文档库 最新最全的文档下载
当前位置:文档库 › 石油烃降解菌的研究【文献综述】

石油烃降解菌的研究【文献综述】

石油烃降解菌的研究【文献综述】
石油烃降解菌的研究【文献综述】

文献综述

食品科学与工程

石油烃降解菌的研究

[摘要]石油烃降解菌,是一种能在油水表面上生长而降解石油的微生物,因土壤和近海中含有丰富的N、P等营养原料,所以在近海和土壤中的石油烃降解菌的密集度较高,然而,由于远海中会缺乏N、P等营养物质,所以石油降解菌的繁殖受到一定的制约。当海水一旦受到石油的污染后,降解菌就不能很快消除污染物,所以培养适应能力和降解率高的石油降解菌是解决石油污染的主要方法。

[关键词]石油污染;石油烃降解菌;石油烃(TPH),微生物

作为现代工业的关键燃料和原料,石油及其加工品广泛应用在生产和生活的各个领域,包括工业、军事、交通等各行业,但是随着石油工业的快速发展,石油同时也成为海洋环境的主要污染物.据初步统计,由于各种原因,全世界每年有约1.0×107t的石油进入海洋环境中,我国每年排入海洋的石油达1.15×105t[1]。

由于工艺水平的限制和处理技术的落后,大量含石油类的废水、废渣不可避免的被排入到生态环境中,严重了影响整个生态系统,尤其是土壤和海洋系统。虽然石油在人类社会发展提供有力的能源来源,但伴随带来的环境污染问题也日益加剧。土壤,是人类赖以生存的重要自然资源之一,要对受石油污染土壤进行完整的治理,并使它在短时间内达到可耕作的标准水平,对于保护生态环境、实现农业和工业的可持续发展具有非常重要的意义。在污染土壤的各种治理的方法中,微生物修复法对环境破坏性小而且消费低而受到人们的重视,近年来的发展尤为迅速,在一定程度上为污染土壤的修复带来技术上的更新,也为解决石油污染问题带来新的希冀。但是,从污染性质来看,即使油井关闭后,其对环境的影响仍会持续相当长的时间[2]。这些都引起了社会各界的普遍关注,近年来,从中央到地方各大主要媒体对这一问题均作了大量专题报道[3]。

一、土壤石油污染的来源

石油污染,一般指原油的初级加工产品(包括汽油、柴油等)以及各类石油的分解产物所造成的污染。在石油的开采、加工和使用的过程中,造成的石油溢出和泄漏,对环境(空气、土壤、海洋等)产生极大的负面影响。而土壤是作为物质流动和能量循环的重要环境,常常是污染物迁移、停留和积累的最终承受者。

石油污染物主要是通过五种方式进入到土壤中:⑴原油的泄漏和溢油意外引起的落地原油污染;⑵含油的矿渣、污泥和废物的堆放,导致石油向土壤渗透并向四周扩散;⑶使用含油污水灌溉农田;⑷汽车尾气的排放所产生的气态石油类污染物渗入到土壤中;⑸药剂污染,即作为各种杀虫剂、防腐剂的溶剂和乳化剂等的石油类物质随药剂使用而进入到土壤中。在这些因素中,前三个因素是引起土壤石油污染最主要的原因,造成污染的面积

最大,也是是土壤中污染物含量高的因素。

再者,井喷事故和输油管线的泄漏等产生的落地原油是土壤石油污染的主要原因之一。同时,石油开采和回收过程中产生的含油污泥处理不当也是我国土壤石油污染的另一个主要原因。目前,由于油田开发大多是采用了早期注水的方法保持地层压力,在原油脱水的过程中,脱水罐、污水罐等底部慢慢积累了大量的含油污泥;在油田、炼油厂的污水处理地(如隔油池底、曝气池等)也存在着大量的含油污泥。据不完全统计,在我国的石油化学行业中,每年平均产生80万吨的罐底泥和池底泥。再加上,对含油污泥的处置还不当,如露天放置、填埋等,导致土壤污染的问题愈加严重。另外,据初步统计,全国因使用污水灌溉田地而导致的土壤污染面积达到9300公顷[4]。

二、石油类污染物对土壤的危害

石油类污染物进入土壤之后,由于其具有难以去除并且残留时间长的特点,使土壤中的碳源大量增加,直接导致土壤中C:N比失调以及酸碱度的变化,破坏了土壤结构,给受污染土壤带来一系列的危害,对污染地区的生态环境产生巨大负面影响。主要表现在以下四个方面[5]:

1、对土壤理化性质的影响

石油类污染物进入土壤后,由于其密度较小、粘着力强并且具有疏水性,因此在土壤中易与土粒粘连,堵塞土壤孔隙,影响土壤透水性、透气性;其次,由于石油烃中含有大量的有机碳,因此会改变土壤有机质的组成和结构,使碳、氮、磷比例严重失调;再次,土壤中的石油还限制营养元素从土壤颗粒进到土壤溶液,使土壤肥力下降;另外石油在土壤中的代谢中间产物具有一些特征官能团,能吸收和络合重金属离子,从而影响重金属在土壤一植物系统中的迁移转化[6]。

2、对土壤微生物群落的影响

微生物是土壤生态系统中的重要成员,在土壤以及生物圈的物质循环和能量流动中起关键性作用。国内外许多研究表明,由于石油组分对许多微生物具有毒性作用,因此污染物进入土壤之后能够导致土壤微生物群落结构及种群多样性的改变。

3、对动物和人类的影响

石油污染物一般可以通过皮肤接触、呼吸、食用含污染物的食物等途径进入动物和人体内,影响多种器官的正常功能,引发多种疾病。石油对蚯蚓有急性致死及慢性亚致死效应,有研究表明,当土壤中石油质量分数为1.5%时,蚯蚓生存7d的存活率低于40%;当石油质量分数为5%,蚯蚓存活时间不超过2周。石油对鸟类的组织、器官也有损伤,长期摄入石油污染物能够导致胃出血和溃烂,损害肝脏,诱发神经失常,使雌鸟的产卵推迟,产出蛋壳厚度变薄,孵化率低。在石油各组分中,芳香烃对生物的毒性最大,特别是多环芳烃(PAHs)。大量的研究表明,多环芳烃具有致癌、致畸、致突变的作用。而低沸点的燃料油及润滑油类能引起人体的麻醉、窒息、化学性肺炎和皮炎等[7]。

总之,进入土壤的石油烃能在多方面影响到土壤环境,对其生态系统造成严重的影响:1)土壤中TPH会堵塞土壤的孔隙,改变了土壤的成分和结构,引起土壤的碳氮比和碳磷比的失调;2)TPH会阻碍植物根端的吸收,造成根部的腐烂,从而影响植物的健康生长,导致产量降低;3)经吸收作用积累到植物内部的TPH具有致变、致癌、致畸形的危害,经过多

种的食物链流入到动物和人体体内,最后就影响人体的健康质量;4)没被土壤吸收的TPH将渗入地下并污染地下水,增加污染的范围,对人类生活的环境引起多个层面的广泛影响

[8]。

三、石油烃污染的修复

虽然土壤对TPH具有一定的自净能力,能通过自身的特殊的物理、化学和生物学的变化来降低TPH污染的负面影响,但是,当TPH超过环境的自净范围时,这种自净能力就远远不能满足基本需求了。经过人类的不断研究,渐渐有了以物理法、化学法和生生物修复法等的一系列人工修复TPH污染的方法。但是在物理、化学、生物等治理方法中,只有利用微生物对石油的降解进行的生物修复处理对环境的副作用是最低的。所以由于生物修复法具有费用低、不产生二次污染等优点,已成为环境污染治理的常用措施[9]。TPH污染的生物修复技术,主要是指利用特定的生物(植物、微生物或原生动物)吸收、转化、清除或降解TPH污染,实现环境净化[10]。由此,生物修复技术正是目前所需的技术。

四、微生物降解TPH的机理

TPH的微生物降解过程,是TPH在水中的溶解度非常小,而且少数TPH还会强烈地附贴在土壤颗粒表面上,不易直接地被微生物所利用,最终限制了微生物对TPH的降解效率。基于表面活性剂对石油烃具有一定的分散效果,所以有人提出用表面活性剂来提高TPH的溶解度。但是,却发现浓度过高的表面活性剂会对菌株的生长繁殖和降解率,同样有明显的抑制效果,其大致原因是:l)表面活性剂与细胞膜里的物质发生相互作用,破坏了细胞膜;2)表面活性剂与酶或其他的蛋白质发生反应影响细胞的基本功能。此外,作为碳源,表面活性剂可能被微生物优先消耗,从而降低微生物的降解率。

五、降解条件对TPH微生物降解的影响

微生物对TPH的降解会受很多因素的影响,主要有营养物质的供给、pH值、温度、微生物的种类和微生物的数量等。

一般情况下,微生物的生长繁殖需要碳、氢、磷和其他各种矿物质元素。外界条件中的氮和磷是限制微生物降解TPH的最主要因素。研究表明,氮、磷营养物质的过量或缺乏都能限制石油烃的降解。它的最好比例和细胞成分中的比例比较相近,质量比约为

5.67:1[11]。单单就降解效果而言,无机氮比有机氮的效果要好,硝酸氮比钱态氮要好。所以,最好用非水溶性的尿酸作为微生物降解石油的氮源。

土壤中污染物氧化分解的最终电子受体的种类与浓度也影响着微生物修复的效果。一般来说,微生物的氧化还原反应会以氧为电子受体,但在缺氧的条件下,也会以硫酸根离子和硝酸根离子作为电子受体。但是,在厌氧条件下TPH的降解率比好氧条件下低很多,这也许与氧化还原电位有关。

同样,pH值对氧化还原电位也能产生极大的影响,从而影响TPH的降解率。但pH

值对TPH降解率的影响是非常复杂的。在相同pH下,TPH的矿化与氧化还原电位会成正比;在不同的pH值下,由于微生物对营养物质的吸收、胞外酶的产生、微生物的吸附作用和分泌效果等都不相同,同时,不同微生物生长的最适宜pH的范围也不一样,这就导致了在不同pH的范围内,微生物在数量上存在明显的差异,例如真菌适合生长的pH值比细菌低,因此在pH<5的酸性土壤中,大多数的真菌数量就比细菌的数量多。

温度对微生物降解的影响,主要存在两种机理:1)温度的增加在一定程度上可以增加解吸常数和分配系数,从而提高底物的生物有效性;2)在给定的范围内,提高温度可以微生物的繁殖能力和活性,从而提高生物降解率[12]。

六、微生物修复受石油烃污染的土壤的发展前景

在TPH污染土壤的治理过程中,要加强基因改造、克隆、基因转移等高新技术的实际运用,不断开发新的高效TPH降解菌,进一步完善生物修复技术,使其成熟化、系统化。同时结合传统方法的优点、与微生物修复方法结合使其成为一个有机整体,不断开发无污染、高效率、低成本的土壤TPH污染微生物修复技术。

[参考文献]

[1] 宋志文,夏文香,曹军.海洋石油污染物的微生物降解与生物修复[J].生态学杂志,2004,23(3):99-102.

[2] 任南琪,李建政.环境污染防治中的生物技术[M]. 北京: 化学工业出版社,2004, 17-22.

[3] 国家环保总局信息中心, 国家海洋局. 环境质量调查报告[M].北京: 海洋出版社,2003: 14-18.

[4] 张旭,李广贺,黄巍,石油烃污染土层生物修复模拟试验研究[J].清华大学学报(自然科学版),2000,40(11)106~108.

[5] 贾晓平,吕晓瑜.海洋石油污染对海洋生物的影响10年研究的新进展及今后研究的趋势[J].海洋环境科学,1989,8(4):1-35.

[6] 陈尧.中国近海石油污染现状及防治[J].工业安全与环保,2003,29(11):20-24.

[7] P C Onianwa. Petroleum hydrocarbon pollution of urban topsoil in Ibadan City [J]. Environment International, 1995, 21(3): 341-343.

[8] 任南琪,李建政.环境污染防治中的生物技术[M]. 北京: 化学工业出版社,2004,17-22.

[9] 国家环保总局信息中心, 国家海洋局. 环境质量调查报告[M].北京:海洋出版社,2003:14-18.

[10] 李习武,刘志培.石油烃类的微生物降解.微生物学报,2002,42(6):764~767.

[11] 杨雪莲,李凤梅,刘婉婷,等.高效石油降解菌的筛选及其降解特性.农业环境科学学报,2008,27(1):0230~0233.

[12] MOH··H, BOHTOB A. 石油污染对海洋生态系统的影响[J].海岸工程,1995,14(4):61-65.

石油降解微生物的研究现状

石油降解微生物的研究现状 陈宇翔生物工程学号:11208523802538 摘要:本文简单介绍了石油降解微生物的概念,并叙述了石油降解微生物的降解机理和影响微生物降解的条件。举例说明了生物降解石油烃的研究现状和对未来研究方向的展望。 Abstract: this paper briefly introduces the concept of microorganism oil, and describes the degradation of microorganism oil mechanism and influencing microbial degradation of conditions. For example the biodegradation petroleum hydrocarbons, the research present situation and prospect of the future study trends. 关键词:石油烃降解微生物石油污染高效性研究现状展望Keywords: petroleum hydrocarbon microorganism oil pollution efficiency research-status prospect 引言: 石油作为重要能源之一已被世界各国广泛使用,随之而来的石油烃污染已经对人类生存的土壤及水体环境造成了严重的危害,微生物降解是一种处理石油烃污染的理想方法。在石油及石油产品的开发利用中,不可避免的会对人类生存环境造成污染,防范、治理石油污染成为环境保护的重要任务之一。目前用于石油污染治理的方法主要有:物理修复法,化学修复法和生物修复法。与传统的物理化学方法比较,生物修复法具有经济花费少、对环境影响小、遗留问题少、最大限度地降低污染物的浓度、修复时间较短、就地修复、操作方便等特点[1],是国内外科研工作者关注的热点领域,在石油污染的治理中具有广阔的应用前景。 本文从介绍石油降解微生物开始人手,认真分析了石油降解微生物的种类、菌种特征、降解机理,分析了目前用于处理石油污染的微生物的技术特点,现阶段研究现在和具体应用,并对未来的研究方向做出了大胆的设想和展望。

中国石油工业发展史 --论文格式

中国石油工业发展史 【摘要】: 中国石油、天然气的开发利用,是一项新兴而古老的事业。它成为中国现代能源生产的一个重要工业部门,是新中国建立以后的事情,而中国发现和利用石油和天然气技术的历史却可追蒴到两千年以前,并且在技术上曾经创造过光辉的成就。中国近代石油工业萌芽于十九世纪中叶,经过了多年的艰苦历程,直到新中国建立前夕,它的基础仍然极其薄弱。回顾这一历史过程,将有利于认识当代中国石油工业的崛起。 【关键词】:中国石油历史 一、中国石油事业的恢复与发展 玉门油矿解放后,军代表康世恩动员广大职工,积极恢复和发展生产。刚刚获得解放的石油工人以主人翁的姿态,迅速投入战斗。在生产建设中,被称为“冬青树”的钻井队长郭孟和,屡建功勋,是老一辈石油工人的优秀代表。为创建新中国的石油工业,1952年8月,毛泽东主席命令将中国人民解放军第19军第57师转业为石油工程第一师。以师长张复振,政委张文彬为首的全体指战员从此成为石油产业的一支生力军,为建设一支具有严格组织纪律,高度献身精神的石油产业大军,打下了良好的基础。东北地区的几个人造油厂在设备,材料,技术人员严重缺乏的情况下,依靠技术人员和老工人,仅用两年半的时间,就恢复了抚顺,桦甸,锦州等几个主要人造油厂的生产。 经过三年恢复,到1952年底,全国原油产量达到43.5万吨,为1949年的3.6倍,为旧中国最高年产量的1.3倍。其中天然油19.54万吨,占原油总产量的45%,人造油24万吨,占55%。生产汽,煤,柴,润四大类油品25.9万吨,比1949年提高6倍多。玉门油矿是第一个五年计划期间石油工业建设的重点。为了加强勘探,广泛采用“五一”型地震仪和“重钻压,大排量”钻井等新技术,先后发现了石油沟,白杨河,鸭儿峡油田。老君庙油田也开始扩大了含油面积,并开始按科学程序进行全面开发,采取注水和一系列井下作业等措施。到1959年玉门油矿已建成一个包括地质,钻井,开发,炼油,机械,科研,教育等在内的初具规模的天然气石油工业基地。当年生产原油140.5万吨,占全国原油产量的50.9%。玉门油田

微生物石油降解

微生物石油降解综述 Abstract: Oil as a important energy has been one of the countries all over the world widely used, because in the exploitation of oil, storage, transportation, processing and petrochemical products in the process of production, and the sudden discharge of oil leakage accident cause large oil into the environment pollution. Oil pollution harm main performance in the column of \"soil ecosystem tao and the function of the damage, the serious influence the permeability of soil and water permeability, lead to soil harden. Fertility dropped; In the water surface formation oil film, cause the oxygen in the water fell sharply. Cause massive death of aquatic organisms, destroying the aquatic ecological environment and fishery resources; Still can into the underground water system, direct pollution underground water sources, the influence of water and irrigation residents; Some of the oil teratogenic carcinogenic substance but also by biological function of enrichment of the food chain and immediate harm to human health. 摘要:石油作为重要能源之一已被世界各国广泛使用,由于在石油的开采、储存、运输、加工和石化产品生产等过程中的漏油以及突发性泄油事故致使大量的石油进入环境造成污染。石油污染的危害主要表现在列土壤生态系统的结掏和功能的破坏,严重影响土壤的透气性和渗水性,导致土壤板结。肥力下降;在水体表面形成油膜,致使水中溶氧量急剧下降.造成水生生物的大量死亡,破坏水生生态环境和渔业资源;还可进入地下水系,直接污染地下水源,影响居民用水和农田灌溉;石油中的一些致畸致癌物质还可通过食物链的生物富集作用而直接危害人类健康。 随着人们对环境问题的日益关注,石油烃类的微生物降斛研究工作也不断得以深入。近十年米这一领域义有许多研究和相关报道,本文对相关工作进行了综述。 1国内外研究现状 1.1.石油烃类化合物被微生物氧化成为低分子化合物或完全分解为二氧化碳和水的作用。 1.2石油入海后发生一系列物理、化学和生物的变化,其中微生物对石油烃的降解起重要作用。微生物降解烃类是19世纪末发现的。20世纪50年代前,以美国C.E.佐贝尔为代表,对海洋微生物降解石油烃进行了广泛的研究。50年代初气相色谱问世,放射性同位素示踪法的普遍应用,对研究石油烃的微生物降解机制起了积极的作用。60年代以来,由于海上石油污染日趋严重,促使不少沿海国家,如美国、加拿大、日本、英国和苏联等国,积极开展了有关海洋微生物降解石油烃的研究工作。70年代中期,美国学者还用基因工程的技术培育了“超级微生物”,以期能有效地降解石油烃。 中国自1975年起,先后对青岛胶州湾、渤海、厦门港、黄海和东海石油降解微生物的数量、分布、种类组成和影响降解因素等进行了调查研究。 1.1烃类微生物概述 能够降解(氧化)石油烃,或以石油烃为其碳源的微生物称为烃类微生物。

石油降解菌的分离

从环境样品中分离筛选石油 降解菌的方案

引言 随着经济技术的迅速发展,石油日渐成为我过的主要能源,且需求量日益增大。研究表明,石油生产和运输环节会对土壤造成严重污染,且污染面积不断扩大。目前,我国石油行业每年产生的含油污泥多大八十万吨。由于石油的粘度大、粘滞性强,会再短时间内形成小范围的高浓度污染,长期的石油污染还会影响土壤的通透性,减少土壤肥力,阻碍植物生长。同时,石油中所含的多环芳香烃具有“三致”效应,一些挥发组分能引起人体麻醉、窒息和化学性肺炎等疾病。因此,石油污染对土壤生态系统的平衡和人体健康都有很大的危害。 目前,针对石油污染治理的方法主要包括:物理方法、化学方法以及生物修复法,但物理方法修复费用较高,耗材较多:化学方法会使用大量化学淋洗剂,很容易造成二次污染。相较而言,微生物修复技术由于生产费用低、不产生二次污染等特点而被视为一项最具有应用前景的修复技术。而且随着分子生物学的发展,无论是DNA文库的建立,还是多态性分析方法的进步,都为污染物的生物修复提供了全新的技术支持。既然生物修复法有诸多优点,那么就应该充分发挥其特性。本文则是着眼于环境样品,分离筛选其中的石油降解菌,以扩大培养进行更大规模的石油降解。 摘要 在长期被石油污染的土壤中,微生物可逐渐改变自身的代谢条件以适应环境。即以石油烃为碳源进行生长、繁殖,同时将石油烃降解。因此在这种土壤中存在着可降解石油烃的微生物,但石油烃降解菌的筛选、分离是生物法处理石油污染的关键。从这个角度考虑,以长期石油污染的土壤中微生物为菌源,从中筛选、分离出高效的石油烃降解菌。要降解哪里的石油就用哪里的土壤培养石油降解菌。目前,国内对极端条件下石油降解微生物研究较少,尤其是对低温、耐盐的石油降解菌,中国北方的大部分湿地,盐碱程度比较高,成年气温较低。无论是来源于海上还是来源于石油化工的污染都比较严重。本文针对大连开发区因石油泄露而被污染的白石湾,就地选取材料进行石油降解菌的筛选以及分离研究。

中美石油战略分析论文

中美石油战略分析论文 全球石油供需环境及中国石油安全战略 全球石油资源分布与消费概况 根据英国石油公司关于全球石油资源储量、产量及消费量的统计(BPStatisticalReviewofWorldEnergy,June2004,Oilsection),至2003年底,世界探明石油总储量为1567亿吨,主要分布在中东、南美、俄罗斯、北非及中亚等地,其中OPEC成员国储量为1204亿吨(约占总储量的79%)。在世界石油储量十强国家中,OPEC成员国就占了八席,其余两席为俄罗斯(95亿吨,居第七位)和美国(42亿吨,居第十位);前五名国家位于海湾地区,依次为沙特、伊朗、伊拉克、科威特和阿联酋,其储量均在130亿吨以上,约占世界的54%。因此,世界原油市场的产量和价格由沙特、伊朗、伊拉克等为首的OPEC组织所控制也似乎成了顺理成章的事情。中国的探明储量为32亿吨,约占总储量的2%,居第十一位。 2003年世界原油总产量约为36.97亿吨,其中欧佩克(OPEC)国家产量约为9.975亿吨(占27%),原油产量超过1亿吨的有:沙特阿拉伯(4.748亿)、伊朗(1.901亿)、委内瑞拉(1.534亿)、阿联酋(1.178亿)、科威特(1.102亿)、尼日利亚(1.072亿),伊拉克产量为0.659亿吨(受伊拉克战争的影响而大幅下降,2002年为1.015亿吨)。除了委内瑞拉(南美)和尼日利亚(非洲)外,其余都位于中东海湾地区,这与该地区富庶的石油资源储备极其相称。石油产量世界十强的非OPEC国家有:俄罗斯产量为4.214亿吨,美国3.411亿吨,墨西哥1.888亿吨,中国1.693亿吨,加拿大1.419亿吨。 2003年,中国的石油消费量首次超过日本,居世界第二位,达2.752亿吨,仅次于美国的9.143亿吨。从原油贸易的供给方面看,现今石油净输出国前十名中,中东占了5席(沙特4.681,伊朗1.361,阿联酋1.028,科威特0.965,卡塔尔0.395亿吨),俄罗斯居第二位(2.967亿吨),拉美北美各占一席(墨西哥1.062,加拿大0.455亿吨),北非中亚亦各占一席(阿尔及利亚0.69,哈萨克斯坦0.427亿吨),这也从供给能力上解释了当前石油战略争夺的焦点地区的所在。从原油贸易的需求方面看,就石油消费缺口而言,2003年中国排在第四位,为

石油降解希瓦氏菌

第21卷第2期极地研究Vol.21,No.2 2009年6月CH I N ESE JOURNAL OF P OLAR RESE ARCH June2009 研究论文 影响南极海洋石油烃低温降解菌希瓦氏菌NJ49生长和降解率的环境因素研究 刘芳明1,2 缪锦来1,2 臧家业1 董春霞3 王以斌1,2 (1国家海洋局第一海洋研究所,青岛266061;2海洋生物活性物质国家海洋局重点实验室,青岛266061; 3颐中(青岛)实业有限公司,青岛266021) 提要 以柴油为唯一碳源和能源,从南极海水海冰微生物资源库中筛选到一株石油烃低温降解菌希瓦氏菌NJ49,并对影响其生长和降解率的环境因素(pH、温度、盐度、营养盐和表面活性剂)进行了初步研究。结果表明:希瓦氏菌可作为低温海域石油烃污染生物修复的菌源,其生长和降解的最适条件为:初始pH7.5,温度15℃,盐度6%,摇瓶装量80m l,最佳氮源硝酸铵,最佳磷源为磷酸二氢钾和磷酸氢二钾的混合物,添加表面活性剂可促进希瓦氏菌NJ49的生长和生物降解率。 关键词 南极海洋 低温降解菌 柴油 生物降解 环境因素 0 引言 随着海上石油开采、运输和各类交通活动的日益频繁,海洋中石油烃污染物逐渐增多,而大规模溢油事件也时有发生,给海洋生态及近岸环境造成严重危害,由于自然微生物的生物修复是清除海洋石油烃污染的一种重要机制[1],因此备受关注。国内研究者对海洋中温降解菌的生物降解曾进行了广泛研究[2—4],但对低温环境中石油烃降解研究较少。 南极低温微生物资源丰富,从中获取低温降解菌成为新的研究热点,国外学者已从南极海洋中分离筛选得到不同种属的降解细菌,如Ha lo m onas[5]、R hodococcus[6]和Sphin2 go m onas[7],有的降解菌可以在4℃条件下降解烷烃[8],甚至在更低的温度条件下降解多环芳烃[9],为低温环境石油烃污染修复提供了新的思路。 柴油是一种复杂的蒸馏混合物,内含碳原子数为C9—C20范围的石油烃,因此是研 [收稿日期] 2008年11月收到来稿,2009年2月收到修改稿。 [基金项目] 国家自然科学基金项目(40876107)资助。 [作者简介] 刘芳明,男,1978年出生。实习研究员,主要从事海洋环境污染、监测与修复研究。

中国石油发展成就综述2

中国石油发展成就综述(中) 喜迎党的十八大·特稿 海外实现跨越式发展 党的十七大以来的五年,是中国石油大力实施国际化经营,实现海外规模化经营、跨越式发展,形成经济全球化条件下参与国际能源合作、取得竞争新优势、国际影响力显著增强的五年。 这五年,世界能源和油气形势发生一系列深刻变化。美国通过页岩气革命,开始摆脱对中东石油进口的依赖,能源战略重心向西半球转移,并在逐步影响和改写全球能源版图。随着美国战略新布局的实施,亚太、非洲、南美成为全球关注的油气热点地区。俄罗斯能源战略重心也向亚太地区转移,通过远东开发,为实现其梦寐以求的强国梦提供战略支撑。包括中国在内的亚太地区国家的石油对外依存度节节攀升,成为全球石油消费增长最快的地区。 面对世界能源和油气形势发生的深刻变化,中国石油审时度势,做出“突出中亚、拓展非洲、做大南美、加强中东、推进亚太”的海外战略部署,不失时机,加快五大海外油气合作区、四大油气通道战略布局和三大海外油气运营中心建设,如期建成“海外大庆”,实现海外规模化经营、跨越式发展。 五年来的实践充分证明,中国石油的海外战略是成功的、富有成效的,取得了骄人业绩和丰硕成果。 突出中亚,推出扩大海外油气合作重头戏 2007年7月17日,在中国国家主席胡锦涛和土库曼斯坦总统别尔德穆哈梅多夫的共同见证下,中国石油分别与土库曼斯坦油气资源管理利用署、土库曼斯坦国家天然气康采恩签署了中土天然气购销协议和土库曼斯坦阿姆河右岸天然气产品分成合同。根据协议,在未来30年内,土库曼斯坦将通过中亚天然气管道,每年向中国出口300亿立方米天然气。紧接着,8月18日,在中国国家主席胡锦涛和哈萨克斯坦总统纳扎尔巴耶夫的共同见证下,中国石油和哈萨克斯坦国家石油公司签署了中哈原油管道二期工程建设和运营协议。 中土、中哈合作关系的进一步加深和密切,拉开了中国石油加快、深化中亚油气合作的大幕。2007年8月29日,中国土库曼斯坦天然气合作勘探开发项目全面启动。同年9月28日,国家中亚天然气及西气东输建设领导小组成立。中国石油与西气东输二期工程沿线6个省市41家用户签订了214亿立方米天然气买卖与输送协议。同年12月18日,中哈原油管道二期工程开工建设。两个月后,2008年2月22日,国家“十一五”规划重大建设项目——西气东输二线工程开工仪式在北京人民大会堂隆重举行。 经过短短7个月的运作,中国石油“突出中亚”的海外战略部署就紧锣密鼓、环环紧扣地进入了实际运作阶段,成为加快和扩大海外油气合作的重头戏。“突出中亚”战略的迅速展开,将中国石油的国际化经营,推向了规模更大、层次更深和水平更高的发展阶段。不仅对中亚油气合作产生了巨大的推动作用,而且对俄罗斯远东地区乃至整个中国石油的海外发展都产

石油烃类的微生物降解研究

石油烃类的微生物降解研究 石油作为重要能源之一已被世界各国广泛使用,随之而来的石油烃污染已经对人类生存的土壤及水体环境造成了严重的危害,微生物降解是一种处理石油烃污染的理想方法。综述了降解菌种类和不同烃类的微生物代谢途径,分析了包括温度、营养物、氧和pH值等环境因素对石油烃降解的影响,为进一步的研究应用提供参考依据。 随着工业和经济的发展,人类对能源的需求日渐增多,促进了石油工业的飞速发展;在石油生产、贮运、炼制加工及使用过程中,不可避免地会有石油烃类的溢出和排放,造成土壤及水体的石油污染。据统计全球每年倾注到海洋的石油总量在200~1000万t之间。辽宁省环境中心监测站的化验结果显示,在辽河油田的重度污染区内,土壤中的含油量已达到10 000 mg/kg以上,是临界值(200 mg/kg)的50多倍,严重影响了油田附近的生态环境。 石油烃类物质引起的环境污染越来越引起人们的关注。利用物理、化学方法处理石油烃可以得到较受到了限制翻。生物处理方法是近年来发展起来的,具有处理效果好、费用低、对环境影响小、无二次污染及应用范围广等优点,是迄今为止处理石油烃污染比较好的一种方法。 1.降解石油烃类的微生物种类 国外在20世纪40年代就开展了细菌降解石油烃的研究,我国这方面的研究始于20世纪70年代末期。研究表明,在土壤和水体环境中存在着大量能够降解石油烃的微生物,主要是细菌和真菌;细菌在海洋生态系统的石油烃类降解中占主导地位,而真菌则是淡水和陆地生态系统中更为重要的修复因子。石油烃降解菌和藻类见表1。

大量研究表明,当菌群处于石油污染环境中时,利用烃类化合物的微生 物数量急剧增长,尤其是含降解质粒的微生物。Atlas报道在正常环境下降解菌一般只占微生物群落的1%,而当环境受到石油污染时,降解菌比例可提高到10%。含质粒细菌在石油烃污染环境中出现的频率和数量LL-t~污染环境高,说明质粒在石油烃的降解中可能起着重要作用。降解质粒的存在为降解工程 菌的构建提供了可能。 2.石油烃类的微生物代谢途径 2.1 直链烷烃 通常认为饱和烃在微生物作用下,直链烷烃首先被氧化成醇,醇在脱氢 酶的作用下被氧化为相应的醛,然后通过醛脱氢酶的作用氧化成脂肪酸;氧 化途径有单末端氧化、双末端氧化和次末端氧化[7]。在转化为相应的脂肪酸后,一种转化形式为直接经历随后的/3一氧化序列,即形成羧基并脱落2个 碳原子;另一种转化形式为脂肪酸先经历60一羟基化形成∞一羟基脂肪酸, 然后在非专一羟基酶的参与下被氧化为二羧基酸,最后再经历一氧化序列

中国石油2015年乙烯业务综述

综一述乙烯工业一2016,28(1)一7~11 ETHYLENE INDUSTRY 中国石油2015年乙烯业务综述 章龙江,王正元,邢颖春 (中国石油天然气股份公司炼油与化工分公司,北京,100007) 一一摘一要:总结了2015年中国石油乙烯业务的发展情况,包括:各石化企业的乙烯产量二乙烯平均收 率二双烯收率二平均加工损失率和平均燃动能耗等指标完成情况;以及各企业的原料优化二长周期运行二检 修工作和技改技措工作的完成情况三提出2016年各指标的具体目标和在优化原料结构二促进长周期平稳 运行二深入开展节能降耗二搞好装置检修方面的重点工作三 关键词:中国石油乙烯业务综述 一一面对错综复杂的外部形势和艰巨繁重的生产任务,2015年中国石油各乙烯生产企业贯彻公司的整体部署,坚持质量效益可持续发展理念,突出安全环保和系统优化,有效推进原料结构调整二长周期运行二装置检修和节能降耗等各项工作,取得较好的生产经营业绩三 1一主要指标完成情况 1.1一乙烯产量 2015年根据效益最大化原则,公司将资源向四川石化二独山子石化等企业倾斜,继续停运吉林石化1号装置和抚顺石化1号装置三全年生产乙烯5032kt,首次超过5000kt,同比增加56kt,完成年计划的105%,负荷率为94%三占国内总产量17411kt的28.9%三 大庆石化采取措施应对运行末期和突发设备故障的不利影响,按计划完成装置检修,生产乙烯840kt,同比减少199kt三1号装置产量为350kt,同比增加27kt,其中新线部分4 6月份短期开工;因丙烯制冷压缩机透平故障较长时间停工, 2号装置仅生产乙烯490kt,同比减少226kt三吉林石化实施关键指标控制优化装置运行,顺利完成年度大检修任务,乙烯产量为667kt,同比减少43kt三 抚顺石化发挥炼化一体化优势,推行精细化管理,装置高负荷稳定运行,生产乙烯853kt,同比增产135kt三 辽阳石化推进系统优化,完成为期2周的窗口检修,生产乙烯192kt,同比增加36kt三 兰州石化实施系统优化和技术改造,生产乙烯642kt,同比增加12kt三1号装置产量为147 kt,同比增加21kt;2号装置产量为495kt,同比持平三 独山子石化有效应对运行末期的不利影响,实现首次全厂 4年1大修 目标,生产乙烯1091 kt,同比减少194kt,其中1号装置203kt,2号装置888kt三 四川石化加大原料优化和装置调整力度,完成局部检修;生产乙烯747kt,同比增产308kt,各项技术经济指标全面进步三 1.2一主要技术指标 2015年公司乙烯平均收率为32.56%,同比下降0.26个百分点;双烯收率为48.23%,同比下降0.39个百分点三大庆石化1号和独山子石化1号装置乙烯及双烯收率排名国内前列三四川石化乙烯及双烯收率创新高三 平均加工损失率为0.35%,同比降低0.1个百分点;平均燃动能耗(标油)为594kg/t,同比下降22.7个单位,均创历史最好水平三四川石化二 收稿日期:2016-03-02三 作者简介:章龙江,男,博士,现任中国石油炼油与化工分公司生产技术处处长,教授级高级工程师三

高效石油降解菌的筛选

海洋中高效石油降解菌的筛选 楼浩 04016158

摘要 本研究利用原油为唯一碳源,采用富集培养分离的方法从象山港的表层海水和底泥混合物中筛选到两株石油降解菌株F3和F4。通过检测,两种菌株在油浓度为2000mg·L-1、温度为28℃的条件下培养七天后,降解率分别达到了48.1%和51.3%,与目前已筛选出的海洋石油降解菌相比较,F3、F4均属于降解率较高的菌株。本研究还对营养盐、原油浓度等影响F3、F4菌株生长和降解率的相关因素进行了初步探讨。结果表明:①氮、磷营养盐在较大程度上限制了F3、F4菌株对原油的降解率,是主要的限制因子。在氮磷浓度≥1.0m g·L-1时,F3菌株才能达到最大的降解效率48.1%,在氮磷浓度≥1.5m g·L-1时,F4菌株才能达到最大的降解效率57.3%。②F4菌株的降解率随原油浓度的降低而增加。在原油浓度为400mg·L-1时,F3、F4菌株的降解率分别达到57.6%和61.5%,而在油浓度为4000 mg·L-1时,F3、F4菌株的降解率仅为27.5%、11.2%,相比之下F3菌株对原油浓度的耐受能力更强。 关键词:石油降解菌;筛选;原油降解率;氮磷营养盐;原油浓度

ABSTRACT The use of oil as the sole carbon source, using enrichment culture method from the surface water and sediment which in the Xiangshan Port isolated two strains of oil degradation, Named as F3 and F4. To detect these two strains in the oil concentration was 2000mg/L, the temperature is 28℃ training seven days ,The degradation rate respectively reached 48.1% and 51.3%, compared with that which has been selected marine oil degrading bacteria, F3, F4 belong to the higher efficiency degradation of crude oil strain. The issue also conducted a preliminary test about nutrients, oil concentration and so on which Impact F3, F4 strain growth and the degradation efficiency. The results showed that: ①nitrogen and phosphorus nutrient limitation to a greater extent on the F3, F4 strains degradation efficiency , is the main limiting factor. In the concentration of nitrogen and phosphorus ≥ 1.0mg/L, F3 strain to achieve normal degradation efficiency 48.1%, the concentr ation of nitrogen and phosphorus in ≥ 1.5 mg/L, F4 strains to reach the degradation efficiency is 57.3%. ② the degradation of the F4 strain increasing when the concentration of oil reduced. in the concentration of 400 mg/L, The degradation rate of F3, F4 strains respectively reached 57.6% and 61.5%, the concentration of oil in the 4000mg/L, The degradation rate F3, F4 strains of was only 27.5%, 11.2%, but compared with F4, F3 strains better adapted to the higher concentration of oil. Key Words: Petroleum Degrading strains; Screening;Degradation of oil;nutrients of nitrogen and phosphorus; Oil concentration

石油烃降解菌的研究【文献综述】

文献综述 食品科学与工程 石油烃降解菌的研究 [摘要]石油烃降解菌,是一种能在油水表面上生长而降解石油的微生物,因土壤和近海中含有丰富的N、P等营养原料,所以在近海和土壤中的石油烃降解菌的密集度较高,然而,由于远海中会缺乏N、P等营养物质,所以石油降解菌的繁殖受到一定的制约。当海水一旦受到石油的污染后,降解菌就不能很快消除污染物,所以培养适应能力和降解率高的石油降解菌是解决石油污染的主要方法。 [关键词]石油污染;石油烃降解菌;石油烃(TPH),微生物 作为现代工业的关键燃料和原料,石油及其加工品广泛应用在生产和生活的各个领域,包括工业、军事、交通等各行业,但是随着石油工业的快速发展,石油同时也成为海洋环境的主要污染物.据初步统计,由于各种原因,全世界每年有约1.0×107t的石油进入海洋环境中,我国每年排入海洋的石油达1.15×105t[1]。 由于工艺水平的限制和处理技术的落后,大量含石油类的废水、废渣不可避免的被排入到生态环境中,严重了影响整个生态系统,尤其是土壤和海洋系统。虽然石油在人类社会发展提供有力的能源来源,但伴随带来的环境污染问题也日益加剧。土壤,是人类赖以生存的重要自然资源之一,要对受石油污染土壤进行完整的治理,并使它在短时间内达到可耕作的标准水平,对于保护生态环境、实现农业和工业的可持续发展具有非常重要的意义。在污染土壤的各种治理的方法中,微生物修复法对环境破坏性小而且消费低而受到人们的重视,近年来的发展尤为迅速,在一定程度上为污染土壤的修复带来技术上的更新,也为解决石油污染问题带来新的希冀。但是,从污染性质来看,即使油井关闭后,其对环境的影响仍会持续相当长的时间[2]。这些都引起了社会各界的普遍关注,近年来,从中央到地方各大主要媒体对这一问题均作了大量专题报道[3]。 一、土壤石油污染的来源 石油污染,一般指原油的初级加工产品(包括汽油、柴油等)以及各类石油的分解产物所造成的污染。在石油的开采、加工和使用的过程中,造成的石油溢出和泄漏,对环境(空气、土壤、海洋等)产生极大的负面影响。而土壤是作为物质流动和能量循环的重要环境,常常是污染物迁移、停留和积累的最终承受者。 石油污染物主要是通过五种方式进入到土壤中:⑴原油的泄漏和溢油意外引起的落地原油污染;⑵含油的矿渣、污泥和废物的堆放,导致石油向土壤渗透并向四周扩散;⑶使用含油污水灌溉农田;⑷汽车尾气的排放所产生的气态石油类污染物渗入到土壤中;⑸药剂污染,即作为各种杀虫剂、防腐剂的溶剂和乳化剂等的石油类物质随药剂使用而进入到土壤中。在这些因素中,前三个因素是引起土壤石油污染最主要的原因,造成污染的面积

新能源论文文献综述

河北工业大学全日制工程硕士生学术报告题目汽车制造企业新能源发展战略研究文献综述 姓名杜志军 学号200920177017 领域名称工业工程 研究方向企业可持续发展战略研究 校内导师姓名曾珍香 企业导师姓名张云飞 第1次报告年月日

河北工业大学硕士生学术报告 汽车制造企业新能源发展战略研究文献综述 摘要本文从环境污染、能源危机等问题对我国的挑战,指出我国汽车制造业发展新能源汽车的必要性和重要性。阐述了新能源汽车发展的基本理论及研究进展,探讨了国内新能源汽车业存在的问题,提出了发展新能源汽车是我国汽车制造企业实现跨越发展的必由之路。 关键词新能源汽车、发展战略 一、引言 汽车制造业是一个国家综合实力与科技水准的重要象征,近年来,在我国政府重点扶持与政策引导下,汽车制造行业成为了我国经济结构中的“支柱型产业”。2009年中国汽车产销1 350多万辆,超过美国成为世界第一汽车产销大国。但千人汽车保有量仅38辆,与139辆的世界平均水平存在很大差距,汽车消费还有相当大的提升空间。预计到2020年,国内汽车保有量将突破2亿辆,比2009年增加2倍左右。汽车保有量的增加同时也带来了能耗排放等环保问题,目前全国石油消耗的1/3、碳排放的1/4来自交通运输领域。我国由此所面临的环境污染、交通能源问题来势变得更为迅猛、挑战更为严峻。因此汽车制造业在我国实行可持续发展战略中起着非常重要的作用。 节能、环保、安全,是汽车发展的主要趋势,为此,我国提出了“发展清洁汽车、调整能源结构、减小环境污染、改善大气质量”的政策。新能源汽车使用成本非常低,将其百公里的用电成本进行换算,电的成本仅是油的20%,即使用新能源汽车仅需花1/5的钱就可以行驶与原来相当的公里数。普通汽车,不论是手动档还是自动档,都用变速器变速,电动车变速是电机驱动,没有变速器,而且非常强劲。此外,电动车的四轮驱动原理简单,且不用换机油。新能源汽车的上述特点,决定了它具有强大的生命力和广阔的市场发展前景。发展新能源汽车是降低环境污染的有效途径,是缓解石油短缺的重要措施,是汽车制造企业实现可持续发展的必由之路。 二、新能源汽车研究现状综述 2.1.何为新能源汽车 根据2009年7月1日正式实施《新能源生产企业及产品准入管理规则》界定,新能源汽车是指采用非常规的车用燃料作为动力来源或使用常规的车用燃料、采用新型车载动力装置,综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构汽车[1]。 新能源汽车包括混合动力汽车(HEV)、纯电动汽车(BEV,包括太阳能汽车)、燃料电池电车(FCEV)、氢发动机汽车、燃气汽车、生物汽车等其他新能源(如高效储能器、二甲汽车等[2]。 2.2国外研究现状

微生物对石油烃的降解机理研究

云南化工Yunnan Chemical Technology Sep.2018 Vol.45,No.9 2018年9月第45卷第9期 石油是一种重要的能源,可以说是现代经济的血液。日常生活、工业生产、航天军工都需要石油作为能源和原料,是国家生存和社会发展不可或缺的战略资源。但是,与此同时石油在开采、运输、储存、加工和利用过程中的各种泄漏事故对环境造成的污染和破坏也是不可估量的,其对人类和其他生物的生存和发展也造成一定的威胁,并已成为全球范围内亟待解决的重要问题。了解石油烃污染物在自然界的生物降解转化规律,研究石油烃污染物微生物降解的技术和方法,培养可高效降解石油烃的工程菌,消除和减少石油烃在环境中的滞留,将有利于维护和创造高质量的人类生存环境。 1 石油烃降解菌的降解机理 微生物对石油中不同烃类化合物的代谢途径和机理是不同的。饱和烃包括正构烷烃、支链烷烃和环烷烃。通常认为,在微生物作用下,直链烷烃首先被氧化成醇,源于烷烃的醇在醇脱氢酶的作用下被氧化为相应的醛,醛则通过醛脱氢酶的作用氧化成脂肪酸。相同条件下,一般微生物对不同种类石油烃降解的倾向先后顺序是不同的。一般而言,石油烃被微生物降解的先后规律为:直链烷烃>支链烷烃>环烷烃>多环芳烃>杂环芳烃。在某石油烃降解菌修复不同碳链石油烃污染的研究中得出结论,该菌属对短链石油烃的分解率相对较高,而对芳香烃和润滑油组分的降解率较短链石油烃低。一般微生物降解正烷烃由氧化酶酶促进行。正烷烃第一步氧化为醇后,醇氧化成醛,醛再转化为相应脂肪酸,脂肪酸经 β-氧化为乙酰辅酶A,乙酰辅酶A进入三羧酸循环,分解成CO2和H2O,或进入其他生化过程。另外,链状烷烃可经脱氢步骤转变为烯烃,烯经氧化成为醇,然后醇可转化为醛,最后醛变为脂肪酸;链状烷烃还可通过直接氧化成烷基过氧化氢,然后经脂肪酸途径进行降解。有的可通过亚末端氧化成仲醇,再变成伯醇或脂肪酸进行氧化分解。还有些微生物可将烯烃变为不饱和脂肪酸,通过双键位移或甲基化等,变为支链脂肪酸,再进行降解。 2 石油烃降解菌的种类 2.1 普通石油烃降解菌 在受石油污染的土壤和水环境中存在许多能降解石油烃的微生物,细菌、放线菌、真菌、酵母、霉菌和藻类中均有能降解石油烃的微生物,据研究表明目前发现100余属、200多种石油烃降解微生物。不同种类的微生物对石油烃的降解能力不同,通常细菌比真菌、放线菌对原油的降解能力强。细菌中降解石油烃的主要有无色杆菌属、假单胞菌属、不动杆菌属、产碱杆菌属、黄杆菌属、芽孢杆菌属、诺卡氏菌属以及微球菌属等。 2.2 特殊石油烃降解菌 2.2.1 低温石油烃降解菌 低温微生物在地球上广泛存在,一般分布于南北极、海洋深底、高原冰川以及冻土地区等低温环境中。目前发现的低温微生物种类繁多,通常为真细菌、酵母菌、蓝细菌、单细胞藻类等,这些微生物正逐渐引起科学家的广泛重视[1]。随着石油污染问题日益突出和国内外对低温石油烃降解菌研究的深入,低温石油烃降解菌修复 doi:10.3969/j.issn.1004-275X.2018.09.081 微生物对石油烃的降解机理研究 李 洲 (西安石油大学,陕西 西安 710065) 摘 要:随着工业和经济的发展,环境问题成为人们普遍关注的焦点,石油污染成了不可忽视的问题。微生物修复作为一种新型环保的生物修复技术,已成为石油污染生物修复的核心技术。对石油降解微生物的种类即细菌、蓝藻、真菌以及藻类进行了总结,对微生物对石油烃的降解途径与降解机理进行了综述。 关键词:微生物;石油烃;降解机理 中图分类号:X74 文献标识码:A 文章编号:1004-275X(2018)09-179-02 Study on the mechanism of microbial degradation of petroleum hydrocarbons Li Zhou (Xi’an Petroleum University,Xi’an 710065,China) Abstract:With the development of industry and economy,environmental problems have become the focus of attention,and oil pollution has become a problem that can not be ignored.As a new environmental protection bioremediation technology,microbial remediation has become the core technology of bioremediation of petroleum pollution.The types of petroleum-degrading microorganisms such as bacteria,cyanobacteria,fungi and algae were summarized.The pathways and mechanisms of petroleum hydrocarbon degradation by microorganisms were reviewed. Key wordss:microorganism;petroleum hydrocarbon;degradation mechanism;research ·179·

蒋勇 石油烃降解微生物研究进展

一前言 石油给人们带来巨大的利用价值和经济利益的同时,也对生态环境造成了巨大的威胁。在勘察、开采、运输以及储存过程中,油田周围大面积的受到严重污染。石油污染使得土壤理化性质发生改变,从而不利于农作物正常生长,石油类物质还通过地下水的污染以及污染的转移构成对人类生存环境多个层面上的不良胁迫。因此,治理石油污染具有重要意义。当今世界,治理石油污染具体措施中最安全、最环保、最经济的方法是生物修复技术,石油降解菌是一类具有分解矿化石油烃能力的微生物,在石油污染的生物修复中具有重要作用。本文就石油污染物生物降解方面的研究进行了综述及展望。

二本论 2.1 石油降解和菌的种类和分离 2.1.1石油降解和菌的种类 国外在20世纪40年代就开展了细菌降解油污的研究[1],我国这方面的研究始于20世纪70年代末期[2]。已知降解石油的微生物共有70属200余种。细菌有28个属,霉菌30个属,酵母12个属。能够降解石油烃的细菌有假单胞菌属(Pseudomonas)、弧菌属(Vibrio)、不动杆菌属(Acinetobacter)、黄杆菌属(Flavobacterium)、气单胞菌属(Aeromonas)、无色杆菌属(Achromobacter)、产碱杆菌属(Alcaligenes)、肠杆菌科(Enterobacteriaceae)、棒杆菌属(Coryhebacterium)、节杆菌属(Arthrobacter)、芽孢杆菌属(Bacillus)、葡萄球菌属(Staphylococcus)、微球菌属(Micrococcus)、乳杆菌属(Lactobacillus)、诺卡氏菌属(Nocardia)等;酵母菌有假丝酵母属(Candida)、红酵母菌属(Rhodotorula)、毕赤氏酵母菌属(Pichia)等;霉菌有青霉属(Penicillium)、曲霉属(Apergillus)、镰孢霉属(Fusarium)等[3]。 2.1.2 石油降解和菌的分离 石油降解菌一般从受石油污染的土壤、水中进行分离并筛选,为了进一步的应用,还要进行驯化。根据研究目的与要求不同,在筛选时往往控制不同的条件从而得到不同功能的菌落。以烷烃为底物筛选出的菌落,对烷烃的去除效率会较高,由于烷烃相对于芳烃较易分解,且大部分的石油降解菌对烷烃的降解效果均较好,因此专门以烷烃为底物进行的研究不多见,郑金秀[4]以烷烃为底物培养出分属于不同菌属的菌落,其中不动细菌菌属的菌株降解率为69%,芽孢杆菌属的菌株降解率为71%,假单胞菌属的降解率可达73%;以环烷烃为底物,得到不动细菌菌属与芽孢杆菌属的菌株,石油降解率均为67%。两种底物研究降解时间均为48h。由于芳香烃及多环芳烃降解难度大,且其危害比较大,对降解芳烃的研究比较多。 2.2 石油降解菌的降解机理与影响因素 2.2.1石油降解菌的降解机理 微生物对石油的降解作用存在选择性,优先消耗碳链长度中等(C10—C24)的n-链烷烃类分子,其规律为:小于C10的直链烷烃>C10—C24或更长的直链烷烃>单环芳烃>环烷烃>多环芳烃,同种类型的烃类中分子量越大,降解越慢[5]。 通常认为饱和烃在微生物作用下,直链烷烃首先被氧化成醇,醇在脱氢酶的作用下被氧化为相应的醛,然后通过醛脱氢酶的作用氧化成脂肪酸;氧化途径有单末端氧化、双末

【开题报告】石油烃降解菌的筛选

开题报告 食品科学与工程 石油烃降解菌的筛选 一、综述本课题国内外研究动态,说明选题的依据和意义 目前,常有有关石油及其产品的微生物降解方面的研究报道,但对这些研究大多数以分离鉴定微生物种类为主,对混合菌株性能评价以及它们对高含油量的油泥降解研究很少。 作为现代社会的最主要动力燃料与化工原料,石油及其产品广泛应用于生产和生活的各个方面,包括工业、农业、军事、交通运输等各个行业,因此人们将石油称作“黑色的金子”。但是随着石油工业的发展,由于工艺水平和处理技术的限制,在许多环境特别是海洋环境中,石油污染已经成为一个普遍而严重的问题,石油的主要成分是烃类,在一个典型的石油样品中,含有的烃类可达200~300种之多,石油进入海洋后,石油中的一些成分可直接挥发而进入空气;一小部分海洋表面的石油受到紫外线作用可发生光化学分解,但速度极慢;而绝大部分石油要通过微生物的降解作用才得到净化。石油烃降解菌是一类能在油水界面上生长繁殖而降解石油的微生物,在近海、海湾等处,因海水中含有丰富的N、P等营养物质,石油降解菌的数量较多,然而,由于外洋海水中N、P等营养组织的缺乏,石油降解菌的繁殖受到制约,一旦污染,不容易很快消除,所以培养石油降解菌成为治理海上石油污染的主要方式。 而且在污染土壤的各种治理方法中,微生物修复由于具有费用低、处理效果好并且对环境破坏性小等诸多优点而受到人们的重视。所以筛选和培养石油烃降解菌对减轻石油污染是一个非常有意义的事情。 二、研究的基本内容,拟解决的主要问题: 1、降解石油烃的菌类哪些比较常见 2、石油烃降解菌降解石油的情况是怎样,会不会对环境产生二次污染 3、石油烃降解菌降解石油的能力会受环境的哪些因素影响 三、研究步骤、方法及措施: 1.用牛肉膏蛋白胨培养基进行菌种分离纯化与斜面保藏。

相关文档