文档库 最新最全的文档下载
当前位置:文档库 › 高分子化学-开环聚合

高分子化学-开环聚合

高分子化学中聚合度的计算

高分子化学中聚合度的计算 1、自由基聚合 2、自由基共聚 3、乳液聚合 4、阳离子聚合 5、阴离子聚合 6、线形缩聚 (一)线型缩聚动力学: (1)不可逆条件下 a 、自催化聚合(无外加酸) 积分得: p t 2 2p R k 2]M [k =ντν]M [k p =i p i p n R N n ]M [k r r x ==Xn 1=k P k t [M]+C M +C S [M][S]]C []M [n n ]M []M [n X ==-N N X 0n =大分子数结构单元数目=P X n -11=3 k C dt dC =-t k 2C 1C 120 2=-

由 C = Co (1-P),代入上式 b 、外加酸催化 积分得: 将 C = Co (1-P ) 代入上式 (2)平衡条件下 a 、水未排出时(密闭体系) 根据反应程度关系式 0N N 1P -=1t k C 2) P -1(1202+=1 t k C 2)X 202n +(=2 C `k dt dC =-t `k C 1C 10 =-1t C `k P 110+=-1 t C `k X 0n +=()2121C 1k C k dt dC ----=1C 1C C C N N N P 0000---===P 1C -=∴

所以 正、逆反应达到平衡时,总聚合速率为零,则 解得 b 、水部分排出时(非密闭体系) 根据反应程度关系式 所以 平衡时 ()[]K P P 1k dt dP 221--=()0K P P 122=--()0K KP 2P 1K 2=+--1K K 1K K K P +==--1K 1 K K 11P 11X n +===+--()W 121n C 1k C k dt dC ----=1C 1C C C N N N P 0000---===P 1C -=∴()[] K n P P 1k dt dP w 21--=()K n P P 1W 2=-

高分子化学名词解释满分版

实用文档 文案大全高分子化学名词解释满分版 逐步聚合(Stepwise Polymerization) 线形缩聚(Linear Poly-codensation):在聚合反应过程中,如用2-2或2官能度体系的单体作原料,随着聚合度逐步增加,最后形成高高分子化合物(High Molecular Compound):所谓高分子化合物,分子的聚合反应。线型缩聚形成的聚合物为线形缩聚物,如涤纶、系指那些由众多原子或原子团主要以共价键结合而成的相对分子尼龙等。量在一万以 上的化合物。 体形缩聚 (Tri-dimensional Poly-condensation):参加反应的单体,单体(Monomer):合成聚合物所用的-低分子的原料。如聚氯反应中形成的大分子向三乙烯的单体为氯乙烯。至少 有一种单体含有两个以上的官能团。 重复单元(Repeating Unit):在聚合物的大分子链上重复出现的、组成相同的最小基本 单元。如聚氯乙烯的重复单元为。 单体单元(Monomer Unit):结构单元与原料相比,除了电子结构变化外,其原子种类 和各种原子的个数完全相同,这种结构单元 又称为单体单元。 结构单元(Structural Unit):单体在大分子链中形成的单元。聚氯乙烯的结构单元为氯 乙烯。 聚合度(DP、X n)(Degree of Polymerization) :衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以Xn表示;以结构单 元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以表示。聚合物是由 一组不同聚合度和不同结构形态的同系物的混合物所组成,因此聚合度是一统计平均值,一般写成、。 聚合物分子量(Molecular Weight of Polymer):重复单元的分子量与重复单元数的乘积;或结构单元数与结构单元分子量的乘积。 数均分子量(Number-average Molecular Weight):聚合物中用不同分子量的分子数目平 均的统计平均分子量。,Ni :相应分子 所占的数量分数。 重均分子量(Weight-average Molecular Weight):聚合物中用不同分子量的分子重量平 均的统计平均分子量。,Wi :相应的 分子所占的重量分数。 粘均分子量(Viscosity-average Molecular Weight):用粘度法测得的聚合物的分子量。

(完整版)高分子化学潘祖仁答案(第五版)..

第一章绪论 思考题 1. 举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。 答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。 在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。 聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。 聚合度是衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以 X表示。 n 2. 举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。 答:合成高分子多半是由许多结构单元重复键接而成的聚合物。聚合物(polymer)可以看作是高分子(macromolecule)的同义词,也曾使用large or big molecule 的术语。从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。多数场合,聚合物就代表高聚物,不再标明“高”字。 齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。低聚物的含义更广泛一些。 3. 写出聚氯乙烯、聚苯乙烯、涤纶、尼龙-66、聚丁二烯和天然橡胶的结构式(重复单元)。选择其常用 分子量,计算聚合度。 聚合物结构式(重复单元) 聚氯乙烯-[-CH2CHCl-]- n 聚苯乙烯-[-CH2CH(C6H5)-]n

高分子化学教案离子聚合

第五章离子聚合(ionic polymerization) 【课时安排】 5.1 引言20分钟 5.2 阳离子聚合2学时30分钟 5.3 阴离子聚合3学时 5.6 开环聚合2学时 总计8学时 【掌握内容】 1阳离子聚合常见单体与引发剂 2阳离子聚合聚合机理 3阳离子聚合离子对平衡式及其影响因素 4阴离子聚合常见单体与引发剂 5阴离子聚合聚合机理 6活性阴离子聚合聚合原理、特点及应用 7阴离子、阳离子聚合、自由基聚合的比较 【熟悉内容】 1. 假阳离子聚合、异构化聚合。 2. 阴离子聚合的自发终止;溶剂、温度与反离子对反应的影响。 【了解内容】 1. 阳离子聚合动力学。 2. 其它类的活性聚合。 【教学难点】 1. 阳离子聚合聚合机理。 2. 阴阳离子对平衡式影响规律。 3. 活性阴离子聚合条件、特点及其应用。 【教学目标】 1. 掌握阴阳离子聚合相关基本概念。 2. 掌握阴阳离子聚合常见单体与引发剂及聚合反应特点。 3. 能按规范写出正确的阴阳离子聚合引发反应式、聚合机理、应用反应式。 4. 运用计量聚合进行简单计算。 5.1 引言 5.2 阳离子聚合 【教学内容】 5.1 引言 5.2 阳离子聚合 5.2.1 单体 5.2.2 引发剂(亲电试剂) 5.2.3 聚合机理 5.2.4 聚合反应影响因素及特点 5.2.5 工业化品种 【授课时间】3学时30分钟 【教学重点】阳离子聚合常见单体与引发剂;聚合反应特点;离子对平衡式及其影响因素【教学难点】阳离子聚合聚合机理;离子对平衡式影响规律

【教学目标】 1 掌握阳离子聚合常见单体与引发剂及聚合反应特点 2 能正确写出阳离子聚合引发反应式、异丁烯等阳离子聚合机理 3能综合分析影响聚合反应速率的因素 【教学手段】课堂讲授,多媒体 【教学过程】 5.1 引言 一 定义 单体在引发剂作用下按离子历程聚合得到大分子的过程 二 特点 1反应条件苛刻 2聚合速率快 3离子活性高,反应介质影响大 三 意义 1.将难以自由基方式聚合的单体,以离子聚合方式合成新产品 2.同一单体通过自由基和离子聚合得到的产物的结构与性能不同 3.可设计 5.2 阳离子聚合 发展历史 反应通式 R-X →R -X + 5.2.1 单体 一 要求:足够亲核性,足够活性,一定稳定性 二 主要种类 1 带推电子取代基的乙烯基单体—异丁烯 2共轭烯烃—苯乙烯,丁二烯,异戊二烯 3含有带独电子杂原子的单体--烷基乙烯基醚 三 活性比较 烷基乙烯基醚?异丁烯?苯乙烯?异戊二烯?丁二烯 5.2.2 引发剂(亲电试剂) 一 要求:足够亲电性,反离子亲核性弱 二 种类 1质子酸:其引发阳离子为离解产生的质子H + (1)组成: 无机酸:H 2SO 4, H 3PO 4等 有机酸:CF 3CO 2H, CCl 3CO 2H 等 超强酸: HClO 4 , CF 3SO 3H, ClSO 3H 等 (2)活性:反离子亲核性对活性有较大影响 HX →t-BuX H 2SO 4,H 3PO 4 →二,三聚体 R X +H 2C CH Y R CH 2CH Y 单体聚合 抗衡阴离子

(完整版)高分子化学试题合辑附答案

《高分子化学》课程试题 得分 一、基本概念(共15分,每小题3分) ⒋动力学链长 ⒌引发剂半衰期 二、填空题(将正确的答案填在下列各题的横线处)( 每空1 分,总计20分) ⒈自由聚合的方法有本体聚合、溶液聚合、乳液聚合和悬浮聚合。 ⒉逐步聚合的方法有熔融缩聚、溶液缩聚、固相缩聚和界面缩聚。 ⒊聚氨酯大分子中有、、 和基团。 ⒋聚合反应按反应机理可分为连锁聚合、逐步聚合、 开环聚合和聚合物之间的化学反应四类。 ⒌聚合物按大分子主链的化学组成碳链聚合物、杂链聚合物、元素无机聚合物和元素有机聚合物四类。 得分 三、简答题(共20分,每小题5分) ⒈乳液聚合的特点是什么? ⒊什么叫自由基?自由基有几种类型?写出氯乙烯自由基聚合时链终止反应方程式。 四、(共5分,每题1分)选择正确答案填入( )中。 ⒈自由基共聚合可得到( 1 4 )共聚物。

⑴无规共聚物⑵嵌段共聚物⑶接技共聚物⑷交替共聚物 ⒉为了得到立构规整的PP,丙烯可采用( 4 )聚合。 ⑴自由基聚合⑵阴离子聚合⑶阳离子聚合⑷配位聚合 ⒊工业上为了合成聚碳酸酯可采用( 1 2 )聚合方法。 ⑴熔融缩聚⑵界面缩聚⑶溶液缩聚⑷固相缩聚 ⒋聚合度基本不变的化学反应是( 1 ) ⑴PVAc的醇解⑵聚氨酯的扩链反应⑶高抗冲PS的制备⑷环氧树脂的固化 ⒌表征引发剂活性的参数是( 2 4 ) ⑴k p(⑵t1/2⑶k i⑷k d 五、计算题(共35分,根据题目要求计算下列各题) ⒈(15分)用过氧化二苯甲酰(BPO)作引发剂,60℃研究甲基丙烯酸甲酯的本体聚合。已知:C (偶合终止系数)=0.15;D (歧化终止系数)=0.85; f =0.8; k p=3.67×102 L/ mol.s;k d =2.0×10-6 s-1; k t=9.30×106 L/ mol.s;c(I)=0.01 mol / L; C M=1.85×10-5;C I=2×10-2; 甲基丙烯酸甲酯的密度为0.937 g./ cm3; X。 计算:聚甲基丙烯酸甲酯(PMMA)的平均聚合度 n 《高分子化学》课程试题 一、基本概念(共14分,5. 2分, 其余3分) ⒋自由基共聚合反应

高分子化学习题以及答案【武汉工程大】

一、填空题 1.尼龙66的重复单元是。 2.聚丙烯的立体异构包括、和无规立构。 3.过氧化苯甲酰可作为的聚合的引发剂。 4.自由基聚合中双基终止包括终止和偶合终止。 5.聚氯乙烯的自由基聚合过程中控制聚合度的方法是。 6.苯醌可以作为聚合以及聚合的阻聚剂。 7.竞聚率是指。 8.邻苯二甲酸和甘油的摩尔比为1.50 : 0.98,缩聚体系的平均官能度为;邻苯二甲酸酐与等物质量的甘油缩聚,体系的平均官能度为(精确到小数点后2位)。 9.聚合物的化学反应中,交联和支化反应会使分子量而聚合物的热降解会使分子量。 10.1953年德国K.Ziegler以为引发剂在比较温和的条件下制得了少支链的高结晶度的聚乙烯。 11.己内酰胺以NaOH作引发剂制备尼龙-6 的聚合机理是。 二、选择题 1.一对单体共聚时,r1=1,r2=1,其共聚行为是()? A、理想共聚; B、交替共聚; C、恒比点共聚; D、非理想共 聚。 2.两对单体可以共聚的是()。 A、Q和e值相近; B、Q值相近而e值相差大; C、Q值和e值均相差大; D、Q值相差大而e值相近。 3.能采用阳离子、阴离子与自由基聚合的单体是()? A、MMA; B、St; C、异丁烯; D、丙烯腈。 4.在高分子合成中,容易制得有实用价值的嵌段共聚物的是()? A、配位阴离子聚合; B、阴离子活性聚合; C、自由基共聚合; D、阳离子聚合。 5.乳液聚合的第二个阶段结束的标志是()? A、胶束的消失; B、单体液滴的消失; C、聚合速度的增加; D、乳胶粒的形成。 6.自由基聚合实施方法中,使聚合物分子量和聚合速率同时提高,可 采用()聚合方法? A、乳液聚合; B、悬浮聚合; C、溶液聚合; D、本体聚合。 7.在缩聚反应的实施方法中对于单体官能团配比等物质量和单体纯 度要求不是很严格的缩聚是()。 A、熔融缩聚; B、溶液缩聚; C、界面缩聚; D、固相缩聚。 8.合成高分子量的聚丙烯可以使用以下()催化剂? A、H2O+SnCl4; B、NaOH; C、TiCl3+AlEt3; D、偶氮二异丁腈。 9.阳离子聚合的特点可以用以下哪种方式来描述()? A、慢引发,快增长,速终止; B、快引发,快增长,易转移,难终止; C 快引发,慢增长,无转移,无终止;D、慢引发,快增长,易转移,难终止; 10.下面哪种组合可以制备无支链高分子线形缩聚物()

开环聚合

第八章 开环聚合 8.1 概述 高分子化学中,以环状单体通过开环聚合来合成聚合物,同样具有重要的地位。在这种聚合过程中,增长链通过不断地打开环状结构,形成高聚物: 以环醚为例,环氧乙烷经开环聚合反应,得到一种聚醚,即聚氧化乙烯。这在工业上已得到应用。 能够进行开环聚合的单体很多,如环状烯烃,以及内酯、内酰胺、环醚、环硅氧烷等环内含有一个或多个杂原子的杂环化合物。开环聚合既具有某些加成聚合的特征,也具有缩合聚合的特征。由开环聚合得到的聚合物,重复单元与环状单体开裂时的结构相同,这与加成聚合相似;而聚合物主链中往往含有醚键、酯键、酰胺键等,与缩聚反应得到的聚合物常具有相同的结构,只是无小分子放出。开环聚合与缩聚反应相比,还具有聚合条件温和、能够自动保持官能团等物质的量等特点,因此开环聚合所得聚合物的平均分子质量,通常要比缩聚物高得多。有些单体如乳酸,采用缩聚反应无法得到高分子质量的聚合物;而采用乳交酯的开环聚合,就能够获得高分子质量的聚乳酸。但是,与缩聚反应相比,开环聚合可供选择的单体较少,例如二元酸与二元醇能够通过缩聚获得聚酯;而开环聚合,只有相当于α,ω-羟基酸的环内酯可供选择。聚酰胺的情况也是如此。另外,有些环状单体合成困难,因此由开环聚合所得到的聚合物品种受到限制。开环聚合就机理而言,有些属于逐步聚合,有些属于连锁聚合。 8.1.1 聚合范围及单体可聚性 如前所述,环醚、环酯、环酰胺、环硅氧烷等能够进行开环聚合。此外,环胺、环硫化物、环烯烃、以及N-羧基-α-氨基酸酐等同样也能进行开环聚合。 环状单体能否转变为聚合物,取决于聚合过程中自由能的变化情况,与环状单体和线形聚合物的相对稳定性有关。Dainton 以环烷烃作为环状单体的母体,研究了环大小与聚合能力的关系。表6-1列出了环烷烃在假想开环聚合时的自由能变化ΔG lc 0、焓变ΔH lc 0、及熵变ΔS lc 0。 R X [ R X ]n n [ CH 2 CH 2 O ]n n H 2C CH 2O

潘祖仁《高分子化学》课后习题及详解(开环聚合)【圣才出品】

第8章开环聚合 (一)思考题 1.举出不能开环聚合的3种六元环。为什么三氧六环却能开环聚合? 答:(1)三、四元环容易开环聚合,五、六元环能否开环与环中的杂原子有关,不能开环聚合的六元环如 (2)三氧六环能够开环聚合是由于六元环的键角与上述六元环不同,容易开环聚合。 2.环烷烃开环倾向大致为:三、四元环>八元环>七、五元环,分析其主要原因。 答:环烷烃的开环倾向可以用聚合自由焓来衡量,自由焓越大,开环聚合倾向越大,不同环烷烃的聚合自由焓如表8-1所示,因此环烷烃开环倾向大致为三、四元环>八元环>七、五元环。 表8-1 3.下列单体选用哪一引发体系进行聚合?写出综合聚合反应式。 表8-2

单体 答:(1)环氧乙烷用CH3ONa作为引发剂,阴离子聚合反应式如下 (2)丁氧环用BF3+H2O为引发剂,阳离子聚合反应式如下 (3)乙烯亚胺用H2SO4、BF3+H2O作为引发剂,阳离子聚合反应如下 (4)二甲基二氯硅烷可以水解,预聚成六元环三聚体或八元环四聚体,阳离子聚合反应式如下 (5)三聚甲醛用H2SO4、BF3+H2O作为引发剂,阳离子聚合反应如下 4.以辛基酚为起始剂,甲醇钾为引发剂,环氧乙烷进行开环聚合,简述其聚合机理。辛基酚用量对聚合速率、聚合度、聚合度分布有何影响? 答:(1)开环聚合机理

引发:烷氧阴离子进攻环氧乙烷中的碳原子,形成单加成物。 交换:环氧乙烷单加成物ROCH2CH2O-与C8H17C6H4-交换。 增长:C8H17C6H4O-进攻环氧乙烷中的碳原子,开环聚合成线形聚合物。 (2)当起始剂RXH全部换成RX以后,才同步增长,产物分子量分布窄,反映出快引发、慢增长的活性阴离子聚合特征。辛基酚用量越大,聚合速率、聚合度越大,聚合度分布越宽。 5.以甲醇钾为引发剂聚合得到的聚环氧乙烷分子量可以高达3万~4万,但在同样条件下,聚环氧丙烷的分子量却只有3000~4000,为什么?说明两者聚合机理有何不同。 答:(1)聚环氧丙烷分子量低是由于环氧丙烷分子中甲基上的氢原子容易被夺取而转移,转移后形成的单体活性种很快转变成活性较低的烯丙醇-钠离子对,致使分子量降低。 (2)两者都是阴离子聚合,但是在环氧丙烷的聚合过程中向单体的链转移反应比聚环氧乙烷显著得多,使分子量降低,分子量分布变宽。 6.丁氧环、四氢呋喃开环聚合时需选用阳离子引发剂,环氧乙烷、环氧丙烷聚合时却多用阴离子引发剂,而丁硫环则既可阳离子聚合,也可阴离子聚合,为什么? 答:上述引发剂的选用原因如下:

高分子化学名词解释精品(五)---聚合方法(精)

高分子化学名词解释精品(五) ----聚合方法 学校名称:江阴职业技术学院 院系名称:化学纺织工程系 时间:2017年1月10日

1、自由基聚合实施方法(Process of Radical Polymerization):主要有本体聚合,溶液聚合,乳液聚合,悬浮聚合四种。 2、离子聚合实施方法(Process of Ionic Polymerization):主要有溶液聚合,淤浆聚合。 3、逐步聚合实施方法(Process of Step-polymerization):主要有熔融聚合,溶液聚合,界面聚合 4、本体聚合(Bulk Polymerization):本体聚合是单体本身、加入少量引发剂(或不加)的聚合。 5、悬浮聚合(Suspension Polymerization):悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。 6、溶液聚合(Solution Polymerization):是指单体和引发剂溶于适当溶剂的聚合。 7、乳液聚合(Emulsion Polymerization):是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。 8、分散剂(Dispersant):分散剂大致可分为两类,(1)水溶性有机高分子物,作用机理主要是吸咐在液滴表面,形成一层保护膜,起着保护人用,同时还使表面(或界面)张力降低,有利于液滴分散。(2)不溶于水的无机粉末,作用机理是细粉吸咐在液滴表面,起着机械隔离的作用。 9、乳化剂(Emulsifier):常用的乳化剂是水溶性阴离子表面活性剂,其作用有:(1)降低表面张力,使单体乳化成微小液滴,(2)在液滴表面形成保护层,防止凝聚,使乳液稳定,(3)更为重要的作用是超过某一临界浓度之后,乳化剂分子聚集成胶束,成为引发聚合的场所。 10、胶束(Micelle):当乳化剂浓度超过临界浓度(CMC)以后,一部分乳化剂分子聚集在一起,乳化剂的疏水基团伸身胶束回部,亲水基伸向水层的一种状态。 11、亲水亲油平衡值(HLB)( Value of Hydrophile Lipophile Balance):

高分子化学 逐步聚合

第2章逐步聚合(stepwise polymerization) 【课时安排】 2.1 缩聚反应1学时 2.2 线性逐步聚合反应机理1学时 2.3 线性逐步聚合反应动力学30分钟 2.4 缩聚物的聚合度1学时 2.5 分子量分布15分钟 2.6 逐步聚合施方法和重要线性逐步聚合物30分钟 2.7 体型缩聚15分钟 习题讲解1学时 总计6学时 【掌握内容】 1逐步聚合反应分类 2官能团的等活性 3 比较线型、体型逐步聚合、连锁聚合 4 线型逐步聚合反应聚合度的控制 5体型逐步聚合凝胶点的控制 6逐步聚合施方法 【熟悉内容】 1. 线型逐步聚合反应动力学 2. 逐步聚合产品合成工艺 3 统计学方法计算凝胶点 【了解内容】 1. 线型逐步聚合反应的分子量分布 【教学难点】 1. 线性逐步聚合反应机理与动力学 2. 控制线性逐步聚合相对分子质量方法 3. 控制体型逐步聚合凝胶点 【教学目标】 1 掌握逐步聚合反应分类、官能团的等活性、线型与体型逐步聚合、连锁聚合与体型逐步聚合、反应程度与转化率、当量系数与过量分率、结构预聚物与无规预聚物等基本概念 2 掌握线性逐步聚合相对分子质量控制方法及其计算 3掌握体型逐步聚合凝胶点控制方法及其计算 4能正确书写重要逐步聚合产品合成反应式 5掌握四种逐步聚合方法的区别 【教学手段】课堂讲授,辅助多媒体 【教学过程】 2.1 缩聚反应 概述 正如在第一章绪论中所指出的那样,聚合反应按机理分类包括链式聚合和逐步聚合。在逐步聚合中,高分子链的增长具有逐步的特性。缩(合)聚(合)反应和某些非缩聚(类似加聚的)反应属于逐步聚合。 绝大多数缩聚反应都是典型的逐步聚合反应。聚酰胺、聚酯、聚碳酸酯、酚醛树脂、脲

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(开环聚合)【圣才出品】

第8章开环聚合 8.1 复习笔记 一、概述 1.开环聚合 环状单体σ-键断裂而后开环、形成线形聚合物的反应,称为开环聚合。 2.开环聚合单体的种类 绝大多数的开环聚合单体都是杂环化合物,包括环醚、环缩醛、环酯、环酰胺(内酰胺)、环硅氧烷、环硫醚等。许多半无机和无机高分子也由开环聚合来合成。 3.开环聚合的特点 (1)链式聚合反应:包括链引发、链增长、链终止等基元反应; (2)可在高分子主链结构中引入多种功能基:酯、醚、酰胺等; (3)聚合反应前后的体积收缩比乙烯基单体聚合小。 4.环状单体开环聚合的热力学和动力学因素 (1)热力学因素 ①环大小对环张力的影响 键的变形程度愈大,环的张力能和聚合热也愈大,环的稳定性愈低,愈易开环聚合。 不同大小环烷烃的热力学稳定性次序大致如下 3、4<<5、7~11<12以上、6 环烷烃在热力学上容易开环的程度可简化为3、4>8>7、5。

②取代基对开环聚合能力的影响 环上取代基的存在不利于开环聚合。原因是环上侧基间距大,而线形大分子的侧基间距小,斥力或内能较大。 (2)动力学因素 环烷烃的键极性小,不易受引发活性种进攻而开环。杂环化合物环中的杂原子容易被亲核或亲电活性种进攻,只要热力学上有利于开环,动力学上就比环烷烃更易开环聚合。 5.聚合机理 多数开环聚合属于连锁离子聚合机理,但阴离子活性种往往是氧阴离子、硫阴离子、胺阴离子,阳离子活性种是三级氧鎓离子或锍离子。 二、阴离子开环聚合 1.三元环醚 (1)三元环醚易开环的原因 三元环醚张力大,热力学上很有开环倾向。加上C-O键是极性键,富电子的氧原子易受阳离子进攻,缺电子的碳原子易受阴离子进攻,因此,酸(阳离子)、碱(阴离子)甚至中性(水)条件均可使C-O键断裂开环。在动力学上,三元环醚也极易聚合。 (2)引发剂 环氧烷烃开环聚合常用的阴离子引发剂有碱金属的烷氧化物(如醇钠)、氢氧化物、氨基化物、有机金属化合物、碱土金属氧化物等。 (3)开环聚合分子量差异性原因 环氧乙烷阴离子开环聚合产物的分子量可达(3~4)×106,而环氧丙烷开环聚合物的分子量仅3000~4000,原因是环氧丙烷分子中甲基上的氢原子容易被夺取而转移,转移后

高分子化学逐步聚合习题

P.53 3. 要合成分子链中有以下特征基团的聚合物,应选用哪类单体,并通过何种反应聚合而成? ⑴—NH —CO —; ⑵—NH —O —CO —; ⑶—NH —CO —HN —; ⑷—OCH 2CH 2O — 解答:⑴用氨基酸或内酰胺进行均缩聚或开环聚合,或用二元胺和二元酸进行混缩聚或共缩聚均可得。 ⑵ 用二异氰酸酯和二元醇经聚加成反应可得。 ⑶ 用二异氰酸酯和二元胺经聚加成反应可得。 ⑷ 乙二醇缩聚、环氧乙烷开环聚合等均可得。 P.54 4. 讨论下列两组反应物进行缩聚或环化反应的可能性(m =2~8)。 ⑴()C O O H CH N H m 22; ⑵()()COOH CH HOOC +OH CH HO m 222 ⑴ m =3、4时易形成环,其余主要进行缩聚反应,形成线型聚合物。 ⑵ 该体系不易成环,主要生成线型聚合物 5. 用碱滴定法和红外光谱法均测得21.3g 聚己二酰己二胺试样中含有2.50×10-3mol 羧 基。计算该聚合物的数均相对分子质量为8520。计算时须作什么假定?如何通过实验来确定其可靠性?如该假定不可靠,如何由实验来测定正确的数均相对分子质量? 因为 ∑ ∑=i i n N m M , g .m i 321=∑, 8520=n M , 3-10×52=8520 321==∑ ∑..M m N n i i 通过计算说明,聚己二酰己二胺试样中羧基数与聚己二酰己二胺大分子数相等。因此,每个聚己二酰己二胺大分子链平均只含一个羧基。 计算时需做如下假定:官能团等物质的量投料,官能团等物质的量反应。没有环化等其它副反应。 可用气相渗透压法或蒸气法等准确测量数均相对分子质量的方法直接测量其数均相对分子质量。并检验此假设的可靠性。 6.在外加酸条件下等摩尔二元醇和二元酸进行缩聚。试证明P 从0.98到0.99所需时间与从开始至P=0.98所需的时间相近。 在外加酸催化的聚酯化合成反应中存在 1'0+=t c k X n 98.0=P 时,50=n X ,所需反应时间 01'49c k t = 99.0=P 时,100=n X ,所需反应时间 02'99c k t = 所以t 2≈2t 1 , 因此P 由0.98到0.99所需时间与开始至P =0.98所需的时间相近。 7.等摩尔二元酸与二元胺缩聚,平衡常数为1000,在封闭体系中反应,问反应程度和聚合度能达到多少?如果羧基起始浓度为4mol/L ,要使聚合度达到200,需要将小分子水

高分子化学(第四版)习题参考答案Chap.1

第四版习题答案(第一章) 思考题 1.举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。 在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。 聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。 聚合度是衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平 X表示。均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以 n 2.举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。 答:合成高分子多半是由许多结构单元重复键接而成的聚合物。聚合物(polymer)可以看作是高分子(macromolecule)的同义词,也曾使用large or big molecule的术语。 从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。 根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。多数场合,聚合物就代表高聚物,不再标明“高”字。 齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。低聚物的含义更广泛一些。 3.写出聚氯乙烯、聚苯乙烯、涤纶、尼龙-66、聚丁二烯和天然橡胶的结构式(重复单元)。选择其常用分子量,计算聚合度。 聚合物结构式(重复单元) 聚氯乙烯-[-CH2CHCl-]- n 聚苯乙烯-[-CH2CH(C6H5)-]n 涤纶-[-OCH2CH2O?OCC6H4CO-]n 尼龙66(聚酰胺-66)-[-NH(CH2)6NH?CO(CH2)4CO-]n 聚丁二烯-[-CH2CH=CHCH2 -]n 天然橡胶-[CH2CH=C(CH3)CH2-]n 聚合物分子量/万结构单元分子 DP=n 特征 量/万

高分子化学教案逐步聚合copolymerization

第七章逐步聚合(stepwise polymerization) 【课时安排】 7.1 概述1学时 7.2 线性逐步聚合反应机理1学时20分钟 7.3 线性逐步聚合反应动力学1学时30分钟 7.4 线性逐步聚合反应聚合度的控制2学时 7.5 重要线性逐步聚合物1学时 7.6 体型逐步聚合2学时 7.7 逐步共聚反应30分钟 7.8 逐步聚合施方法20分钟 总计10学时 【掌握内容】 1逐步聚合反应分类 2官能团的等活性 3 比较线型、体型逐步聚合、连锁聚合 4 线型逐步聚合反应聚合度的控制 5体型逐步聚合凝胶点的控制 6逐步聚合施方法 【熟悉内容】 1. 线型逐步聚合反应动力学 2. 逐步聚合产品合成工艺 3 统计学方法计算凝胶点 【了解内容】 1. 线型逐步聚合反应的分子量分布 【教学难点】 1. 线性逐步聚合反应机理与动力学 2. 控制线性逐步聚合相对分子质量方法 3. 控制体型逐步聚合凝胶点 【教学目标】 1掌握逐步聚合反应分类、官能团的等活性、线型与体型逐步聚合、连锁聚合与体型逐步聚合、反应程度与转化率、当量系数与过量分率、结构预聚物与无规预聚物等基本概念 2掌握线性逐步聚合相对分子质量控制方法及其计算 3掌握体型逐步聚合凝胶点控制方法及其计算 4能正确书写重要逐步聚合产品合成反应式 5掌握四种逐步聚合方法的区别 7.1 概述 【教学内容】 7.1.1逐步聚合反应分类 7.1.2逐步聚合反应的单体 【授课时间】1学时 【教学重点】逐步聚合反应分类 【教学难点】 【教学目标】

1 掌握逐步聚合反应分类 2区别单体的官能团与官能度 3 能正确命名逐步聚合物 【教学手段】课堂讲授 【教学过程】 7.1.1逐步聚合反应分类 1.按反应机理 缩合聚合:多次缩合反应,有小分子析出(典型逐步聚合,重点研究) nH2N(CH2)6NH2+nHCOOC(CH2)8COOH H [ NH(CH2)6NHOC(CH2)8CO ]n OH+ (2n-1)H2O 逐步加聚: 多次官能团间加成, 无小分子析出 nHO-R1-OH+nO=C=N-R2-N=C=O nHO-R1-O- CO-NH-R2-N=C=O …….. HO-R1-O [CO-NH-R2-NH-CO-O-R1-O] CO-NH-R2-NCO(聚氨酯) 2. 按反应动力学 平衡反应:K<103聚酯(K≈4) 不平衡反应: K>103聚碳酸酯 3. 按产物链结构 线型缩聚: 单体f=2 线型结构,可溶解,可熔融尼龙 体型缩聚: 单体f=3 体型(支化或网状)结构,不溶解,不熔融环氧树脂 4. 按所含特征官能团: 聚醚化, 聚酯化, 聚酰胺化….. 5. 按反应单体种类 homopolycondensation:aRb→ N(CH2)5COOH→ 2 mixing polycondensation:aRa+bR’b→ H2N(CH2)6NH2+HOOC(CH2)4COOH→ co-condensation polymerization: 7.1.2逐步聚合反应的单体 一单体的官能团与官能度 官能团:参与反应并表征反应类型的原子(团) 官能度:单体分子中反应点的数目叫做单体功能度(f ), 一般就等于单体所含功能基的数目。二单体种类 1两功能基相同并可相互反应:如二元醇聚合生成聚醚 2两功能基相同, 但相互不能反应,聚合反应只能在不同单体间进行:如二元胺和二元羧酸聚合生成聚酰胺 3两功能基不同并可相互反应:如羟基酸聚合生成聚酯 三单体的反应能力 1 官能团种类 2 官能团位置 3 单体设计 【作业】p213 1-3

高分子化学第二章 缩聚和逐步聚合(复习内容)

第二章缩聚与逐步聚合 名词解释 连锁聚合(Chain Polymerization):活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合(Step Polymerization):无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应(Addition Polymerization):即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应(Condensation Polymerization):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。 线形缩聚(Linear Poly-codensation):在聚合反应过程中,如用2-2 或 2 官能度体系的单体作原料,随着聚合度逐步增加,最后形成高分子的聚合反应。线型缩聚形成的聚合物为线形缩聚物,如涤纶、尼龙等。 体形缩聚(Tri-dimensional Poly-condensation):参加反应的单体,至少有一种单体含有两个以上的官能团,反应中形成的大分子向三个方向增长,得到体型结构的聚合物的这类反应。 官能度(Functionality):一分子聚合反应原料中能参与反应的官能团数称为官能度。 平均官能度(Aver-Functionality) :单体混合物中每一个分子平均带有的官能团数。即单体所带有的全部官能团数除以单体总数 反应程度(Extent of Reaction):参加反应的官能团数占起始官能团数的分率。 转化率(Conversion)参加反应的反应物(单体)与起始反应物(单体)的物质的量的比值即为转化率。 凝胶化现象(Gelation Phenomena) 凝胶点(Gel Point):体型缩聚反应进行到一定程度时,体系粘度将急剧增大,迅速转变成不溶、不熔、具有交联网状结构的弹性凝胶的过程,即出现凝胶化现象。此时的反应程度叫凝胶点。 结构预聚物(Structural Pre-polymer):具有特定的活性端基或侧基的预聚物称为结构预聚物。结构预聚物往往是线形低聚物,它本身不能进一步聚合或交联。 问答题 1.讨论下列两组反应物进行缩聚或环化反应的可能性。(m=2-10) (1) H2N(CH2)m COOH (2) HO(CH2)2OH+HOOC(CH2)m COOH 解:(1)m=3、4时易形成环,其余主要进行缩聚反应,形成线性聚合物。 (2)该体系不易成环,主要生成线性聚合物。 2.解释下列名词 (1)均缩聚、混缩聚、共缩聚; (2)平衡缩聚和非平衡缩聚; (3)DP与X n;

相关文档
相关文档 最新文档