文档库 最新最全的文档下载
当前位置:文档库 › 编码器和链板秤调试方法 (1)

编码器和链板秤调试方法 (1)

编码器和链板秤调试方法 (1)
编码器和链板秤调试方法 (1)

一、测速编码器现场调试注意事项

1、电缆

要求客户敷设合格的屏蔽电缆线。当怀疑客户电缆线有问题时,可临时用我们的称重传感器双屏蔽电缆线替换,以排除线缆问题。

2、接地

若客户接地良好,在现场端不接地,电控柜内接地。若怀疑客户接地不干净,请将编码器屏蔽线、信号电缆屏蔽线均悬空处理。

3、软件抗干扰处理

一般来说,前面2点按要求处理后,现场速度干扰信号均能消除。如果仍出现速度干扰现象,可采取软件升级的方式,基本确保不会出现速度干扰。目前出厂的仪表软件没有抗干扰处理模块,只能现场刷新升级。待新一代软件上市后,抗干扰处理将会成为标配。

4、接线方式

我们的编码器采用差分信号传输方式,差分方式能大大提高抗干扰能力。现场编码器是6线制输出:24V、0V、A+、A—、B+、B—。差分器必须置于电控柜内,否则差分器就失去意义。差分器的输入端为6线制,分别接现场编码器的6根信号线,输出为4线制:24V、0V、A、B,与仪表相连。现场调试时,送电前必须检查接线是否正确,如果将电源线误接到信号线上,差分器可能会烧坏。

已要求供应商改进差分器电路,增加纠错功能,防止接线错误引起器件损坏。

5、测速信号干扰判断

判断速度信号是否存在干扰,可采取以下方式:

1)满量程启动给料机(50Hz),观察仪表信息M内参数v0,v0代表仪表速度通道一收到的速度脉冲,以Hz为单位。理论上来说,v0=A2*A4,实际值与理论值比较接近。

观察实际值会上下跳变,波动范围约5Hz左右。

2)低量程启动给料机(5Hz),v0值将同比变为原来的1/10,波动范围类似。

符合上述2个条件,基本确定没有速度干扰。

老仪表没有此参数项,只能采取动态零点标定周脉冲数与理论值比较,同样采取满量程和低量程分别启动时2个数据段,实际值与理论值均比较接近时,可判断没有速度干扰。

6、速度仿真

当干扰信号无法消除,或者测速传感器损坏无法使用时,新仪表可打开速度仿真功能,确保给料机能正常生产,具体方法如下:

1、将参数F6改为1,仪表启动速度仿真功能,外部速度信号无效。

2、速度仿真功能启用后,仪表将以AO1输出信号作为皮带速度值参与流量计算和控制。

3、为保证计量精度,必须确保AO1标定正确和实际皮带速度v与实际速度一致。

7、案例分享

上次华新房县调试时,发现2个很奇怪的现象,如下:

1)速度信号完全正常,而示波器显示有一相波形缺失,后检查现场信号线B+脱落。重新接好线,波形恢复正常。

2)速度信号完全正常,而示波器显示4相波形(A+、A—、B+、B—)均严重失真。考虑到现场刚发生电焊作业,判断编码器损坏,更换编码器后波形恢复正常。

由于我们平时在现场没有示波器,故遇到类似问题请检查线路和编码器好坏。

二、链板式给料机特殊参数设置

由于链板秤Q值变化大,导致零点波动大,跟随性不好,故目前仪表软件调整以下参数会有一定效果。新一代仪表软件正在测试中,上市后对处理链板秤的流量稳定性会有较大改

参数名称皮带给

料机含义链板给

料机

含义

F13 LOW PASS FILTER 2 默认0.1 让Q值变化幅度小,V值较大

时效果很明显

B2 0 快速计算法,默

认1 中速计算法,使流量波动更稳

定可启动PID调节

B6 2 控制算法滤波时

10 控制算法时间延长

B7 1 p参数0.5 同比例变小使流量反应变慢B8 2.5 i参数 1.25

C6 10% 启动流量跟随的

门槛值40% 额度载荷的百分比,增加零点

稳定性

D15 2 零点跟踪的最大

范围4 额度载荷的百分比,增加零点

稳定性

F1 6 零点跟踪的一周

最大变化量7 额度载荷的百分比,增加零点

稳定性

电子秤标定方法大全

电子秤标定方法 佰仕利:268.97 79去皮-市斤 268.97 78去皮-公斤 三、上海耀华 (1)XK3190-A12 XK3190-A10 开机初始过程中按(#)进入标定状态(去皮)选择(#)确认 1.(d xx)选择分度值 2. (p xx)小数点 3. (full )最大称量 4. (noload )空秤确认 5.(ad load)放砝码(000000)输入砝码值(置零)增加1,去皮右移光标 (#)确认 6.(end) (2.)xk3190-A1+ 将大屏幕接口指针少的一端朝上,右手两端短接,屏幕出现提示, 按输入直到出现 noload 空秤确认,adload 加砝码输砝码值,确认。(3)XK3190-A7 1. 正常称重状态,仪表后端打开标定开关,显示(n xxxx) 清除进入下一步切换选择去皮确认 2.(e xx )设分度值 3. (d 0.0)设小数点 4. 按去皮,直到显示(CAL)空秤确认 5. (000.000)加码,(累计)右循环,(切换)加1 去皮确认。 6. 关开关。 (4)XK3190-C2 将大屏幕接口短接(14 15脚) (输入) 确认 1.称重状态下,按功能显示 PASS 2.输密码 920728 按输入 3. (DC ) 小数点位数 4. (E )分度值 5.(F )最大称量 6. (r )保存原有零位 7. (NO LAOD)零位确认 8. (AD LOAD)加码,(00000)输码值,按输入 (5)耀华YH-T3校正资料 开机归零后同时按一次“清除”和“F”键进入参数设置 “保持“键为确认键,“回零”键是输入键,“扣皮”键是移位键 菜单一为分度值设置 菜单二为小数点设置 菜单三为满量程设置:注,每次校正都必须重新输入满量程,输入后按“保持”键屏幕显示零点校正,按“保持”键,此时屏幕显示空载内码,稳定后会自动跳

全品牌电子秤调试方法

全品牌电子秤调试方法大全 志瑜电子秤调试方法 开机回零后,输入⑨⑦⑤再按《去皮》键。二、然后再输入①或⑦⑨①⑥⑧再按《去皮》键。 三、等待几秒后,加1/3的砝码,再按《去皮》键。四、输入所加砝码的重量值。再按《去皮》键。五、输入满量程的重量值,再按《去皮》键。六、输入分度值⑤,再按《去皮》键。 七、电子秤回到称重状态,即完成调试。 大河电子秤调试方法 按“⑨⑦⑤⑤”键,单价窗显示一个“0”。再输入②⑧①②③,按“去皮”键几秒后,显示“0.000 LOAD———”。加1/3砝码。再按“去皮”键,显示“0.000 LOAD 0”。输入砝码重量值,再按“去皮”。输入砝码的满程值。再按“去皮”。几秒后完成调试。 本熙电子秤调试方法 开机归零后输入3658,再按“去皮”键。单价栏显示一个“0”。再输入密码1。再按“去皮”键。再加1/3砝码。再按“去皮”键。输入砝码的重量值。再按“去皮”键。输入砝码的满程值。再按“去皮”。即标定成功。 大河电子台秤的调试 按“⑨⑦⑤⑤”键,按“去皮”键单价窗显示一个“0”。再输入②☉①②③,按“输入”键几秒后,显示“0.000 LOAD———”。加1/3砝码。再按“输入”键,显示“0.000 LOAD 0”输入砝码重量值,再按“输入”。输入砝码的满程值。再按“输入”。几秒后完成调试。 宏马电子秤调试方法(永州电子秤方法相同) ⒈打开机盖,插上短路环。开机进入调试状态。稳定后,加1/2砝码。按“去皮”键。重量窗显示1/2砝码值。按“清除”键回到称重状态。拨回短路环,完成调试 ⒉按《累计》键开机,回零后再按《累计》键一下,输入③①⑤⑧。按《累计》进入调试状态。加1/2砝码后,再按《去皮》键,回到称重状态。调试完成。 3. 打开机盖,插上短路环。按《去皮》键,按《1》,再按《去皮》键,加15.00KG砝码。再按《去皮》键,输入砝码值。再按《去皮》键,输入满程值。再按《去皮》键,输入分度值5,再按《去皮》键。调试完成。 世伟电子秤调试方法 打开机盖,插上短路环。开机进入调试状态。稳定后,加1/2砝码。按“去皮”键。重量窗显示1/2砝码值。按“清除”键回到称重状态。拨回短路环,完成调试 中银电子秤调试方法 打开机盖,插上短路环。开机。按“3579”键,单价窗显示一个“0”。再输入15908,按“去皮”键几秒后,显示“0.000 LOAD-—”。加1/3砝码。再按“去皮”键,显示“0.000 LOAD 0”。输入砝码重量值,再按“去皮”。输入砝码的满程值。再按“去皮”。几秒后完成调试。

编码器使用与设置要点

从增量值编码器到绝对值编码器 旋转增量值编码器以转动时输出脉冲,通过计数设备来计算其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备计算并记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。 这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 从单圈绝对值编码器到多圈绝对值编码器 旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。 如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。 编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。

手工调零步骤

一、基本概念: 编码器只有A相、B相、Z相信号的概念。 所谓U相、V相、W相是指的电机的主电源的三相交流供电,与编码器没有任何关系。“A相、B相、Z相”与“U相、V相、W相”是完全没有什么关系的两种概念,前者是编码器的通道输出信号;后者是交流电机的三相主回路供电。 而编码器的A相、B相、Z相信号中,A、B两个通道的信号一般是正交(即互差90°)脉冲信号;而Z相是零脉冲信号。 一般编码器输出信号除A、B两相(A、B两通道的信号序列相位差为90度)外,每转一圈还输出一个零位脉冲Z。 当主轴以顺时针方向旋转时,输出脉冲A通道信号位于B通道之前;当主轴逆时针旋转时,A通道信号则位于B通道之后。从而由此判断主轴是正转还是反转。 另外,编码器每旋转一周发一个脉冲,称之为零位脉冲或标识脉冲(即Z相信号),零位脉冲用于决定零位置或标识位置。要准确测量零位脉冲,不论旋转方向,零位脉冲均被作为两个通道的高位组合输出。由于通道之间的相位差的存在,零位脉冲仅为脉冲长度的一半。带U、V、W相的编码器,应该是伺服电机编码器 A、B相是两列脉冲,或正弦波、或方波,两者的相位相差90度,因此既可以测量转速,还可以测量电机的旋转方向 Z相是参考脉冲,每转一圈输出一个脉冲,脉冲宽度往往只占1/4周期,其作用是编码器自我校正用的,使得编码器在断电或丢失脉冲的时候也能正常使用。 ABZ是编码器的位置信号,UVW是电机的磁极信号,一般用于同步电机; AB对于TTL/HTL编码器来说,AB相根据编码器的细分度不同,每圈有很多个,但Z相每圈只有一个; UVW磁极信号之间相位差是120度,随着编码器的角度转动而转动,与ABZ之间可以说没有直接关系。 二、基本实践: 最近几天在等给铣床和车床焊的架子。。。所以在空余时间拿起一个1.5KW的伺服电机用东元驱动器测试。。。

电子秤安装调试步骤马

电子秤安调培训 一、100T电子秤现场联机安调流程 1、电子秤运到安装位置后固定支脚。 2、通常安装电子秤的设备都把电机侧作为进口,这样增加了进口的 长度。顶屏显正对着进口方向。 3、打开100T电控箱侧顶罩板,把穿墙式航空插头固定在顶罩板的圆 孔上。 4、联线:电子秤引出线6条,加一条W14线缆共计7条。W18接入 设备穿墙式插头的下端;W17连接D型插座的屏显; W4接电器控制箱的K1M接口;白线9针D型头接W14并用扎带绑扎固定避免松脱;W14(接工控机)接工控机串口卡的P2;电源线接入外电源(上电时);W5脚踏开关放在操作台下面; 5、安装2个屏显:带航空插头的屏显用M4×50的螺钉固定在设备进 口顶端,航空插头和穿墙式插头对插;W17线缆连接的屏显用M4×30的螺钉固定随机配送的钢板后立在桌面上; 6、拆除电子秤两侧不锈钢罩板,松开并取下上下秤体固定垫木的螺 栓用随机附带的千斤顶从4角顶起上秤体,取出垫木,使上秤体平行下秤体落在称重传感器上。上电后,任意取一重物分别放在电子秤上表面的4个角上,称重显示应该一致。 7、安装电子秤外罩板,注意:外罩板不能碰触下秤体,否则会影响 称重数值的准确。

8、登录OIS管理员用户,在高级管理中打开电子秤功能,OIS软件 界面出现电子秤操作窗口。调整进出口方向和按键方向使电子秤、主机传送带方向、出图方向、键盘按键方向一致。 9、称重显示:OIS软件称重显示和2个屏显显示数据应该一致。 附图: 电子秤:

2个屏显: 穿墙式插头:

电子秤线缆: 桌面屏显固定板:

上下秤体间的垫木: 主机:(带航插的屏显安装到电控箱侧的顶板上) 电控箱:

旋转编码器工作原理

增量式旋转编码器工作原理 增量式旋转编码器通过内部两个光敏接受管转化其角度码盘的时序和相位关系,得到其角度码盘角度位移量增加(正方向)或减少(负方向)。在接合数字电路特别是单片机后,增量式旋转编码器在角度测量和角速度测量较绝对式旋转编码器更具有廉价和简易的优势。 下面对增量式旋转编码器的内部工作原理(附图) A,B两点对应两个光敏接受管,A,B两点间距为 S2 ,角度码盘的光栅间距分别为S0和S1。 当角度码盘以某个速度匀速转动时,那么可知输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值相同,同理角度码盘以其他的速度匀速转动时,输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。如果角度码盘做变速运动,把它看成为多个运动周期(在下面定义)的组合,那么每个运动周期中输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。 通过输出波形图可知每个运动周期的时序为 A B 1 1 0 1 0 0 1 0 A B 1 1 1 0 0 0 0 1 我们把当前的A,B输出值保存起来,与下一个A,B输出值做比较,就可以轻易的得出角度码盘的运动方向, 如果光栅格S0等于S1时,也就是S0和S1弧度夹角相同,且S2等于S0的1/2,那么可得到此次角度码盘运动位移角度为S0弧度夹角的1/2,除以所消毫的时间,就得到此次角度码盘运动位移角速度。

S0等于S1时,且S2等于S0的1/2时,1/4个运动周期就可以得到运动方向位和位移角度,如果S0不等于S1,S2不等于S0的1/2,那么要1个运动周期才可以得到运动方向位和位移角度了。 旋转编码器只有增量型和绝对值型两种吗?这两种旋转编码器如何区分?工作原理有何不同? 只有增量型和绝对型 增量型只是测角位移(间接为角速度)增量,以前一时刻为基点.而绝对型测从开始工作后角位移量. 增量型测小角度准,大角度有累积误差 绝对型测小角度相对不准,但大角度无累积误差 旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。 编码器的原理: 编码器的原理与应用 编码器是一种将角位移转换成一连串电数字脉冲的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿条或螺旋杆结合在一起,也可于控制直线位移。 编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度盘是由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子和图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。 增量型编码器 增量型编码器一般给出两种方波,它们的相位差90度,通常称为通道A和通道B。只有一个通道的读数给出与转速有关的信息,与此同时,通过所取得的第二通道信号与第一通道信号进行顺序对比的基础上,得到旋转方向的信号。还有一个可利用的信号称为Z通道或零通道,该通道给出编码器轴的绝对零位。此信号是一个方波,其相位与A通道在同一中心线上,宽度与A通道相同。 增量型编码器精度取决于机械和电气的因素,这些因素有:光栅分度误差、光盘偏心、轴承偏心、电子读数装置引入的误差以及光学部分的不精确性,误差存在于任何编码器中。 编码器如以信号原理来分,有增量型编码器,绝对型编码器。增量型编码器(旋转型) 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向 ,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。

西克SICK编码器在伺服电机上的调整编程调零维修问题

西克SICK编码器在伺服电机上的维修调整编程调零问题 SICK STEGMANN编码器是欧美常用的伺服电机反馈编码器之一,在欧美伺服系统中可以与最负盛名的世界编码器老大——海德汉的产品并驾齐驱。SICK编码器有着自己独特的优点,不仅种类齐全,电气接口多样化,而且可以实现自由编程,可以根据客户需要定制。其生产的伺服反馈绝对值编码器,既可以当做正余弦编码器使用,又可以做为绝对值的位置编码器使用,最大可以实现4096圈28位绝对值的高精度数据传输。因此,能满足客户的更多需要。SICK编码器现在广泛用于欧美众多知名伺服电机生产厂家,如世界著名的ROCKWELL AB、SEW、SCHNEIDER.、EMERSON-CT、PARKER等世界品牌厂家。现仅以SICK编码器在AB伺服电机上的维修、调整、编程、调零问题为例展开介绍!同时,也希望各位同仁提出宝贵的建议,以便更好的与大家交流、分享、互勉! 2014年8月2日,武汉耀华安全玻璃有限公司有一台AB的伺服电机(型号为1326AB-B720E-M2L),送到我们桐乡长友自动化公司维修,电机的编码器是SICK STEGMANN (西克、施克、斯特格曼)的SRM50-HFA0-K01(或SRM50-HFA0-K0,客户有两台这样的电机,由于电机生产的时间不一样,编码器有新老型号的差异)。由于驱动器报编码器故障(该编码器有相对位置标记,有些编码器没有相对位置标记,拆机时要做标记,以方便将来机械调零),伺服电动机无法正常运转。客户备用的同型号电机在使用了一两天后编码器也是坏了。于是客户在淘宝上买了一只同型号、同订货号的SICK编码器;客户在网上也查了很多有关AB伺服电机维修的资料和特例,按照网上的资料进行了机械零位调试。但是编码器安装好后,开启设备,伺服放大器报错“无法通讯”“数据错误”“编码器故障”等之类的警号。客户慌了,买了编码器也用不上呀。咋办?客户就找AB公司了解情况,AB公司回复说该电机已经停产了,买新款要2-3个月才能到货。这个客户的经理说几千万的设备停不起,停产几个月是吃不消的呀。咋办呢?客户着急啊!于是就去找编码器供应商SICK西克公司,西克回复说该类编码器更换需要对编码器进行编程及零位调试。于是客户到处找人维修,最后找到我们才最终解决了问题! 问题一,首先要把坏的编码器里的程序通过编程软件拷贝出来。 问题二,通过编程软件把原来的程序复制到新的编码器上。 问题三,正确安装编码器,把编码器安装到原来的相对位置。 问题四,通电开机后出现飞车故障,设备无法回到原点。编码器程序有了,电机还是无法正常运行,还需要想办法调试零位。事实上经过大量的调零试验表明:每个伺服电机都有一个角度小于10度的零速静止区域和350度的高速反转区域。由于客户的编码器都拆过,没有正确的参考点,只有相对位置可以参照。于是通过编程软件多次进行零位校正、调整和调试,经过大家一天时间的努力,下班前终于实现了设备的正常运转,而且比伺服电机坏之前精度更高。 实践表明:伺服电机只要不更换编码器,同时设备系统精度要求不高,或者电机转速要求不高的状况下,运用手动机械调零是可以实现的,这样的方式调试的电机可以做应急使用,一般可以使用一年半载。但风险是有的呀,由于机械调试零位很难到达最佳原点位置,伺服电机容易出现过载、过流、过热、抖动、跑位及输出不平衡等弊病,导致编码器或电机再次故障。这是大家需要注意的呀!!!软件编程和调零是最好的使用方式,但也有它的局限性。一般也需要正确的编码器数据和参数呀,如果编码器数据读不出来是无法实现编程和调试的呀。同时没有正确的零位参照也是需要维修人员花费大量的精力去调试呀。伺服电机维修调试便捷的方式是“有同款好的电机做参照或用来测试数据和参数”,这可以起到事半功倍的效果呀。

万能增量式光电编码器控制的伺服电机零位调整技巧

万能增量式光电编码器控制的伺服 电机零位调整技巧 下述述两种调法完全取决于你的手工能力和熟练程度,一般来说,每款伺服电机都有自己专门的编码器自动调零软件.不外传仅是出于商业羸利和技术保密.如果你是一家正规的维修店,请不要采用以下方法,应通过正常渠道购买相应的专业设备.实践证明,手工调整如果技巧掌握得当, 工作仔细负责,也可达到同样的效果. 大批量更换新编码器调零方法 第一步:折下损坏的编码器 第二步:把新的编码器按标准固定于损坏的电机上第三步:按图纸找出Z信号和两根电源引出线,一般电源均为5V. 第四步:准备好一个有24V与5V两组输出电源的开关电源和一个略经改装的断线报警器,把0V线与Z 信号线接到断线报警器的两个光耦隔离输入端上。 第五步:在电机转动轮上固定一根二十厘米长的横杆,这样转动电机时转角精度很容易控制. 第六步:所有连线接好后用手一点点转动电机轮子

直到报警器发出报警时即为编码器零位,前后反复感觉一下便可获得最佳的位置,经实测用这种方法校正的零位误差极小,很适于批量调整,经实际使用完全合格.报警器也可用示波器代替,转动时当示波器上的电压波形电位由4V左右跳变0V时或由0V跳变为4V 左右即是编码器的零位.这个也很方便而且更精确.杆子的长度越长精度则越高,实际使用还是用报警器更方便又省钱.只要用耳朵感知就行了.在编码器的转子与定圈相邻处作好零位标记,然后拆下编码器。 第七步:找一个好的电机,用上述方法测定零位后在电机转轴与处壳相邻处作好电机的机械零位标记第八步:引出电机的U V W动力线,接入一个用可控制的测试端子上,按顺序分别对其中两相通入24V 直流电,通电时间设为2秒左右,观察各个电机最终停止位置(即各相的机械零位位置)其中一个始必与刚才所作的机械零位标记是同一个位置.这就是厂方软件固定的电机机械零位,当然能通过厂方专用编码器测试软件直接更改编码器的初始零位数据就更方便了.如果你只有一台坏掉的伺服电机,你就要根据以上获得的几个相对机械零位逐个测试是不是我们所要的那个位置,这一步由伺服放大器的试运行模式来进行测试.有关资料是必须的,否则不要轻易动手,以

寺岗电子称设置(方式)

寺岗电子称设置(方式) R—交易模式(处理所有的销售) X—报表打印模式(打印销售报表) S—编程模式(编制预设数据,如商品、店名) Z—清空报表模式(清除储存的销售数据) X—(闪烁)-密码设置模式(设置X、S、和Z模式下的密码) 用户功能设置(141)(初始化操作) 按“方式” 键四次(显示z1.0 reset sales daily) 按住“置零”键不放,再输入141 显示:全 第一步:0X4,按[打印]:(设置条形码格式,标准格式:F1F2CCCCCXXXXXCD) 第二步:3X28,按[打印]:(设置条码前导位,如21) 第三步:24X16, 按[打印]:(设置标签格式,标准格式:F1) 第四步:41X0, 按[打印]:(称重和非称重自动转换) 第五步:42X0,按[打印]:(调出PLU码后可改价) 第六步:49X2,按[打印]:(做联网设置) 第七步:50X1, 按[打印]:(做联网设置) 第八步:64X1, 按[打印]:(禁止设置密码) 第九步:135X18,按[打印]:(设置秤号:即IP地址第四位)[前三位IP设置参考d]按[#]键保存,再按[方式]键退回到称重状态 称重与计量的设置(142)称 第一步:按“方式”键四次(显示z1.0 reset salet daily) 第二步:按住“置零”键不放,再输入3752(显示:TO CIEAR DAIL Y TRANS) 第三步:按住“置零”键不放,再输入142 第四步:输入628 X 1,按打印 第五步:输入629 X4,按打印(表示:第一位价格的四舍五入) 第六步:输入645X1,按打印 第七步:输入646X1,按打印 第八步:输入621x1,按打印(调用商品时去皮)按[#]健保存。再按[方式]键 IP地址的设置 第一步:按“方式”键四次(显示z1.0 reset salet daily)

案例五旋转编码器的安装与应用

案例五旋转编码器的安装与应用 1.项目训练目的 掌握旋转编码器的安装与使用方法。 2.项目训练设备 旋转编码器及相应耦合器一套。 3.项目训练内容 先熟悉旋转编码器的使用说明书。 (1)旋转编码的安装步骤及注意事项 ①安装步骤: 第一步:把耦合器穿到轴上。不要用螺钉固定耦合器和轴。 第二步:固定旋转编码器。编码器的轴与耦合器连接时,插入量不能超过下列值。 E69-C04B型耦合器,插入量 5.2mm;E69-C06B型耦合器,插人量 5.5mm;E69-Cl0B型耦合器,插入量7.lmm。 第三步:固定耦合器。紧固力矩不能超过下列值。E69-C04B型耦合器,紧固力矩2.0kfg?cm;E69-C06B型耦合器,紧固力矩 2.5kgf?cm;E69B-Cl0B型耦合器,紧固力矩4.5kfg?cm。 第四步:连接电源输出线。配线时必须关断电源。 第五步:检查电源投入使用。 ②注意事项: 采用标准耦合器时,应在允许值内安装。如图5-1所示。 图5-1 标准耦合器安装 连接带及齿轮结合时,先用别的轴承支住,再将旋转编码器和耦合器结合起来。如图 5-2所示。 图5-2 旋转编码器安装 齿轮连接时,注意勿使轴受到过大荷重。 用螺钉紧固旋转编码器时,应用5kfg?cm左右的紧固力矩。 固定本体进行配线时,不要用大于3kg的力量拉线。 可逆旋转使用时,应注意本体的安装方向和加减法方向。 把设置的装置原点和编码器的Z相对准时,必须边确定Z相输出边安装耦合器。 使用时勿使本体上粘水滴和油污。如浸入内部会产生故障。 (2)配线及连接

①配线应在电源0FF状态下进行。电源接通时,若输出线接触电源线,则有时会损坏输出回路。 ②若配线错误,则有时会损坏内部回路,所以配线时应充分注意电源的极性等。 ③若和高压线、动力线并行配线,则有时会受到感应造成误动作或损坏。 ④延长电线时,应在10m以下。还由于电线的分布容量,波形的上升、下降时间会延长,所以有问题时,应采用施密特回路等对波形进行整形。 还有为了避免感应噪声等,也要尽量用最短距离配线。集成电路输人时,要特别注意。 ⑤电线延长时,因导体电阻及线间电容的影响。波形的上升、下降时间变长,容易产 生信号间的干扰(串音),因此应使用电阻小、线间电容低的电线(双绞线、屏蔽线)。

电子台秤的标定方法

电子称校验一般方法 硫酸厂地磅标定: 空载安标定 密码92313 1c空称质量置零 上车 显示车重量 输入调整正常重量 2c 退出 计价秤校准很简单,1、调零2、加砝码调线性3、写量程 志瑜电子秤调试方法 一、开机回零后,输入⑨⑦⑤再按《去皮》键。二、然后再输入①或⑦⑨①⑥⑧再按《去皮》键。三、等待几秒后,加1/3的砝码,再按《去皮》键。四、输入所加砝码的重量值。再按《去皮》键。五、输入满量程的重量值,再按《去皮》键。六、输入分度值⑤,再按《去皮》键。七、电子秤回到称重状态即完成调试。 大河电子秤调试方法 按“⑨⑦⑤⑤”键,单价窗显示一个“0”。再输入②⑧①②③,按“去皮”键几秒后,显示“0.000 LOAD———”。加1/3砝码。再按“去皮”键,显示“0.000 LOAD0”。输入砝码重量值,再按“去皮”。输入砝码的满程值。再按“去皮”。几秒后完成调试。 大河电子台秤的调试 按“⑨⑦⑤⑤”键,按“去皮”键单价窗显示一个“0”。再输入②☉①②③,按“输入”键几秒后,显示“0.000 LOAD———”。加1/3砝码。再按“输入”键,显示“0.000 LOAD0”输入砝码重量值,再按“输入”。输入砝码的满程值。再按“输入”。几秒后完成调试。 宏马电子秤调试方法(永州电子秤方法相同) ⒈打开机盖,插上短路环。开机进入调试状态。稳定后,加1/2砝码。按“去皮”键。重量窗显示1/2砝码值。按“清除”键回到称重状态。拨回短路环,完成调试 ⒉按《累计》键开机,回零后再按《累计》键一下,输入③①⑤⑧。按《累计》进入调试状态。加1/2砝码后,再按《去皮》键,回到称重状态。调试完成。 3. 打开机盖,插上短路环。按《去皮》键,按《1》,再按《去皮》键,加15.00KG砝码。再按《去皮》键,输入砝码值。再按《去皮》键,输入满程值。再按《去皮》键,输入分度值5,再按《去皮》键。调试完成。 4.8818--1 世伟电子秤调试方法 打开机盖,插上短路环。开机进入调试状态。稳定后,加1/2砝码。按“去皮”键。重量窗显示1/2砝码值。按“清除”键回到称重状态。拨回短路环,完成调试 中银电子秤调试方法 打开机盖,插上短路环。开机。按“3579”键,单价窗显示一个“0”。再输入15908,按“去皮”键几秒后,显示“0.000 LOAD-—”。加1/3砝码。再按“去皮”键,显示“0.000 LOAD0”。输入砝码重量值,再按“去皮”。输入砝码的满程值。再按“去皮”。几秒后完成调试。

各种编码器的调零方法

各种编码器的调零方法 增量式编码器的相位对齐方式 增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察编码器的U相信号和Z信号; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。 撤掉直流电源后,验证如下: 1.用示波器观察编码器的U相信号和电机的UV线反电势波形; 2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。 上述验证方法,也可以用作对齐方法。 需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。 将编码器的U相信号零点与电机电角度的零点直接对齐,为达到此目的,可以: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置; 4.一边调整,一边观察编码器的U相信号上升沿和电机U相反电势波形由低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 由于普通增量式编码器不具备UVW相位信息,而Z信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而不作讨论。 绝对式编码器的相位对齐方式 绝对式编码器的相位对齐对于单圈和多圈而言,差别不大,其实都是在一圈内对齐编码器的检测相位与电机电角度的相位。早期的绝对式编码器会以单独的引脚给出单圈相位的最高位的电平,利用此电平的0和1的翻转,也可以实现编码器和电机的相位对齐,方法如下:1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察绝对编码器的最高计数位电平信号;

电子秤相关参数调节方法

电子秤相关参数调节方法 1、调WEIGHT的字体大小 按“方式”三次显示PLU文件,输入11,按“*”,输入1,按*后显示WEIGHT:, 按平台上的“V4”,C调总价显示,G1到G6的大小确认后,按“*”在按“#”保存, 按“方式”退出.。 2、调KG字体的大小 按“方式”三次显示PLU文件,输入11,按“*”,输入2,按*后显示KG:,按平台上的“V4”,C调总价显示,G1到G6的大小确认后,按“*”在按“#”保存,按“方式”退出。 3、调文本的上下左右: 按“方式”三次显示PLU文件,输入12,按“*”,输入1,按多次*后显示PLU代码, 输入“26”(表示要设的文档1),按“*”出现“X”坐标(表示左右)后输入所要设置的参数(毫米),按“*”出现Y坐标后输入参数,按“*”在按“#”保存,按“方式”退出.,emark:26表示文本1 27表示文本2 28表示文本3 依次类推. 如文本:26,X坐标32,按“*”,Y坐标0,按“*”,宽35,按“*”,宽6按“*”,打印状态7, 按“*”在按“#”保存,按“方式”退出.。 按“方式”三次显示PLU文件,输入12,按“*”,输入1,按多次*后显示PLU代码,1、输入4,在按“*”键进入显示重量(11.233)“X”坐标(表示左右)调整,按“*”键“#”键保存,按“方式”退出。 2、输入12,在按“*”键进入条形码出现“X”坐标(表示左右)调整,按“*”键“#”键保存,按“方式”退出。 3、输入26,在按“*”键进入文本1(WEIGHT:)出现“X”坐标(表示左右)调整,按“*”键“#”键保存,按“方式”退出。 4、输入27,在按“*”键进入文本2(KG)出现“X”坐标(表示左右)调整,按“*”键“#”键保存,按“方式”退出。注:“X”坐标(表示调整左右),“Y”坐标(表示调整上下) 4、IP地址的设置 按“方式”三次,按住“置零”不放同时输入“3752”,松开“置零”,再按住“置零”同时输入“0416”后会出现IP地址.显示出来的IP地址要和主机的IP地址一致,方可双击打开TOP2000,工具,水平设置查看网络IP地址是否和电子秤地址一致,单击“确定”。 5、设0000100XXXX 按“方式”三次,输入“1”,输入“*”,输入“10.00”,依次输入* * 10 #,退出.。 6、设开头25 按“方式”四次,按住“置零”不放同时输入“141”出现(项目条码),输入“3X”,显示F1和F2(13位机PLU条码),输入所需要的参数设置如(025,000等),按“*”,按“#”,按“方式”退出.。

伺服电机旋转编码器旋变安装

伺服电机旋转编码器安装 一.伺服电机转子反馈的检测相位与转子磁极相位的对齐方式 1.永磁交流伺服电机的编码器相位为何要与转子磁极相位对齐 其唯一目的就是要达成矢量控制的目标,使d轴励磁分量和q轴出力分量解耦,令永磁交流伺服电机定子绕组产生的电磁场始终正交于转子永磁场,从而获得最佳的出力效果,即“类直流特性”,这种控制方法也被称为磁场定向控制(FOC),达成FOC控制目标的外在表现就是永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,如下图所示: 图1 因此反推可知,只要想办法令永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,就可以达成FOC控制目标,使永磁交流伺服电机的初级电磁场与磁极永磁场正交,即波形间互差90度电角度,如下图所示: 图2 如何想办法使永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致呢?由图1可知,只要能够随时检测到正弦型反电势波形的电角度相位,然后就可以相对容易地根据电角度相位生成与反电势波形一致的正弦型相电流波形了。 在此需要明示的是,永磁交流伺服电机的所谓电角度就是a相(U相)相反电势波形的正弦(Sin)相位,因此相位对齐就可以转化为编码器相位与反电势波形相位的对齐关系;另一方面,电角度也是转子坐标系的d轴(直轴)与定子坐标系的a轴(U轴)或α轴之间的夹角,这一点有助于图形化分析。 在实际操作中,欧美厂商习惯于采用给电机的绕组通以小于额定电流的直流电流使电机转子定向的方法来对齐编码器和转子磁极的相位。当电机的绕组通入小于额定电流的直流电流时,在无外力条件下,初级电磁场与磁极永磁场相互作用,会相互吸引并定位至互差0度相位的平衡位置上,如下图所示:

伺服电机维修之编码器对位调零

伺服电机转子反馈的检测相位与转子磁极相位的对齐方式 论坛中总是有人问及伺服电机编码器相位与转子磁极相位零点如何对齐的问题,这样的问题论坛中多有回答,本人也曾在多个帖子有所回复,鉴于本人的回复较为零散,早就想整理集中一下,只是一直未能如愿,今借十一长假之际,将自己对这一问题的经验和体会整理汇总一下,以供大家参考,或者有个全面的了解。 永磁交流伺服电机的编码器相位为何要与转子磁极相位对齐 其唯一目的就是要达成矢量控制的目标,使d轴励磁分量和q轴出力分量解耦,令永磁交流伺服电机定子绕组产生的电磁场始终正交于转子永磁场,从而获得最佳的出力效果,即“类直流特性”,这种控制方法也被称为磁场定向控制(FOC),达成FOC控制目标的外在表现就是永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,如下图所示: 图1 因此反推可知,只要想办法令永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,就可以达成FOC控制目标,使永磁交流伺服电机的初级电磁场与磁极永磁场正交,即波形间互差90度电角度,如下图所示: 图2 如何想办法使永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致呢?由图1可知,只要能够随时检测到正弦型反电势波形的电角度相位,然后就可以相对容易地根据此相位生成与反电势波形一致的正弦型相电流波形了,因此相位对齐就可以转化为编码器相位与反电势波形相位的对齐关系。

在实际操作中,欧美厂商习惯于采用给电机的绕组通以小于额定电流的直流电流使电机转子定向的方法来对齐编码器和转子磁极的相位。当电机的绕组通入小于额定电流的直流电流时,在无外力条件下,初级电磁场与磁极永磁场相互作用,会相互吸引并定位至互差0度相位的平衡位置上,如下图所示: 图3 对比上面的图3和图2可见,虽然U相绕组(红色)的位置同处于电磁场波形的峰值中心(特定角度),但FOC控制下,U相中心与永磁体的q轴对齐,而空载定向时,U相中心却与d轴对齐,也就实现了a轴或|á轴与d轴间的对齐关系,此时相位对齐到电角度0度,电机绕组中施加的转子定向电流的方向为U相入,VW出,由于V相与W相是并联关系,流经V相和W相的电流有可能出现不平衡,从而影响转子定向的准确性。 实用化的转子定向电流施加方法是U入,V出,即U相与V相串联,可获得幅值完全一致的U相和V相电流,有利于定向的准确性,此时U相绕组(红色)的位置与d轴差30度电角度,即a轴或|á轴对齐到与d差(负)30度的电角度位置上,如图所示: 图4 上述两种转子定向方法对应的绕组相反电势波形和线反电势,以及电角度的关系如下图所示,棕色线为a轴或|á轴与d轴对齐,即直接对齐到电角度0点,紫色线为a轴或|á轴对齐到与d差(负)30度的电角度位置,即对齐到-30度电角度点:

电子秤组装与调试预赛资料

电子组装与调试”预赛“电子秤”电路功能简介 一、功能说明 电子秤主要以单片机STC90C52RC控制核心,实现电子秤的基本控制功能。系统扩展了电子日历时钟,系统可以分为最小系统、数据采集、人机交互界面和系统电源、时钟和语音报数六大部分。最小系统部分主要包括STC90C52RC和经典复位电路;数据采集部分由称重传感器、信号放大和A/D转换部分组成,信号放大和A/D转换部分主要由专用型高精度24位AD转换芯片HX711实现;人机交互界面为键盘输入和点阵式液晶显示,主要使用4*4矩阵键盘和1602液晶显示器,可以方便的输入数据和直观的显示数据;时钟模块主要由时钟芯片DS1302和时钟电路组成;语音报数模块可语音报读时间和电子秤系统的重量、单价、金额等语音内容,主要由SC1010B实现。该电子秤可以实现基本的称重功能(称重范围为0~5Kg,重量误差不大于±0.005Kg),并扩展了时钟和语音报数的功能,时钟模块还可设置闹钟功能。系统在称量时还具有超量程报警功能。整个系统结构简单,使用方便,功能齐全,精度高,具有一定的开发价值。 二、电路功能简介 系统硬件的结构框图如下图1所示: 图1 系统硬件结构框图

电子秤键盘面板: 显示状态:用于时钟模式与闹钟模式的切换。 独立按键S17与S18: S17为时钟按键:按下后由电子秤显示转换为时钟显示。 S18为电子秤按键:按下后由时钟显示转换为电子秤显示。 三、元器件介绍 1.集成电路AT24C02 AT24C02是基于I2C的串行E2PROM存储器件,具有数据掉电不丢失的特点,其管脚如图2所示。 图2 集成电路AT24C02 2.集成电路HX711 HX711 是一款专为高精度称重传感器而设计的24位A/D 转换器芯片。

伺服电机编码器调零

万能增量式光电编码器控制的伺服电机零位调整技巧 下述述两种调法完全取决于你的手工能力和熟练程度, 一般来说, 每款伺服电机都有自己专门的编码器自动调零软件. 不外传仅是出于商业羸 利和技术保密. 如果你是一家正规的维修店,请不要采用以下方法, 应通过正常渠道购买相应的专业设备. 实践证明, 手工调整如果技巧掌握得当, 工作仔细负责, 也可达到同样的效果. 大批量更换新编码器调零方法 第一步: 折下损坏的编码器 第二步: 把新的编码器按标准固定于损坏的电机上 第三步:按图纸找出Z信号和两根电源引出线,一般电源均为5V. 第四步:准备好一个有24V与5V两组输出电源的开关电源和一个略经改装的断 线报警器,把0V线与Z信号线接到断线报警器的两个光耦隔离输入 端上 第五步:在电机转动轮上固定一根二十厘米长的横杆, 这样转动电机时转角精度很容易控制. 第六步:所有连线接好后用手一点点转动电机轮子直到报警器发出报警时即为编码器零位, 前后反复感觉一下便 可获得最佳的位置,经实测用这种方法校正的零位误差极小,很适于批量调整, 经实际使用完全合格. 报警器也可用示波器代替, 转动时 当示波器上的电压波形电位由4V左右跳变0V时或由0V跳变为4V左右 即是编码器的零位.这个也很方便而且更精确.杆子的长度越长精度则越高,实际使用还是用报警器更方便又省钱.只要用耳朵感知就行了. 在编码器的转子与定圈相邻处作好零位标记, 然后拆下编码器 第七步:找一个好的电机, 用上述方法测定零位后在电机转轴与处壳相邻处作好电机的机械零位标记.

第八步:引出电机的U V W动力线,接入一个用可控制的测试端子上,按顺序分别对其中两相通入24V直流电,通电时间设为2秒左右,观察各个电 机最终停止位置(即各相的机械零位位置)其中一个始必与刚才所作的机械零位标记是同一个位置. 这就是厂方软件固定的电机机械零 位, 当然能通过厂方专用编码器测试软件直接更改编码器的初始零位数据就更方便了. 如果你只有一台坏掉的伺服电机,你就要根据以上获得的几个相对机械零位逐个测试是不是我们所要的那个位置,这一步由伺服放大器 的试运行模式来进行测试.有关资料是必须的, 否则不要轻易动手,以免损坏编码器. 第九步:把编码器装上电机后端, 这一步要小心,以确保编码器零位记号和电机械械零位位置无偏移, 最后固定柱头镙钉和可调固定底座.. 对于同类电机来说获得了一个正确的零位位置后以后也就知道了24V的正负极该正确地连接至UVW的哪两个端子上,以后就不必再逐 个搞试验了, 这一型号的编码器调零算是搞定了. 第十步:正确连接电机与伺服放大器,并把工作模式定为试运行,各厂商的测试方式均有些差异, 请仔细阅读说明书, 如无任何硬件损坏, 测试应 当一次成功. 第十一步:用自动调谐功能自动设定合适的PID 数据. 以保证平稳运行的实际需要. 由于损坏的有些电机很难判别电机轴承是否能承受额定高速运转的要 求, 经这样处理的电机还应进行抽样力矩测试和轴承测试, 如果 轴承磨损严重, 应同时更换轴承. 二:应急调零方法, 简单而且实用. 但必须把电机拆离设备并依靠设备来进行调试试好后再装回设备再可. 事实上经过大量的调零试验, 每个伺服电机都有一个角度小于10 度的零速静止区域, 和350度的高速反转区域, 如果你是偶而更换一只编码器 , 这样的做法确实是太麻烦了, 这里有一个很简便的应急方法也能很快搞定. 第一步:拆下损坏的编码器 第二步: 装上新的编码器, 并与轴固定. 而使可调底座悬空并可自由旋转, 把电

各种编码器调零方法

各种编码器的调零 量式编码器的相位对齐方式 在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A 和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察编码器的U相信号和Z信号; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。 撤掉直流电源后,验证如下: 1.用示波器观察编码器的U相信号和电机的UV线反电势波形; 2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。 上述验证方法,也可以用作对齐方法。 需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。 有些伺服企业习惯于将编码器的U相信号零点与电机电角度的零点直接对齐,为达到此目的,可以: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW 三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置; 4.一边调整,一边观察编码器的U相信号上升沿和电机U相反电势波形由低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 由于普通增量式编码器不具备UVW相位信息,而Z信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而不作为本讨论的话题。 绝对式编码器的相位对齐方式 绝对式编码器的相位对齐对于单圈和多圈而言,差别不大,其实都是在一圈内对齐编码器的检测相位与电机电角度的相位。早期的绝对式编码器会以单独的引脚给出单圈相位的最高位的电平,利用此电平的0和1的翻转,也可以实现编码器和电机的相位对齐,方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;

相关文档