文链接:https://www.wendangku.net/doc/d41798675.html,/Periodical_zggxjsqy201102025.aspx

直接还原炼铁技术的最新发展doc

直接还原炼铁技术的最新发展 作者: 胡俊鸽,吴美庆,毛艳丽, 钢铁研究 摘要撰写人TsingHua 出版日期:2006年4月30日 直接还原铁可以作为电炉、高炉和转炉的炉料。DRI代替优质废钢更适合于生产对氮和有害元素有严格要求的钢种,如用于石油套管、钢丝绳、电缆线等的钢种。近年,由于钢铁市场升温,废钢资源呈现世界性紧缺。2003年,我国钢铁企业生产回收的废钢铁和非生产回收废钢铁合计为1502万t;而全年炼钢消耗废钢与辅助炼钢消耗废钢之和为4 750万t。显然,国内的废钢缺口很大。未来几年,随着国际市场废钢资源的短缺,世界对废钢的需求量将不断增长。当今,在废钢资源全球性紧缺、国际市场价格频频上扬的情况下,对于我国来说,寻找废钢替代品已迫在眉捷。直接还原铁和热压块铁是最好的废钢替代品。1直接还原炼铁技术发展状况2003年世界直接还原铁总量为4900万t。比2002年增加了10%,不同工艺所生产直接还原铁所占份额如下:Midrex 为64.6%,HyLⅢ为18.4%,HyLⅠ为1.3%,Finmet为5.2%,其他气基为0.4%,煤基为10.2%。直接还原工艺根据还原剂不同可分为气基和煤基。气基直接还原工艺中,竖炉Midrex、Arex(Midrex改进型)和HyLⅢ工艺、反应罐法Hy LⅠ、流化床法Fior和Finmet工艺,都已获得了工业应用,流化床法Fior、Cir cored和碳化铁法在工业上应用不久就停产了。煤基直接还原法中,获得工业应用的有回转窑法和转底炉法(Inmet-co、Fastmet、Sidcomet、DRylron),新开发的多层转底炉Primus工艺已于2003年2月投产。 1.1气基直接还原工艺气基还原工艺可分为使用球团矿或者块矿的工艺和使用铁矿粉的工艺。各种气基直接还原铁工艺发展状况如表1所示。表1各种气基直接还原铁工艺发展状况工艺装备工艺特点所用原料目前状况研究发展F ior(委内瑞拉)4个流化床反应器生产能耗高于竖炉Midrex和HyLⅢ铁矿粉Side tur厂于1976年投产,1985年开始,年产量达到35万t~41万t。由于市场原因于2000年停产。由委内瑞拉和奥钢联进一步发展成FinmetFinmet(奥钢联和委内瑞拉)4个流化床反应器铁矿靠重力从较高反应器流向较低反应器直接使用矿粉,是Fior 的进一步改进,比Fior能耗低、人员需求少。与Fior相比,其还原气体中H2含量少,CO没被氧化去。在Finmet工艺中,矿粉在流化床第一段被还原过程产生的热气体预热,其较高的CO含量可以提高热平衡,并使HBI的w(C)达3%。铁矿

浅谈我国炼铁技术现状

浅谈我国炼铁技术现状 摘要:随着重工业的不断发展,各种大型的设备也不断的投入了各种生产之中,高炉便是其中一种。高炉对焦炭质量的要求日益提高。主焦煤的短缺,已制约了中国高炉大型化的进程。中国在大力推广捣固炼焦、干熄焦、煤调湿等技术,以缓解我国主焦煤资源的短缺,并满足高炉的需求。 关键词:我国炼铁;技术现状 一、中国炼铁工业发展现状 近5年来,中国炼铁工业处于高速发展阶段,全国铁生产量从2005年的3.43亿吨,增长到2009年的5.43亿吨,增长了2.00亿吨,增幅达58.18%。在这5年期间,中国炼铁生产技术也取得了长足进展。2010年前十个月全国铁产量为4.96亿吨,比上年增8.27%,预计全年可接近6亿吨。 1、重点钢铁企业高炉焦比不断下降 焦炭粉末多会造成高炉炉料透气性变差,压差升高,风量减少,不允许多喷吹煤粉;同时,粉末增多,也容易被高炉煤气带出炉外,造成高炉除尘灰中含碳量增加,也就造成焦炭的高炉利用率的下降,焦比升高;焦炭易粉化,会造成炉缸内焦炭粒度变小,甚至会有较多的焦末,这会造成炉缸不活跃,直接使高炉鼓的风吹不透炉缸中心,还会使炉缸中心容易堆积;一些中小高炉有过使用m10指标差的焦炭,曾出现高炉休风后,不易恢复风量,延长炉况处理时间的案例。也曾出现过某座小高炉全使用土焦炼铁,休风后,就吹

不进风的现象。就是因为焦炭粉化后,炉缸内焦炭之间没有多少空隙。 2、重点钢铁企业喷煤比得到提高 提高高炉喷煤比是炼铁系统结构优化的中心环节,是世界炼铁技术发展的主流。高炉喷吹煤粉是节约焦炭、降低炼铁成本的重要措施之一,同时可以改善钢铁工业能源结构,缓解我国主焦煤资源短缺的矛盾。多喷煤,少用焦炭,就可以少建焦炉,从而降低炼铁系统的建设投资和生产运行费用,并减少焦炉生产过程中对环境的污染,还可大大提高钢铁企业的劳动生产率和市场竞争力。 3、重点钢铁企业热风温度不断提高 重点钢铁企业高炉热风温度是连年提高,且增幅较大,有力地促进炼铁焦比的不断降低。热风温度在950~1050℃区间时,升高100℃,可降低炼铁焦比约15kg/t;风温在1050~1150℃区间时,升高100℃,可降低炼铁焦比约10kg/t。高风温是降低焦比的有效手段。 热风温度提供的热量是由用45%高炉煤气燃烧换来的,且钢铁企业内拥有大量的高炉煤气。所以说热风是个炼铁廉价的能源,要得到充分利用。高炉炼铁所需要的热量有78%是由碳素(焦炭和煤粉)燃烧提供,有19%是由热风来提供,约3%是由炉料化学热提供。我们炼铁工作者要珍惜高风温有降焦比的作用! 4、中国加快了高炉大型化进程 据统计,中国现有高炉均为1400多座,大于1000 m3以上容积

高炉炼铁工艺流程(经典)

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要 方法,钢铁生产中的重要环节。 这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降

非高炉炼铁工艺发展现状_王振智

2011.01 57 摘要: 文章阐述了非高炉炼铁技术的发展现状及分类,并对主要工艺流程法作了较为详细的介绍,并对各种工艺流程的特点进行了分析,展望了非高炉炼铁技术在新世纪的发展前 景。 关键词: 非高炉炼铁;直接还原;熔融还原;二步法熔融还原;转底炉法中图分类号: TF557 文献标识码:A 文章编号:1009-2374(2011)03-0057-02非高炉炼铁工艺发展现状 王振智 (中冶天工上海十三冶建设有限公司设备安装分公司,上海 201900) 高炉炼铁发展至今,因其必须使用储量有限的焦炭为主要燃料,需要以一定粒径的块状铁矿石入炉冶炼等原因,面临着能源、环境、投资等方面的困扰。近几十年来世界各国的冶金工作者们一直致力于研究和改进各种非高炉炼铁技术。 一、非高炉炼铁生产工艺技术 直接还原和熔融还原是两种最主要的非高炉炼铁思路,他们较高炉炼铁具有更多的优势,因而具有较大的发展空间。直接还原分为气基和煤基直接还原,其中气基直接还原主要是气基竖炉法、气基流化床法,是利用天然气经裂化产出的H 2和CO作为还原剂,在竖炉中将铁矿石在固态温度下还原而成海绵铁,目前主要方法有Midrex和HYL法两种。煤基直接还原是用煤作还原剂在回转窑或循环流化床中将铁矿石在固态温度下还原成海绵铁,其中回转窑工艺是最成熟、应用最广的方法,具有代表性的是SL/RN法。熔融还原法是以煤炭为主要能源,使用天然富矿、人造富矿(烧结矿或球团矿)取代高炉生产液态生铁的方法。 二、直接还原工艺 (一)气基直接还原工艺 Midrex技术和HYL-III技术占直接还原铁产量的85%以上,是直接还原铁的两大主流技术。两者均采用逆流移动床作为反应器,还原气为天然气,天然气经转化炉变成H 2+CO的混合气,进入还原竖炉与氧化球团矿反应,最终金属化率>90%。HYL-III技术的特点是其还原温度比Midrex技术高约50℃~100℃(Midrex技术还原温度为800℃~900℃),另外,HYL-III反应器内压力>0.55MPa,其高温、高压、高氢气浓度的条件保证其高的还原速率。 Midrex技术和HYL-III技术具有污染较小,能耗低的特点,但都只解决了不使用焦炭这一个问题,仍必须使用球团矿,另外我国天然气资源严重缺乏,这两 种工艺难以适应我国国情。 图1 Midrex 竖炉结构示意图 F i o r 法和C i r c o f e r 法均采用流化床技术。Circofer法工艺原理:粉矿经过两段预热后进入反应器,在高于900℃的温度下被还原。反应器由流化床反应炉、再循环旋风收尘器和气化器组成。还原反应器中的流态化介质为还原性气体。在气化器中,煤与氧发生氧化,气体和再循环物料将反应热带入还原反应器内,氧化铁被还原为金属铁。目前流化床技术存在的问题是粉矿粘结及其对设备带来的损害。 (二)煤基直接还原工艺 煤基直接还原工艺主要包括回转窑法(如SL-RN 法)和转底炉法(如COMET法)。 SL-RN法工艺原理:铁矿石或球团矿与煤粉同时由窑尾加入窑内,借助于炉体的倾斜和转动,使炉料向窑头方向运动,经过预热带、还原带而得到产品。 COMET法是一种转底炉法,1997年由比利时的CRM 公司开发的一种用粉矿和煤生产优质海绵铁的工艺,工艺原理:采用转底炉,将煤层和铁矿粉交替铺在炉床上,通过煤气烧嘴加热。这样的混合物可使温度很快上升到1300℃以上。此工艺可以使用粉矿,但煤层和铁矿粉的交替铺层必然导致其生产率低的弱点。煤基直接还原有着自己的特点,我国煤资源丰富,此工 交流园地 E xchange Field DOI:10.13535/https://www.wendangku.net/doc/d41798675.html,ki.11-4406/n.2011.03.015

宝钢炼铁系统用耐火材料的新技术

宝钢炼铁系统用耐火材料的新技术 陈守平夏欣鹏 (上海宝钢集团炼铁部) ■妥本文对宝铜三座高炉护体现状作了评估及相应对策,并着重介绍2000年后五年内,宝铜蝽铁系统将开发出 铁沟浇注料的显式喷补、炉前脱硅摆动流蠕Akq—M90系浇注料、出铁口树膪结合新星炮泥、热风炉非结晶(ar∞f— p±∞惦)硅砖开发(簟短烘炉时间)、A焰喷补技术开发及在焦炉和热风炉上应用荨耐A材料的新技术。 美■调蒜铁系统耐火材料新技爿群 1高炉炉体耐火材料及现状评估 1.1高炉本体耐火材料 宝锕现有高炉三座:4063耐’高炉两座.4350M3高炉~座。1号高炉(第一代炉役】1985年9月建成投产, 由日本新日铁总承包负责设计.其炉体耐材具有七十年代后期新日铁先进水平。设计寿命为8年。2号高炉、3 号高炉分别于1991年6月、1994年9月建成投产,由重庆钢铁设计研究院设计,设计寿命分别为10年、12年。 l号高炉在1996年4月停炉以后,对炉体进行了破损调查:炉底碳砖尚存三层碳砖.炉缸象脚形侵蚀不严 重,炉缸砖衬残厚600一左右。炉体除局部炉皮发红部位外,其余部位尚有一环以上砖衬(>230mm)存在。 炉体解体过程中分段对残砖、渣皮炉料等进行检验,有专题报告。尽管解体调查工作比较粗。但至少对今后 2BF停炉有借鉴依据。 2高炉炉体耐火材料在1高炉基础上稍作改动,铁口、风口组合砖由原来硅线石砖分别改为A1203一sic一 月,这在鞍锕使用热烧结矿的条件下也数较低水平。虽然高炉炉体的破损属于正常生产中必然发生的客观规 律.但只要科学地对其加以掌握,并不断地进行改进与提高.也会得到有效控制的。 要使高炉的寿命得到延长,在高炉生产过程中,必须加强对炉体的监测管理,控制台理的冷却强度,鸯立科 .学合理的维护与检测制度。特别是采用含钛物料护炉,对延长高炉炉缸炉底寿命具有显著的效果。 5结语 鞍钢4号高炉炉缸炉底是在借鉴国外陶瓷杯技术的基础上.采用自焙碳砖加刚玉奠来石砖复合砌筑的新 型结构形式.经过5年零2个月的生产运行,破损十分严重,主要是刚玉莫来石砖被渣铁熔蚀、自焙碳砖蔬松粉 化、收缩和渗铁。虽然破损形式与以往有所不同,但从整体来看这种结构在4号高炉上的应用是不成功的.一 些新的问题还需要迸一步研究和解决。 6致谢 本次调查工作得到了鞍钢炼铁厂汤清华总工、金宝昌高工的指导和帮助,谨此致m谢意。 联系人;陈守平.教授较高工,上海宝铜集团公司博铁部(200941) 350 一一i■—孺——

详细到哭 高炉炼铁工艺的系统组成 大系统让你更了解高炉

详细到哭!高炉炼铁工艺的系统组成!10大系统让你更了解 高炉! 高炉炼铁工艺的系统组成:原料系统、上料系统、炉顶系统、炉体系统、粗煤气及煤气清洗系统、风口平台及出铁场系统、渣处理系统、热风炉系统、煤粉制备及喷吹系统、辅助系统(铸铁机室及铁水罐修理库和碾泥机室)。高炉炼铁主要工艺流程如图1-1所示。 一.原料系统 (1)原料系统的主要任务。负责高炉冶炼所需的各种矿石及焦炭的贮存、配料、筛分、称量,并把矿石和焦炭送至料车和主皮带。原料系统主要分矿槽、焦槽两大部分。矿槽的作用是贮存各种矿石,主要包括烧结矿、块矿、球团矿、熔剂等,其矿槽槽数及大小应根据各矿种配比及贮存时间确定,一般烧结矿贮存时间不小于10h,块矿、球团矿、熔剂等贮存时间相对更长一些。贮焦槽的作用是贮存焦炭,其槽数及大小根据焦比和贮存时间确定,一般焦炭贮存时间在8?12h。(2)矿槽和焦槽的形状及结构。一般上部为正方体或长方体钢筋混凝土结构,下部为平截锥体钢筋混凝土结构或钢结构。也有的厂矿槽和焦槽为全钢结构。焦矿槽一般设有耐磨衬板,主要有铸铁衬板、铸钢衬板、合金衬板、陶瓷橡胶衬板、铸石衬板等。其中,铸石衬板采用的最为广泛。(3)原料来源及

槽上运输方式。烧结矿、球团矿、焦炭分别来自烧结厂、球团厂、焦化厂,块矿、熔剂等来自原料厂,运输方式有胶带运输机、汽车、火车和吊车等,后两者已很少见了,用胶带运输机的高炉最多。(4)原料系统的工艺流程。焦炭、烧结矿等原料应根据高炉炉料的配比及贮存时间的要求由皮带机 等输送到焦、矿槽,焦、矿槽槽下根据高炉料批按程序组织供料,供料时,槽下给料机将炉料输送至振动筛进行筛分,合格粒度的炉料进入称量漏斗称量,返矿、返焦,由皮带或小车输送到返矿槽或返焦槽,再由皮带机或汽车运至烧结厂或焦化厂。炉料在称量斗按料批大小进行称量后,由主供矿、供焦皮带输送至料车或主皮带,再输送至炉内。为了节约焦炭资源,返焦一般还进行二次筛分,将5mm以上的焦丁回收利用,随烧结矿一起进入炉内,代替部分焦炭。(5)焦、矿槽的布置形式。焦、矿槽的布置形式多种多样,采用斜桥料车上料的高炉其焦槽与矿槽一般采用一列式布置,也可以是并列式布置。采用皮带上料的高炉,其焦槽、矿槽之间一般采用并列式布置,各自形成独立系统。就焦槽、矿槽本身而言,可以是一列式,也可以是共柱并列式,实际情况以一列式布置为主。(6)现代高炉焦矿槽的技术特点:1)完善的筛分设施,槽下设置高效的筛分系统,不但焦炭、烧结矿槽下设置振动筛,许多高炉甚至在球团和块矿槽下也设置有振动筛,尽量减少粉矿、粉焦进入炉内给高炉带来不利影响。2)

炼铁技术发展

**炼铁发展综述 摘要:**公司自2005年以来,推行稳本固基、苦练内功、转变思维、审时度势,随机应变等一系列管理理念,以提高高炉装备水平为保障,通过狠抓“精料”工作、积极探索炼铁新技术、开创性的发展炼铁新理论,以及计算机辅助管理,使炼铁生产获得了高水平发展,高炉主要技术经济指标显著改善。 关键词:炼铁管理理念技术进步精整炉料高炉装备高炉操作制度 The Development of Iron-making of**Steel Abstract: Since 2005, the implementation of ** Steel iron company is stabilization of the solid base, Obtain, change thinking,, deal with the situation and act according to circumstances and a series of management concepts in order to improve the level of equipment for the protection of blast furnace, by implementing the "concentrate materials " work , and actively explore new iron-making technology, pioneering the development of new iron-making theory, as well as computer-aided management, which makes it reach a high level development of iron production , main technical and economic indicators of blast furnace improve significantly. Key words:iron-making,management concepts,technological improvement,finishing furnace, blast furnace equipment ,blast furnace operating system 近几年,**炼铁的快速发展,引起了业界同行的关注,特别是08年金融危机来临后,**炼铁凭借其铁前低成本优势,使得**钢铁能率先走出困境,成为行业的少有赢利企业,短短几年里,高炉经济技术指标由同行垫底走向处于领先水

我国高炉发展现状

1.1我国高炉炼铁发展现状 近年来,随着我国经济的快速发展,在基础设施建设,房地产,汽车,家电,机电等行业的带动下我国炼铁工业也处于高速发展阶段,2007 年全国生铁产量达到4.6944 亿t,比上年度增长15.19%,占世界总产量的49.74%,08年全国生铁产量4.7067 亿t,炼铁生产能力超过6 亿t,09年全国生铁产量达5.4375亿t,但有6 000 万t/年的生产能力居于淘汰之列(主要是300m3以下容积小高炉)。在产量不断增长的同时,我国的高炉炼铁技术也取得了较大的进步,入炉焦比和炼铁工序能耗不断下降,喷煤比、热风温度和利用系数也不断提高,高炉操作技术也日趋成熟,各项技术经济指标得到进一步改善。我国现有高炉1 300 多座,大于1 000 m3 以上容积的高炉有150 多座。近年来,高炉大型化的步伐加快,宝钢建成三座4 000 m3级的高炉,另外已建成和在建的7 座4 000 m3级高炉以及首钢曹妃甸2座5500 m3高炉。大型高炉均采用了先进的技术装备,一大批成熟高新技术和装备的应用大大降低了生产成本和劳动强度,自动化程度也进一步提升,生产环境有了很大改善,企业生产效率和经济效益得到明显提高。但是,目前我国只有宝钢,武钢,鞍钢,沙钢,首钢等少数几家钢厂的技术装备水平及产品结构、品质达到世界先进水品,大多数中小企业整体相对比较落后,因此我国炼铁工业还有很长的路要走,需要大批有经验,懂理论,会技术的的建设者和接班人。 我国炼铁工业产业集中度较低,全国近千家炼铁企业,而年产生铁能力大于500万吨的21家企业产量不及总产量的40%。这说明,我国炼铁工业是处于多种结构,不同层次,各种生产技术指标共存的发展阶段。这个现状对于我国炼铁技术水平的提高和整个行业的发展十分不利,造成资源、能源的很大浪费并对环境造成很大破坏。所以,我国炼铁企业要加快淘汰落后产能,加大自主创新和技术攻关的投入力度,增加高科技人才的引进,积极与科研院所和相关高校实施合作,通过多种渠道努力实现炼铁企业的高效生产,使我国钢铁工业走向健康的可持续发展的道路。

高炉炼铁原料

高炉炼铁原料 1.铁矿石和燃料 高炉炼铁必备的三种原料中,焦炭作为燃料和还原剂,是主要能源;熔剂,如石灰石,主要用来助熔、造渣;铁矿石则是冶炼的对象。这些原料是高炉冶炼的物质基础,其质量对冶炼过程及冶炼效果影响极大。 铁矿石 铁矿石分类及特性 高炉冶炼用的铁矿石有天然富矿和人造富矿两大类,含铁量在50%以上的天然富矿经适当破碎、筛分处理后可直接用于高炉冶炼。贫铁矿一般不能直接入炉,需要破碎、富矿并重新造块,制成人造富矿(烧结矿或球团矿)再入高炉。人造富矿含铁量一般在55%~65%之间。由于人造富矿事先经过焙烧或者烧结高温处理,因此又称为熟料,其冶炼性能远比天然富矿优越,是现代高炉冶炼的主要原料。天然块矿统称成为生料。 我国富矿储量很少,多数是含Fe30%左右的贫矿,需要经过富矿才能使用。A.矿石和脉石 能从中经济合理的提炼出金属来的矿物成为矿石。如铁元素广泛地、程度不同地分布在地壳的岩石和土壤中,有的比较集中,形成天然的富铁矿,可以直接利用来炼铁;有的比较分散,形成贫铁矿,用于冶炼及困难又不经济。随着选矿和冶炼技术的发展,矿石的来源和范围不断扩大。含铁较低的贫矿经过富选也可用于炼铁。 矿石中除了用来提炼金属的有用矿物外,还含有一些工业上没有提炼价值的矿物或岩石,称为脉石。对冶炼不利的脉石矿物,应在选矿和其他处理过程中尽

量去除。但矿石中脉石的结构和分布直接影响矿石的选冶性能。如果含铁矿物结晶颗粒比较粗大,则在选矿过程中易于实现有用矿物的单体分离;反之,如果含铁矿物呈颗粒结晶嵌布在脉石中,则要进一步细磨矿石才能分离出有用单体。 B.天然矿石的分类及特性 天然铁矿石按其主要矿物分为磁铁矿、赤铁矿、褐铁矿和菱铁矿等几种,主要矿物组成及特征见下表。 磁铁矿,主要含铁矿物为Fe3O4,具有磁性。其化学组成可视为Fe2O3* FeO,其中FeO 30%,Fe2O3 69%,Tfe 72.4%, O27.6%。磁铁矿颜色为灰色或黑色,由于其结晶结构致密,所以还原性比其他铁矿差。磁铁矿的熔融温度为:1500-1580摄氏度。这种矿物与TiO2和V2O5共生,叫钒钛磁铁矿;只与TiO2共生的叫钛磁铁矿,其他常见混入元素还有镍、铬、钴等。在自然界中纯磁铁矿很少见,常常由于地表氧化作用使部分磁铁矿氧化转变为半假象赤铁矿和假象赤铁矿。假象赤铁矿仍保留着磁铁矿的外形,但Fe3O4已被氧化成Fe2O3的矿石。一般用TFe / FeO的比值来区分: TFe / FeO = 2.33 为纯磁铁矿石 TFe / FeO < 3.5 为磁铁矿石 TFe / FeO = 3.5~7.0 为半假象赤铁矿石 TFe / FeO > 7.0 为假象赤铁矿石 式中TFe –矿石含铁总量(又称全铁)

相关文档