文档库 最新最全的文档下载
当前位置:文档库 › 色谱分析-第六章 毛细柱气相色谱法

色谱分析-第六章 毛细柱气相色谱法

色谱分析-第六章 毛细柱气相色谱法
色谱分析-第六章 毛细柱气相色谱法

第六章毛细管柱气相色谱法

第一节毛细管气相色谱仪

现代的实验室用的气相色谱仪大都既可用作填充柱气相色谱又可用作毛细管色谱仪。毛细管色谱仪应用范围广,可用于分析复杂有机物,如石油成分,天然产物,环境污染,农药残留等。图6-1是毛细管气相色谱仪示意图,与填充柱色谱仪比,毛细管色谱仪在柱前多一个分流-不分流进样器,柱后加一个尾吹气路。由于毛细管柱体积很小,柱容量很小,出峰快,所以死体积一定要小,要求瞬间注入极小量样品,因此柱前要分流。对进样技术要求高,对操作条件要求严。尾吹的目的是减小死体积和柱末端效应。毛细管柱对固定液的要求不苛刻,一般2-3根不同极性的柱子可解决大部分的分析问题。毛细管柱一般配有响应快,灵敏度高的质量型检测器。

高分辨率毛细管气相色谱仪的三要素是:要选择好的毛细管柱及最佳分析条件;按样品选择合适的毛细管进样系统;选择高性能的毛细管气相色谱仪。

图6-1 毛细管气相色谱仪示意图

第二节毛细管色谱柱

1957年,美国科学家Golay提出毛细管柱的气相色谱法。Golay称毛细管色谱柱为开管柱。因这种色谱柱中心是空的。毛细管柱是内径为Φ0.1-0.5mm左右、长度为10-300m的毛细柱,虽然每米理论板数约为2000-5000,与填充柱相当,但由于柱子很长,总柱效可高达106。

一、毛细管色谱柱组成

通常来说,一根毛细管色谱柱由管身和固定相两部分组成。管身采用熔融二氧化硅(熔融石英),通常在其表面涂上一层聚酰亚胺保护层。涂层后的熔融石英毛细管呈褐色:但是涂层后的毛细管之间

的颜色却不尽相同。色谱柱的颜色对于其色谱性能没有什么影响。经过持续的较高温度处理后.聚酰亚胺涂层管的的温度会变得比以前更深:标准的聚酰亚胺涂层管熔融石英管的温度上限为360℃,高温聚酰亚胺涂层管的温度上限为400℃。固定相种类很多,大部分的固定相是热稳定性好的聚合物,常用的有聚硅氧烷和聚乙二醇。另外还有一类是小的多孔粒子组成的聚合物或沸石(例如氧化铝、分子筛等)。

熔融石英管的内表面会用一些化学方法进行处理,尽量的减小样品和管壁之间可能存在的相互作用。所用的试剂和处理方法一般是依据将要涂在内壁上的固定相种类来确定的。硅烷化处理则是最为常用的处理方式,使用硅烷类的试剂和管壁内表面上的硅基醇基团进行反应,使其变为甲基硅烷基或苯甲基甲基硅烷基。

当实验要求更高的使用温度时,我们可以来用不锈钢毛细柱来代替熔融石英毛细柱。不锈钢毛细柱在使用温度(耐高温)及日常维护(不易折断等)的性能和指标上都优于熔融石英毛细柱。但是不锈钢材质的惰性没有熔融石英好,它可以和许多的化合物相互作用,产生反应。所以通常可以用化学方法对其进行处理,或者是在它的内壁再涂上薄薄的一层熔融石英,以增加不锈钢管的隋性:经过适当处理后,不锈钢毛细柱的惰性与熔融石英毛细柱的不相上下。

二、毛细管色谱柱固定相

(一)气-液色谱固定相

1.聚硅氧烷

聚硅氧烷有优良的稳定性, 用途广,是目前最为常用的固定相。标准的聚硅氧烷是由许多单个的硅氧烷重复联接构成,每个硅原子与两个功能基团相连,功能基团的类型和数量决定了固定相总体类型和性质,常见的四种功能基团为甲基、氰丙基、三氟丙基和苯基。最基本的聚硅氧烷是由100%甲基取代的。当有其他种类的取代基出现时,该基团的数量将由一个百分数来表示。例如:5%二苯基—95%二甲基聚硅氧烷表示其包含有5%的苯基基团和95%的甲基基团。“二”是表示每个硅原子包含有两个特定基团,但当两个特定基团完全相同时,我们有时也会省略这种叫法。如果甲基的百分数没有表征,则表示它的含量可能是100%(如50%苯基—甲基聚硅氧烷表示甲基的含量为50%)。有时我们可能对氰丙基苯基的百分含量产生错误的理解,如14%氰丙基苯基—二甲基聚硅氧烷表示的是其含有7%氰丙基和7%苯基(另有86%的甲基),因为一个氰丙基和一个苯基连接于同一个硅原子上,所以14%是一种加和的表征方式。

我们有时会用低流失来表征一类固定相。这一类固定相是在硅氧烷聚合物中链接一定数量的苯基或苯基类的基团,通常我们称之为“亚芳基”。由于它们的加入,聚合物的链接变得更加坚固稳定,保证了在较高温度时,固定相不会产生降解。也就是说,进一步降低了色谱柱的柱流失,提高了色谱柱的使用温度。与原始的非亚芳基类型的固定相相比,亚芳基固定相不仅拥有相同的分离指数,而且在色谱柱的维护等方面也有许多的调整(例如SE-52和SE-54)。尽管同类普通型和低流失型固定相的分离性能相同或极为相似,但是在某些方面还有微小的区别。另外,我们也使用一些独特低流失固定相。

2.聚乙二醇

聚乙二醇是另外一类广泛应用的固定相。有时我们称之为“WAX”或“FFAP”。聚乙二醇不像聚硅氧烷那样有多种取代基团,它是100%固定基质的聚合物。相对于聚硅氧烷,聚乙二醇固定相色谱柱的寿命较短,而且容易受温度和环境(有氧环境等)的影响。另外,聚乙二醇固定相在相应的GC实验条件下需保持液态。但由于其独特的分离性能,聚乙二醇仍是我们常用的固定相之一。

常用的聚乙二醇GC固定相有两种:一种是能在较高温度下使用的,但是它的活性相对较高一些(也就是说有些化合物的色谱峰会有拖尾现象);另一种的使用温度上限较低,温度下限也较低,但使用中所表现出的再现性和惰性比上一种要好。在分离指数上,上述两种固定相有轻微的差异。还有一种是pH阳离子改性聚乙二醇固定相。FFAP柱就是一类用对苯二甲酸改性的聚乙二醇作为固定相的。这种色谱柱常用于分离分析酸性化合物。另外,我们也用碱性化合物对聚乙二醇固定相改性用来分离分析碱性化合物(CAM)。普通分析色谱柱分离强酸或强碱化合物时会出现色谱峰拖尾现象,使用pH改性固定相后,这种现象会明显地减小。

(二)气-固色谱固定相

就是在管壁表面粘合很薄一层的小颗粒物质,通常叫做多孔层开口管(PLOT)柱。样品是通过在固定相上产生吸附/脱附作用来分离的。最为常用的PLOT柱固定相有苯乙烯衍生物、氧化铝和分子筛等。PLOT柱的保留性能非常突出,用它可以进行那些常规固定相做不到的分析分离。对于那些要求在低于室温的条件下,使用聚硅氧烷或聚乙二醇固定相进行的分析分离,PLOT柱在室温或高于室温的状态下就可以轻易完成。烃类和硫化物气体、惰性和永久性气体以及低沸点溶剂等都是常用P LOT柱进行分析分离的化合物。

(三)键合和交联固定相

交联是将多个聚合物链单体通过共价键进行连接,键合是将其再通过共价键与管壁表面相连。这样处理的结果使得固定相的热稳定性和溶剂稳定性都有较大的提高。所以,键合交联固定相色谱柱可以通过溶剂的浸洗,从而去除柱内的污染物。大多数的聚硅氧烷和聚乙二醇固定相都是经过键合交联处理的。另有少数固定相是不用键合或键合交联进行处理的。但如有可能,能够进行键合交联的,都会对固定相做出相应的处理。

三、柱流失

所有的色谱柱都有柱流失的现象。这是由于固定相的正常降解而产生的被洗脱物质。柱流失会随着温度的升高加剧。我们可以通过流失曲线或图清楚地看到这种变化。一般我们会在程序升温的条件下做一次空白试验,温度要升至色谱柱的温度上限,并持续该温度10-15分钟,这样就可以得到该色谱柱的正常流失曲线图。从流失图中我们可以得到几个重要的指标。空白试验的基线在较低温度区域相对平坦,到离温度上限30-40℃时开始急速地上升,直至达到温度上限。在上限温度持续期间,基线又变得平稳许多。几分钟后基线会又变得完全平坦。如出现明显或严重的偏差,并不是由于色谱

柱流失引起的。色谱柱的流失是一种持续的过程,并不会偶然地开始,也不会突然地停止。如果在空白试验中得到了色谱峰,这并不是由于柱流失而引起的,它极有可能是GC系统中的污染物质。使用质谱检测器进行检测并与谱图库对照,您会发现它们是一些含硅的化合物。它们的来源极有可能是进样垫。

一般来说,极性固定相的流失率较高,较低温度下,它们的流失就很明显。如果您使用的检测器对固定相中任何原子或功能团都有特别灵敏的响应,那么柱流失就非常明显了。就算柱流失不是很严重,但由于检测器对柱内降解产物有较灵敏的响应,会导致很强的基线噪声。在氰丙基取代聚硅氧烷固定相与NPD检测器系统或聚乙二醇柱与ECD检测器系统中,这种现象就很突出。由流失图中我们可以看到,在高温区域柱流失会迅速升高。当流失率增高时,我们无法用一种绝对的方法去测量指示。柱流失最佳的测量方法是测量在两种温度下背景信号的不同或改变。通常我们会选择色谱柱的温度上限和100℃这两个点,绝对的背景信号通常是整个GC系统背景的组合,我们不可能测量出柱流失对这个信号有多大的贡献。而测量柱流失的相对数量,其它对背景信号有贡献的因素也就被减去了。大多数的色谱柱是通过FID进行检测的。FID的输出信号为微微安培(pA)。流失水平就是在两种温度下FID信号值的差(ΔpA)。由于这些数值随检测器响应的变化而变化,所以只有在相同的实验条件下使用同一个检测器,或者在标准的流量条件下使用相同标准的检测器,并且流失数值以pg /克固定相来表示,这样做的数据才真实有效。

随着色谱柱的使用,柱流失会不断地升高。色谱柱暴露于有氧环境(空气)中和持续在等于或接近色谱柱的上限温度条件下被使用,都会加速色谱柱的流失。柱流失突然或快速的升高则可能是色谱柱有损坏或GC系统有问题出现。而持续在高于色谱柱上限温度下操作使用,持续使色谱柱暴露于有氧环境中(通常由于泄漏),或者不断分析的样品中有破坏性物质,这些都可能是问题的原因。

四、色谱柱温度极限

一根色谱柱通常有两个温度极限,温度下限和温度上限。如果在低于温度下限的条件下实验,得到的色谱峰较宽(柱效降低)。但是色谱柱并不会受到什么损坏。这样并不能发挥色谱柱的正常功能。在高于下限温度时,得到的色谱峰会有明显的好转。温度上限—般有两个固定的数值。较低的是恒温极限,在该温度下色谱柱可以正常地使用,柱流失的寿命不会受到影响。较高的数值是程序升温极限,在此温度下色谱柱使用时间如果在10-15分钟内,色谱柱的流失和寿命不会受到太大的影响。但如果持续时间过长,则会增加色谱柱的流失,缩短色谱柱的寿命,固定相和熔融石英管的惰性都有可能被破坏。

五、色谱柱容量

色谱柱容量是指色谱柱对一种溶质可容纳的最大量值,一旦超过此数值,该溶质的色谱峰就会发生畸变,也就是说超载。PLOT柱超载表现为色谱峰的拖尾。不过以上种种情况对色谱柱本身没有什么影响。

柱容量与固定相的极性、膜的厚度、柱内径和溶质保留程度等有关。如果色谱柱对一种溶质的容量很高,则表明该溶质与固定相的极性很相似(相似相溶)。例如,一根极性柱对极性化合物的容量一定大于对非极性化合物的容量;厚膜和大口径的色谱柱,其相对柱容量也会较高;而溶质的保留度增加会使柱容量降低;如果两种溶质极性类似,后出峰的化合物更容易发生超载现象。

六、毛细管柱的种类(开管型)

指的是内径Φ0.1-0.5mm的柱子,有空心和填充两类,通常所说的是空心毛细管柱。

(一)涂壁空心柱(WCOT)

毛细管内壁直接涂固定液,不含任何固态载体。柱效高,是Golay最早提出的空心柱。

(二)涂载体空心柱(SCOT)

先在毛细管内壁上涂一层载体后,再在载体上涂固定液的空心柱。涂一层沉积载体后增大表面积,使所涂的固定液的液膜较厚,柱容量比WCOT大,可提高进样量。

(三)多孔层空心柱(PLOT)

毛细管内壁上涂一层多孔层固定相,实际上是一种气固色谱毛细管柱,柱容量比以上两种柱大。

七、毛细管柱的制备技术

石英毛细管柱在涂渍前要进行表面处理,目的是粗糙化并除去活性吸附点。

涂渍方法有动态法与静态法。

1.动态法:一般L>50米,固定液粘度较小,固定液用溶剂配成溶液,吸入一段后,用H E气吹着走,内壁形成液膜。

2.静态法:一般L<30米,将固定液溶液充满毛细管柱一端封死,慢慢挥发。

一般的涂渍方法易发生柱流失,液膜破裂,涂层不均匀。为固定化固定相采用交联和键合方法。交联是使固定相分子间共价连接;键合是使固定相与支持物表面反应形成键。

第三节毛细管气相色谱法基本理论

毛细管气相色谱法与填充柱的分离原理是相同的。但由于毛细管柱本身特点,使理论模型中的一些影响因素与填充柱相比有些差异。

一、毛细管柱的速率方程--Golay方程

Golay方程

(6-1)

与填充柱比,A项为零.毛细管柱的H-U图也是一个双曲线,在U值是最佳值时,H值最小。

(6-2)

(一) WCOT 柱的Golay方程

1957年Golay提出了WCOT的速率方程表达式

(6-3)2

1

min

)

(C

C

B

H g+

=

式中:k为容量因子;Dg为气相扩散系数;D l为液相扩散系数;r g自由气体流路半径,r g=r-d f,r为毛细管柱半径, d f为平均液膜厚度;u为载气流速; β为相比率,其表达式为:

β=Vm/V l=K/k=au/Lb=a/bt M

(6-4)

式中: Vm为毛细管中气体所占据的体积;V l为液相体积; a,b分别为半峰宽与保留时间直线的截距和斜率; t M为死时间; u为载气线速度; 相比β是毛细管柱型与结构的重要特征, β值一般是60-600.

(二)SCOT 柱的Golay方程

1963年Golay提出了WCOT的速率方程表达式

(6-5)

式中: α为相对多孔层厚度,一般在0.05-0.1 。

二、方程讨论

(一)毛细管柱与填充柱的速率理论方程相似,只不过毛细管柱的影响因素比填充柱更为复杂。毛细管柱(开管柱)的涡流扩散项为零。而填充柱则受填充颗粒大小与均匀程度的影响。

(二) 不论是毛细管柱与填充柱,分子扩散项都与气体扩散系数成正比, 而填充柱还受弯曲因子影响。

(三) 毛细管柱的气相传质阻力与液相传质阻力项的影响因素比填充柱更为复杂,C g + C L小于填充柱中C值,因此,曲线斜率小于填充柱,因此,可以尽量使用较高的线速。

毛细管色谱柱效可用理论板数、分离度R等公式与填充柱色谱法相同。

第四节毛细管气相色谱法操作条件的选择

一、载气的选择

载气线速度选择;载气要去除杂质,使用高纯气体(99.9%以上)。

载气的种类选择如图6-2所示,He气的曲线比较缓和,能得到最良分离状态的流量也比较大。因此,用He气可以缩短分析时间。在用不分流注入法时,由于流量较大,可以提高试样的回收率,但He 气在我国价格十分贵。用H2气可以缩短分析时间,但由于危险较大。一般不太推荐使用H2气。

图6-2 载气对理论塔板高度的影响

二、进样方式

毛细管柱进样方式分为:分流;无分流;冷柱头进样;全量进样。

(一)分流法进样

毛细管柱进样量必须极小(一般液样0.01~0.001微升,气样约1微升)。要注入如此微量样品,可采用分流法进样。即在气化室出口分两路,绝大部分放空,极小部分进柱子,这两部分比例叫分流比。分流比可以是1∶10~1∶500,毛细柱常用分流比1∶30~1∶120。

要求分流后样品混合物中各峰的相对大小应与未分流的严格一致;分析不同浓度的混合物时,峰面积必须正比于浓度;当柱温、分流比、流速改变时各色谱峰的相对大小要保持恒定。

分流法进样简便、柱效高;但是失真、浪费样品,样品大于50 PPm可采用分流法进样。快速升温(PTV)进样法具有无进样时的样品组分变化,可适于不太纯净的样品的分析和可分流等特点,最适于高温GC用。PTV法歧视效应小。

三、不分流进样

(一)低温浓缩不分流

样品低温冷阱富集于柱头,再加热脱附进样。

(二)Grob不分流

进样时暂时把分流阀关掉1分钟,柱温低于溶剂沸点,进样,大部分样品吸进柱后,打开分流阀,然后升温进行色谱分析。

岛津Grob式分流/无分流进样装置SPL-G 9结构如图6-3。

图6-3 岛津Grob式分流/无分流进样装置SPL-G 9结构

(三)冷柱头进样

把样品直接注射到低温毛细管顶端的柱头上的进样技术,液体样品直接“冷”射到柱子上,然后使柱升温、在柱内气化的方法。

冷柱头进样消除了宽沸程样品失真和不稳定组分的吸附和分解,柱效高、分析精度高。进样量小。缺点是污染柱子;要专用注射器,易折断(超细针头);有大量溶剂进柱子。

岛津冷柱头进样器OCI-G9的操作:

①载气流量0.5-3ml/min,冷却-加热器,柱温25-45℃。

②先开入口阀,样品注入大口径毛细柱头上,关闭入口阀。

③冷却-加热器、柱炉同时程序升温,100℃/min。

④用专用超细针头。

冷柱头进样优点是可用于分析热不稳定物质(可抑制分解和异构化);不存在组分的区别对待问题(失真少、重现好、准确)。缺点是高浓度组分要稀释后分析;难挥发组分会污染柱子。解决方法是保留区间的利用(在分析柱前连接一根无液相涂层的空柱子);利用快速升温气化(PTV)。

可用程序升温气化进样,控温精度,可用多阶程序升温,起始低温控制。利用溶剂效应,解决歧视效应。

1.溶剂效应:

起始柱温低于溶剂沸点20~40℃,使样品凝结于柱头,溶剂对溶质暂起着固定液作用,使被气化了的试样蒸汽在柱入口凝结成液体,起聚焦作用。溶剂效应使低沸点成分停滞,使样品在柱入口浓缩,使峰锐化。

2.歧视效应:

注入色谱柱的组分比率与样品组分不同。通常,进入柱内低沸点的组分多,高沸点的组分少一些。解决歧视效应方法是可利用溶剂冲洗进样法;冷柱头进样法PTV(快速升温气化)法。

四、色谱柱

熔融石英玻璃毛细管柱长度一般是10-25m(有时50m),内径为0.1,0.22,0.32mm。宽口径毛细管柱的柱长12-50m,内径0.53 mm (有时0.75mm),液膜厚为1.0-5.0μm 适于大样品量,故需厚一些。宽口径毛细管柱可直接进样,不需分流;比毛细柱分离差,比填充分离好;进样量大于毛细管柱,小于填充柱;

五、毛细管的最佳用法和维护方法

(一)柱温设定值应比毛细管柱最高使用温度尽可能低一些(可延长柱子寿命,降低检测器的噪音)

(二)为避免难挥发组分进入柱内。很好进行样品前处理;使用玻璃衬管和石英棉;可连接一次性的短的前置柱。

(三)为除掉柱内残留的难挥发组分,可老化柱子、溶剂清洗、除掉柱入口污染的部分。

1.老化柱子:柱温升到柱子最高使用温度,将高沸点组分气化排除(保持1-2小时,观察基线情况)

2.溶剂清洗:用少量有机溶剂清洗柱子,将高沸点组分溶解后排除。(流动方向从出口侧到入口侧。用正己烷、三氯甲烷,丙酮1 mol即可)

3.除掉柱入口污染的部分:用上述方法难以去掉难挥发组分时,可从入口侧一端折断5-20cm (使用专用工具,将折断面折成直角)

第五节毛细管气相色谱的分析例

最近毛细管气相色谱的分析例(农残分析)

高尔夫球场使用的21种农药中,约有18种是用气相色谱仪分析的。

所需的检测器为火焰光度检测器(FPD),火焰热离子检测器(FTD),电子捕获检测器(ECD)。各检测器检测范围如下(有的组分重复出现,它表示用哪种检测器都可以)

表6-3 检测农药种类和所用的检测器

1.用ECD检测4种农药

使用ECD检测器,采用无分流进样法,各组分浓度为100ppb,进样1μl获得的结果。

分析条件

仪器:岛津GC-14A

色谱柱:CBP1-S25-050(25m×0.3mmφ,0.5μm)

柱温:50℃(3min)→240℃(10℃/min)

进样口温度:240℃

检测器温度:300℃

载气:He

尾吹气体:N2

进样法:无分流

出峰顺序:

1.丙草安

2.百菌清(TPN)

3.可菌丹

4.稻瘟灵

2.FTP分析农药

分析条件

仪器:岛津GC-14A

色谱柱:CBP17-M30(30m×0.25mmφ)

进样口温度:240℃

检测器温度:280℃

载气:He

进样法:无分流

出峰顺序:

1.丙草安

2.地亚农

3.西玛津(CAT)

4.氯卑硫磷

5.杀螟松

6.Pendimethalin

7.异丙胺磷

8.Butamifos Flutolanil

9.萘丙安

10.异恶唑硫磷

11.Iprodione

3.用冷柱头进样法和FPD(P)分析9种农药组分

分析条件

仪器:岛津GC-14A

色谱柱:CBP1-W25-100(25m×0.53mmφ,1.0μm) 柱温:50℃(3min)→240℃(10℃/min)

进样口温度:60℃→300℃(50℃/min)

检测器温度:300℃

载气:He

进样法:冷柱头进样法

出峰顺序:

1.敌百虫(DEP)

2.地亚农

3.Tolcophos-methyl

4.杀螟松(MEP)

5.氯卑硫磷

6.异丙胺磷

7.Butamifos

8.异恶唑硫磷

9.砜草磷(SAP)

4.FPD(S)分析3种农药组分

分析条件

仪器:岛津GC-14A

色谱柱:CBP1-W25-100(25m×0.53mmφ,1.0μm)

进样口温度:240℃检测器温度:300℃载气:He

进样法:无分流

出峰顺序:

1.百菌丹

2.稻瘟灵

3.砜草磷(SAP)

毛细管柱气相色谱法

第六章毛细管柱气相色谱法 第一节毛细管气相色谱仪 现代的实验室用的气相色谱仪大都既可用作填充柱气相色谱又可用作毛细管色谱仪。毛细管色谱仪应用范围广,可用于分析复杂有机物,如石油成分,天然产物,环境污染,农药残留等。图6-1是毛细管气相色谱仪示意图,与填充柱色谱仪比,毛细管色谱仪在柱前多一个分流-不分流进样器,柱后加一个尾吹气路。由于毛细管柱体积很小,柱容量很小,出峰快,所以死体积一定要小,要求瞬间注入极小量样品,因此柱前要分流。对进样技术要求高,对操作条件要求严。尾吹的目的是减小死体积和柱末端效应。毛细管柱对固定液的要求不苛刻,一般2-3根不同极性的柱子可解决大部分的分析问题。毛细管柱一般配有响应快,灵敏度高的质量型检测器。 高分辨率毛细管气相色谱仪的三要素是:要选择好的毛细管柱及最佳分析条件;按样品选择合适的毛细管进样系统;选择高性能的毛细管气相色谱仪。 图6-1 毛细管气相色谱仪示意图 第二节毛细管色谱柱 1957年,美国科学家Golay提出毛细管柱的气相色谱法。Golay称毛细管色谱柱为开管柱。因这种色谱柱中心是空的。毛细管柱是内径为Φ0.1-0.5mm左右、长度为10-300m的毛细柱,虽然每米理论板数约为2000-5000,与填充柱相当,但由于柱子很长,总柱效可高达106。 一、毛细管色谱柱组成 通常来说,一根毛细管色谱柱由管身和固定相两部分组成。管身采用熔融二氧化硅(熔融石英),通常在其表面涂上一层聚酰亚胺保护层。涂层后的熔融石英毛细管呈褐色:但是涂层后的毛细管之间

的颜色却不尽相同。色谱柱的颜色对于其色谱性能没有什么影响。经过持续的较高温度处理后.聚酰亚胺涂层管的的温度会变得比以前更深:标准的聚酰亚胺涂层管熔融石英管的温度上限为360℃,高温聚酰亚胺涂层管的温度上限为400℃。固定相种类很多,大部分的固定相是热稳定性好的聚合物,常用的有聚硅氧烷和聚乙二醇。另外还有一类是小的多孔粒子组成的聚合物或沸石(例如氧化铝、分子筛等)。 熔融石英管的内表面会用一些化学方法进行处理,尽量的减小样品和管壁之间可能存在的相互作用。所用的试剂和处理方法一般是依据将要涂在内壁上的固定相种类来确定的。硅烷化处理则是最为常用的处理方式,使用硅烷类的试剂和管壁内表面上的硅基醇基团进行反应,使其变为甲基硅烷基或苯甲基甲基硅烷基。 当实验要求更高的使用温度时,我们可以来用不锈钢毛细柱来代替熔融石英毛细柱。不锈钢毛细柱在使用温度(耐高温)及日常维护(不易折断等)的性能和指标上都优于熔融石英毛细柱。但是不锈钢材质的惰性没有熔融石英好,它可以和许多的化合物相互作用,产生反应。所以通常可以用化学方法对其进行处理,或者是在它的内壁再涂上薄薄的一层熔融石英,以增加不锈钢管的隋性:经过适当处理后,不锈钢毛细柱的惰性与熔融石英毛细柱的不相上下。 二、毛细管色谱柱固定相 (一)气-液色谱固定相 1.聚硅氧烷 聚硅氧烷有优良的稳定性, 用途广,是目前最为常用的固定相。标准的聚硅氧烷是由许多单个的硅氧烷重复联接构成,每个硅原子与两个功能基团相连,功能基团的类型和数量决定了固定相总体类型和性质,常见的四种功能基团为甲基、氰丙基、三氟丙基和苯基。最基本的聚硅氧烷是由100%甲基取代的。当有其他种类的取代基出现时,该基团的数量将由一个百分数来表示。例如:5%二苯基—95%二甲基聚硅氧烷表示其包含有5%的苯基基团和95%的甲基基团。“二”是表示每个硅原子包含有两个特定基团,但当两个特定基团完全相同时,我们有时也会省略这种叫法。如果甲基的百分数没有表征,则表示它的含量可能是100%(如50%苯基—甲基聚硅氧烷表示甲基的含量为50%)。有时我们可能对氰丙基苯基的百分含量产生错误的理解,如14%氰丙基苯基—二甲基聚硅氧烷表示的是其含有7%氰丙基和7%苯基(另有86%的甲基),因为一个氰丙基和一个苯基连接于同一个硅原子上,所以14%是一种加和的表征方式。 我们有时会用低流失来表征一类固定相。这一类固定相是在硅氧烷聚合物中链接一定数量的苯基或苯基类的基团,通常我们称之为“亚芳基”。由于它们的加入,聚合物的链接变得更加坚固稳定,保证了在较高温度时,固定相不会产生降解。也就是说,进一步降低了色谱柱的柱流失,提高了色谱柱的使用温度。与原始的非亚芳基类型的固定相相比,亚芳基固定相不仅拥有相同的分离指数,而且在色谱柱的维护等方面也有许多的调整(例如SE-52和SE-54)。尽管同类普通型和低流失型固定相的分离性能相同或极为相似,但是在某些方面还有微小的区别。另外,我们也使用一些独特低流失固定相。 2.聚乙二醇 聚乙二醇是另外一类广泛应用的固定相。有时我们称之为“WAX”或“FFAP”。聚乙二醇不像聚硅氧烷那样有多种取代基团,它是100%固定基质的聚合物。相对于聚硅氧烷,聚乙二醇固定相色谱柱的寿命较短,而且容易受温度和环境(有氧环境等)的影响。另外,聚乙二醇固定相在相应的GC实验条件下需保持液态。但由于其独特的分离性能,聚乙二醇仍是我们常用的固定相之一。

气相色谱-DBFFAP毛细管柱测定工作场所空气中1,4—丁二醇

气相色谱-DBFFAP毛细管柱测定工作场所空气中1,4—丁二醇 发表时间:2014-04-28T14:56:15.513Z 来源:《中外健康文摘》2013年第44期供稿作者:罗诚程剑盛荣健轩杰 [导读] 为了满足现场测定的需要,可用活性碳管采样,便于携带,方法简单,快速,灵敏。 罗诚程剑盛荣健轩杰(江苏省南京鼓楼医院集团仪化医院预防保健中心 211900) 【摘要】目的:建立工作场所空气中丁二醇的采样和测定方法。方法:用活性碳管采样,气相色谱仪测定。结果:方法的检出限为0.4μg/ml,当标准溶液浓度为50~400μg/ml时,相对标准偏差为4.6%~1.5%,相关系数为0.999。测定范围为50~400μg/ml。活性碳管解吸效率为88%~95%。样品在采样管中能稳定7d。结论:测定的各项指标均符合“工作场所空气中有毒物质监测研究规范”和劳动卫生检测的要求。 【关键词】丁二醇甲醇气相色谱仪超声解吸仪 【中图分类号】R122.1 【文献标识码】A 【文章编号】1672-5085(2013)44-0271-02 化学物质:1,4-丁二醇(简称BDO)CH2OH-CH2-CH2-CH2OH是一种重要的有机和精细化工原料,它被广泛应用于医药、化工、纺织、造纸、汽车和日用化工等领域。由BDO可以生产四氢呋喃(THF)、聚对苯二甲酸丁二醇酯(PBT)、γ-丁内脂(GBL)和聚氨酯树脂(PUResin)、涂料和增塑剂等,以及作为溶剂和电镀行业的增亮剂等。目前检测1.4-丁二醇的方法有:玩具材料中1,4-丁二醇的检测方法气相色谱-质谱法。为了满足现场测定的需要,可用活性碳管采样,便于携带,方法简单,快速,灵敏。 1 仪器 活性碳管(溶剂解吸型),分别装100 mg/50 mg活性炭。采样器,流量范围:0~1L /min解吸管2ml。气相色谱仪。 1.1试剂丁二醇(分析纯)标准溶液配制:称取一定量的丁二醇,用10%甲醇溶解并定量。计算溶液中丁二醇的浓度,临用前用10%甲醇稀释成400μg /ml浓度的标准溶液。 2 样品的采集、运输和保存。现场采样按照GBZ 159执行 2.1短时间采样:在采样点,打开活性碳管两端,以500ml/min 流量采集15min空气样品。 2.2长时间采样:在采样点,打开活性碳管两端,以50ml/min 流量采集2~8h空气样品。 2.3个体采样:打开活性碳管两端,佩戴在采样对象的前胸上部,尽量接近呼吸带,以50ml/min 流量采集2~8h空气样品。 3 分析步骤 3.1对照试验:将活性碳管带至采样点,除不连接采样器采集空气样品外,其余操作同样品,作为样品的空白对照。 3.2样品处理:将采过样的活性碳前后段分别倒入溶剂解吸瓶中,加入2.0ml 解吸液,封闭后,超声解吸30min。解吸液供测定。若样品液中待测物的浓度超过测定范围,可用解吸液稀释后测定,计算时乘以稀释倍数。 3.3气相色谱仪操作条件毛细管柱:DBFFAP(30m×0.25mm×0.25um);毛细管柱流速5ml/min;毛细管柱压力28.931psi;毛细管柱平均流速78.448cm/sec。进样口:加热器220℃;压力28.931psi;隔热吹扫流量3ml/min;模式:不分流;柱箱温度210℃;保持5min。检测器300℃。氢气:30ml/min;空气:400ml/min;尾吹25mL/min. 3.4样品测定:用测定标准系列的操作条件测定样品和空白对照解吸液,测得的样品峰高或峰面积值减去空白对照的峰高或峰面积值后,由标准曲线得丁二醇的浓度(μg/ml)。 3.5标准曲线的绘制:用10%甲醇稀释标准溶液成0.0μg/ml、50.0μg/ml、100.0μg/ml、200.0μg/ml、400.0μg/ml丁二醇标准系列。参照仪器操作条件,将气相色谱仪调节至最佳测定状态,分别进样1.0ml,测定各标准系列。每个浓度重复测定3次。以测得的峰高或峰面积均值对相应的丁二醇浓度(μg/ml)绘制标准曲线。 3.6计算按下公式计算空气中1.4丁二醇的含量 2(c 1+c2)v C = ———————— Vo D 4 讨论 4.1方法的检出限。在本法选定的最佳测定条件下,方法的检测限为0.4μg /ml,最低检测浓度为0.4mg/m3 (采样体积为7.5L) 4.2活性碳管解吸效率试验。取18支碳管,加入高低(10mg,5mg)浓度的丁二醇,放置过夜,供其平衡。测得解吸效率为88% ~95%。 4.3线性范围。本法的线性范围是0~400mg/L,当采样体积为7.5升时相当空气中丁二醇浓度0~40mg/m3。 4.4稳定性试验。标准溶液在室温放置可保存15d。冰箱可放置1个月 4.5方法精密度。取50、100、2000mg/L三个浓度分别重复测定5次,其相对标准偏差分别为3.6%、2.7%、2.1%。 4.6干扰试验。在生产现场,存在1.3丁二醇,苯醚,乙醛,1.2-乙二醇等均不干扰其测定。 5 小结 毛细管柱检测空气中丁二醇时所用时间一般都要4分钟左右走完所有的色谱峰,主峰一般在平均2.5分钟左右出现,所以做低浓度丁二醇时,一定要分清楚是否是1,4-丁二醇,可根据出峰时间点作出判断,一般1,3丁二醇出峰时间比1,4丁二醇快一些。还有关于分流是否打开也做了研究。建议不开分流峰形也很稳定并且灵敏度很高。还可以根据色谱柱流速的大小调节出峰的快慢,这次研究因色谱柱原因最高可以调节流速为5ml/min。出峰时间在4min以内。可根据仪器性能的不同适当调节。 参考文献 [1]中国卫生检验杂志2008年10月第18卷第10期Chinese Joumal of Health Laboratory Technology,Oct 2008:Vol 18 No 10 [2]Deborah L Zvosec,Stephen W Smiht ,J Rod MeCutcheon,et al Adverse events ,including death ,associated with the ues of 1.4-Butancdiol [J].N Eng J Med ,2001, (344):87-94 [3]Roopa Kapadia ,Mark Bahlke ,Timath J ,Maher .Detection of r-hydroxybutyrale in striatal microdialysates following peripheral 1.4-butanedionl administradion in rats [J] .Life Sei ,2007,80(11):1046-1050

气相色谱毛细管柱使用知识

气相色谱毛细管柱使用知识 气相色谱毛细管柱因其高分离能力、高灵敏度、高分析速度等独特优点而得到迅速发展。随着弹性石英交联毛细管柱技术的日益成熟和性能的不断完善,已成为分离复杂多组分混合物、及多项目分析的主要手段,在各领域应用中大有取代填充柱的趋势。现在新型气相色谱仪、气相色谱-质谱联用仪基本上都是采用毛细管色谱柱进行分离分析。但是,毛细管色谱柱柱内径较小,固定液的膜薄,用于食品中残留物分析时,若使用不当,色谱柱性能很快就会下降。 毛细管柱只能安装在配有专用毛细管柱连接装置的气相色谱仪上。现在购买仪器时最常规的配置是配毛细管分流/不分流进样口。 毛细管色谱柱的类型 毛细管色谱柱的类型有很多种,但目前最常用和商品化的,是开口熔融石英交联毛细管色谱柱。下面介绍此类毛细管色谱柱的性能特点。 一、熔融石英毛细管柱 (1) 熔融石英毛细管柱材料 现在市售商品化的气相色谱用毛细管柱几乎都是由熔融石英制作的,简称石英毛细管柱。制作毛细管柱用的石英纯度非常高,几乎无其它杂质。它具有熔点高(近2000℃)、热膨胀系数低、化学稳定性好和抗张强度高等特点,是制备毛细管柱的理想材料。

毛细管柱内壁存在有许多具有吸附活性的基团,这些基团的存在直接影响固定相涂渍效果,所以,在涂渍固定相之前,柱表面必须经过适当预处理,以期得到较高的柱效和对称的色谱图形。 (2) 石英毛细管柱的聚酰亚胺外涂层 石英毛细管柱很脆,只有在毛细管柱外涂一层聚酰亚胺保护材料后才具有很好的弹性,在使用这样的色谱柱时应十分小心,避免将聚酰亚胺涂层损坏,导致毛细管柱易折断。 通常商品毛细管柱出厂时都固定在一个金属丝制作的柱架上,柱架的直径与毛细管柱的直径成正比,即:毛细管柱的直径越大,固定架的直径也就越大。对于0.53mm 内径的毛细管柱,过度弯曲很容易折断,使用安装时要格外小心。 石英毛细管柱外涂层还有采用镀铝膜的,这类柱子适用于高温分析。但日常分析工作中使用较少,这里不作详细介绍。 二、液体固定相 将固定相均匀涂渍在毛细管柱的内壁,制成壁涂型毛细管柱,这类毛细管柱属非交联型毛细管柱。现在只有少部分的非交联固定相的毛细管柱在使用。非交联毛细管柱的固定相容易流失,不能清洗,因此使用寿命较短,但制作成本较低,涂渍相对较容易,往往在毛细管柱研制前期过程中采用此方法。在使用这类毛细管色谱柱时,应注意使用温度不要超过液体固定相的最高使用温度。建议不要在气相色谱-质谱联用仪上使用。 三、交联固定相 现在市售的商品毛细管色谱柱基本上均采用交联技术,将固定相与石英表面结合起来,在毛细管柱表面形成一层不溶的类似橡胶的非常稳固的涂层。被交联的固定相与涂渍的固定相相比,流失低,抗污染,热稳定性好,使用寿命长。

常用毛细管色谱柱对应表

毛细管柱应用范围及使用温度 一、SPB-1型非极性柱(键合,聚二甲基硅氧烷) 对照品牌:HP-1,DB-1,BP-1,CP-SIL 5CB,UItra-1,007-1,RTx-1,AT-1 类似固定相:SE-30,SP-2100,OV-1,OV-101 使用温度:-60℃-320℃ 应用范围:烷烃,芳烃,多环芳烃,醇,酚,酮,酯,醛,胺,卤代烃,吡啶,糖衍生物,氨基酸衍生物,维生素衍生物,镇痛药,农药,溶剂,胆固醇,香料,咖啡,食品添加剂等 二、SPB-5型弱极性柱(键合,5%苯基,95%甲基聚硅氧烷) 对照品牌:HP-5,DB-5,BP-5,CP-SIL 8CB,UItra-2,007-2,RTx-5,AT-5 类似固定相:SE-54,SE-52,OV-73 使用温度:-60℃-320℃ 应用范围:烷基苯,多环芳烃,醇,酚,酮,脂肪酸酯,苯二甲酸酯,硝基芳烃,芳胺,烷基胺,联苯胺,卤代烃,多氯联苯,糖类衍生物,维生素衍生物,有机酸,镇痛药,农药,抗组胺药,溶剂,生物碱,防腐剂,香料等

三、SUPELCOWAX 10型极性柱(键合,聚乙二醇二万) 对照品牌:HP-Wax,DB- Wax,BP-20,CP- Wax 52CB,HP-INNO Wax,AT- Wax 类似固定相:PEG-20M,CARBOWAX-20M 使用温度:35℃-280℃ 应用范围:低沸点芳烃,醇,酮,酯,醛,醚,乙二醇,丙二醇,甘油,吡啶,胺,亚硝胺,卤代烃,胆汁酸衍生物,冰片,薄荷,精油,香料,酒,苯乙烯,茶,溶剂等 四、SPB-50型中等极性柱(键合,50%二苯基,50%二甲基聚硅氧烷) 对照品牌:HP-50,HP-17,DB-17,007-17,RTx-50,AT-50 类似固定相:OV-17,SP-2250 使用温度:30℃-310℃ 应用范围:烷烃,低沸点芳烃,多环芳烃,醇,甘油三酸酯,喹啉,卤素化合物,精油,香料,农药,酯,镇痛药,除草剂等 五SPB-1701型中等极性柱(键合,14%氰丙基,86%二甲基聚硅氧烷) 对照品牌:HP-1701,DB-1701,007-1701,RTx-1701,AT-1701,BP-10,CP-Sil 19CB 类似固定相:OV-1701,SP-2250 使用温度:室温-280℃ 应用范围:醇,卤素化合物,有机氯农药,酸性药物,有机磷,除草剂等

毛细管气相色谱柱的使用及常见故障分析(精)

毛细管气相色谱柱的使用及常见故障分析 王波 (安徽省淮北市农业环境监测保护站淮北235000) 摘要根据多种毛细管气相色谱柱在国内外多种品牌的气相色谱系统的实际应用情 况,结合与其相关的文献资料,对毛细管气相色谱柱的使用及常见故障进行专业、细致 的分析与研究。 关键词气相色谱毛细管柱常见故障 现在的气相色谱系统中,毛细管色谱柱已被广泛的应用。大部分的检测工作可能只需几根柱子(OV-1、PEG-20M、OV-210)即可很好的完成,特别是大口径(0.53mm)柱的使用已逐步替代填充柱。掌握毛细管气相色谱柱的正确使用的方法,以及在其使用过程中故障处理的方法是非常必要的。 1 毛细管色谱柱的安装 在整个毛细管气相色谱中,柱子的安装尤为重要,柱子安装的好坏直接影响到检测结果。 1.1 毛细管柱与进样器的连接 对于分流进样,毛细管柱的入口端一定要伸过分流进样器的分流出口(见图1a),就是使毛细管柱的入口处于载气的高流速区域。如果毛细管柱的入口在分流进样器的分流出口以下(见图1b),处于载气的低流速区域,得到的色谱图就不理想,所以必须将毛细管的入口伸过分流进样器的分流出口,这样才会得到尖锐的峰形。对于分流/ 不分流进样,毛细管的入口应接到进样器的底部(见图1c),这样可以使汽化管中的样品完全进入柱子,也不会出现气流清洗不到的“死区”。 对于有些有特殊要求的气相色谱,毛细管气相色谱柱与进样器的连接,可以按仪器使用说明书的要求进行安装。 1.2 毛细管色谱柱与检测器的连接 在毛细管气相色谱柱连接到检测器之前,先接通载气,看一下柱子的出口是否有载气通过,(将柱子的出口浸入乙醇中看是否有气泡出现)如果没有载气从柱子出来,说明柱前的系统中有的地方漏气或柱子堵塞,应找出原因加以解决。然后将柱子的未端尽可能的伸到检测器(FID)的喷嘴以下的1~2mm 处,并使柱子的出口处于气流的最高流速区域(即氢气引入口以上),如果柱子不能直接伸到检测器的喷嘴下1~2mm 处,但必须伸到尾吹气入口的上部使柱子的末端处于气流的高速区域。

气相色谱柱和毛细管柱结构特点

气相色谱柱和毛细管柱结构特点,它们有什么不同点,主要是结构上,还有实验应用上,一定详细,谢谢啊 最佳答案 气相色谱柱分填充柱和毛细管柱。填充柱的填料可以是多孔性粒状系缚剂或在惰性载体颗粒表面均匀的涂敷一层很薄的固定液膜。填充柱常用内径2-5mm,长0.5-10m的金属管或玻璃管。填充柱制备简单,可供选用的载体、固定液、吸附集种类很多,因而具有广泛的选择性,有利于解决各种各样组分的分离分析问题,应用比较普遍。此外,填充柱的样品负荷量大,可用于制备色谱其缺点是柱渗透性较小,传质阻力较大,柱子不能过长,因而分离效率较低。柱效的选择问题,视试样组分而定,许多分析并不需要很高的分离效率,因此填充柱仍有其广泛的应用前景。如工业废水中硝基苯的分析、苯系物的分析等用填充柱气象色谱法足以满足分析要求。现在的填充柱一般只分析气体用。毛细管柱则又可分为空心毛细管柱和填充毛细管柱两种。空心毛细管柱是将固定液直接涂在内径只有0.1~0.5mm的玻璃或金属毛细管的内壁上,填充毛细管柱是近几年才发展起来的,它是将某些多孔性固体颗粒装入厚壁玻管中,然后加热拉制成毛细管,一般内径为0.25~0.5mm。 气相色谱柱选择指南 1)柱长度的选择 分辨率与柱长的平方根成正比。在其他条件不变的情况下,为取得加倍的分辨率需有4倍的柱长。较短的柱子适于较简单的样品,尤其是由那些在结构、极性和挥发性上相差较大的组分组成的样品。 一般来说: 15m的短柱用于快速分离较简单的样品,也适于扫描分析; 30m的色谱柱是最常用的柱长,大多数分析在此长度的柱子上完成; 50m、60m或更长的色谱柱用于分离比较复杂的样品。 应该注意,柱长增加分析时间也增加。 2)柱内径的选择 柱径直接影响柱子的效率、保留特性和样品容量。小口径柱比大口径柱有更高柱效,但柱容量更小。 0.25mm:具有较高的柱效,柱容量较低。分离复杂样品较好。 0.32mm:柱效稍低于0.25mm的色谱柱,但柱容量约高60%。 0.53mm:具有类似于填充柱的柱容量,可用于分流进样,也可用于不分流进样,当柱容量是主要考虑因素时(如痕量分析),选择大口径毛细管柱较为合适。 3)液膜厚度的选择 液膜厚度影响柱子的保留特性和柱容量。厚度增加,保留也增加。 0.1~0.2μm :薄液膜厚度的毛细管柱比厚液膜的毛细管柱洗脱组分快,所需柱温度低,且高温下柱流失较小,适用高沸点的化合物的分析。 0.25~0.5μm :常用的液膜厚度。 厚液膜:对分析低沸点的化合物较为有利。

毛细管气相色谱柱的选择方法

毛细管气相色谱柱的选择方法 【关闭本页】【返回首页】【发布时间2004-1-14】 一、固定相的选择 1.如果不知道使用何种固定相,可以从非极性柱或弱极性柱如SPB-1或SPB-5开始试用,如效果不好,再按极性渐强的顺序选用中等极性直至高极性柱逐一尝试,直到有较令人满意的分析结果即可确定适用的柱极性。 2.低流失(“ms”)色谱柱通常更为惰性,有更高的温度上限,适用于MS检测器。3.使用能够提供满意的分离度和分析时间的极性最小的固定相,非极性固定相比极性固定相具有更长的寿命。 4.要使用和被分析物极性相近的固定相,使用这一选择方法常常是有效的,但是使用这一方法并不总是能找到最好的固定相。 5.如果被分离混合物具有不同的偶极或氢键力,改变使用具有不同偶极或氢键力(不一定要更大)的固定相后,会出现其他共流出物,所以新的固定相不一定提供更好的总分离度。 6.如果可能,要避免使用含有能使选择性检测器产生高响应值功能团的固定相,例如含有氰丙基的固定相,用NPD会产生不成比例地增大基线高度(由于柱流失)的现象。7.SPB-1或SPB-5,SPB-50,SPB-1701,和SUPELCOWAX 10以最少数量的色谱柱能覆盖最大范围的选择性。 8.PLOT柱用于在高于室温的柱温下来分析气体样品。 二、色谱柱直径的选择 1. 当需要有高柱效的色谱柱时应使用0.18-0.25mm的色谱柱。0.18mm的色谱柱很适合于泵容量低的GC/MS系统。小内径柱的容量最小而且需要最高的柱头压力。 2. 当需要样品容量大时就要使用0.32mm内径的色谱柱。与0.25mm内径柱相比, 0.32mm内径柱对不分流进样或大体积(>2μL)进样时早流出的色谱峰有较高的分离度。 3. 只有配备大口径直接进样口时,才使用0.53mm内径的色谱柱,它特别适合于高载气流速的应用,例如吹扫捕集,顶空进样。0.53mm内径色谱柱在恒定的液膜情况下具有最高的样品容量。 三、色谱柱柱长的选择 1. 当不知道最佳柱长时,尝试使用25-30m长的色谱柱。 2. 10-15m长的色谱柱适合于分离含有很容易分离的溶质混合物,或者分离为数不多的溶质混合物,较短的柱长用于直径很小的色谱柱,以便降低柱头压力。 3. 当使用其他方法(小内径柱,不同的固定液,改变柱温)不能达到分离度时,就使用50-60m长的色谱柱。它最适合于分离含有多组分的复杂混合物,长柱需要的分离时间长,费用也高。 四、色谱柱膜厚的选择 1. 0.18-0.32mm内径的色谱柱,其平均或标准膜厚在0.18-0.25μm,用于绝大多数的分析。 2. 0.45-0.53 mm内径的色谱柱,其平均或标准膜厚在0.18-1.5μm,用于绝大多数的分析。 3. 厚液膜色谱柱用于保留和分离挥发性物质(如轻溶剂,气体)。厚液膜色谱柱有更高的惰性,其柱容量也高;但厚液膜色谱柱具有较高流失性,使用温度上限也有所下降。 4. 薄液膜色谱柱用于降低高沸点物质和高分子量物质(如甾体,三甘油酸酯)的保留时间,并具有低流失性的特点;但薄液膜色谱柱的惰性较差,且柱容量较低。

毛细管气相色谱法

毛细管气相色谱法条件及定量分析 指导老师:李建国 实验人:王壮 同组实验:陆潇、戈畅 实验时间:2016.4.18 一、实验目的 1.熟悉色谱分析的原理及色谱工作站的使用方法; 2、掌握气相色谱仪操作方法与氢火焰离子化检测器的原理; 3.用保留时间定性;用归一化法定量;用分离度对实验数据进行评价。 二、实验原理 不同组分在同一分离色谱柱上,在相同实验条件下有不同的保留行为,其保留时间的差异可以用来定性分析,每一组分的质量与相应色谱峰的积分面积成正比,因此可以公式计算,用归一化方法测定每一组分的质量百分含量。 1122100A is i i A A A s s ns n f A w f A f A f A =?++???+% 本实验是用气相色谱测定乙酸乙酯、乙酸丁酯及其混合试样,检测器用FID 。用色谱软件进行谱图处理和定量计算,让学生掌握用已知物对照定性、用归一化法测定混合物组分定量的实验。 混和试样的成功分离是气相色谱法定量分析的前提和基础,衡量一对色谱峰分 离的程度可用分离度:12121()2 R R t t R W W -=?+,式中1R t 、2R t 和1W 、2W 分别指两组分的保留时间和峰底宽度,R=1.5时两组分完全分离,实际中R=1.0(分离度98%)即可满足要求。 三、仪器与试剂 仪器:GC7890F 型气相色谱仪、氢火焰离子化检测器(FID )、氮气钢瓶、空气钢瓶、氢气发生器,微量注射器、3mm x 200cm 的10% SE-54不锈钢分离柱。GC5400型气相色谱仪、空气发生器、氮气发生器、氢气发生器,微量注射器、15m 毛细管分离柱。 试剂:乙酸乙酯、乙酸丁酯标准试样及其未知混合试样。 四、实验内容 1.按操作说明书使色谱仪正常运行,并调节至如下条件: 柱温:110C ? 检测器温度:120C ? 气化温度:120C ? 载气、氢气和空气流量分别为30、50和200mL/min 。 2.分别改变柱温至80、90、100、110、120C ?。每改变一次柱温,注入0.5L μ混合酯试样,记下保留时间,观察其出峰顺序和分离情况。

色谱分析法实验实验一填充柱气相色谱进样技术练习一实验目的

色谱分析法实验 实验一填充柱气相色谱进样技术练习 一、实验目的 1、熟悉填充柱色谱仪进样系统结构。 2、掌握微量注射器的使用方法。 3、练习进样技术。 二、仪器与试剂 1、仪器气相色谱仪一台,上海分析仪器厂。 2、试剂甲乙酮、环已烷、苯,均为色谱纯或优级纯。 三、实验步骤 1、色谱条件柱2 mX3mm不锈钢柱,载体:硅烷化白色载体(60—80目)固定液,DNP,配比:20:100, 柱温90℃,捡测器温度了90℃,气化室温度:130℃, 氢火焰离子化检测器。 2.操作: (1) 调整仪器,使其正常运行 (2) 用1μl注射器分别取0.1μl三种纯物质,多次进样, 观察同一物质相同进样量情况下色谱峰重现性。 (3) 将三种物质按一定比例混合,制成混合样,用10μl 注射器进样0.2μl ,多次进样观察每次进样时色谱

峰重现情况。 四、问题讨论 1、为什么有时同一样品同一进样量时色谱峰形(如峰高)不同? 2.为什么有时进样后不出峰? 五、注意事项 1、一取好样后应立即进样,进样时整个动作应稳当、连贯、 迅速。 2、硅橡胶密封垫圈在几十次进样后容易漏气,需及时更换。 实验二有关色谱参数的测试及计算 一、目的要求 1、通过本实验基本色谱参数的测试与计算,定量地了解溶 质组分在色谱柱过程中热力学和动力学作用的量度。 2.理解各色谱参数的意义及其相互关系。 3、通过本实验进一步掌握柱效、柱选择性、分离能力、 保留值等性质,使之能选择出最佳色谱操作条件,得到 可靠的定性,定量结果。 二、基本原理 在规定的色谱条件下,测定惰性组分的死时间(tM)及被测组分的.保留时间(tR)、半高峰宽(wh/2)及峰宽(w)等参 数,便可计算出基本色谱参数值。 三、仪器与试剂 1 仪器气相色谱仪一套,色谱柱2000mmX3mm一支, FID检测器;微量注射器(5—10μl)一支。 2 试剂甲烷(自制),正己烷,正庚烷,正辛烷,乙酸正丁酯,102白色载体(60—80目);Apienzon—L; 石油醚(低沸程馏分);DNP,乙醚,二氯甲烷。 四、实验步骤 1.联结好仪器系统,检查并排除故障至正常工作状态。 2.制备填充色谱柱: (1)Apienzon-L柱:经计算称取适量102白色硅烷化载 体(60–- 80目)和ApienzonlL油酯(以5%重量比计),用 CH2Cl2将其溶解并均匀地涂渍在载体上,挥发溶剂至 干。负压装柱至均匀满口,按老化程序老化好待用。 (2)DNP柱:以15%重量比计算称取DNP足量,用

毛细管气相色谱法

毛细管气相色谱法条件及定量分析 指导老师:李建国 实验人:王壮 同组实验:陆潇、戈畅 实验时间:2016.4.18 一、实验目的 1.熟悉色谱分析的原理及色谱工作站的使用方法; 2、掌握气相色谱仪操作方法与氢火焰离子化检测器的原理; 3.用保留时间定性;用归一化法定量;用分离度对实验数据进行评价。 二、实验原理 不同组分在同一分离色谱柱上,在相同实验条件下有不同的保留行为,其保留时间的差异可以用来定性分析,每一组分的质量与相应色谱峰的积分面积成正比,因此可以公式计算,用归一化方法测定每一组分的质量百分含量。 1122100A is i i A A A s s ns n f A w f A f A f A =?++???+% 本实验是用气相色谱测定乙酸乙酯、乙酸丁酯及其混合试样,检测器用FID 。用色谱软件进行谱图处理和定量计算,让学生掌握用已知物对照定性、用归一化法测定混合物组分定量的实验。 混和试样的成功分离是气相色谱法定量分析的前提和基础,衡量一对色谱峰分 离的程度可用分离度:12121()2 R R t t R W W -=?+,式中1R t 、2R t 和1W 、2W 分别指两组分的保留时间和峰底宽度,R=1.5时两组分完全分离,实际中R=1.0(分离度98%)即可满足要求。 三、仪器与试剂 仪器:GC7890F 型气相色谱仪、氢火焰离子化检测器(FID )、氮气钢瓶、空气钢瓶、氢气发生器,微量注射器、3mm x 200cm 的10% SE-54不锈钢分离柱。GC5400型气相色谱仪、空气发生器、氮气发生器、氢气发生器,微量注射器、15m 毛细管分离柱。 试剂:乙酸乙酯、乙酸丁酯标准试样及其未知混合试样。 四、实验内容 1.按操作说明书使色谱仪正常运行,并调节至如下条件: 柱温:110C ? 检测器温度:120C ? 气化温度:120C ? 载气、氢气和空气流量分别为30、50和200mL/min 。 2.分别改变柱温至80、90、100、110、120C ?。每改变一次柱温,注入0.5L μ混合

毛细管色谱柱知识

毛细管气相色谱简单知识 一、毛细管柱与填充柱的区别 与填充柱相比,毛细管柱的特点为: 1.分离效能高 2.分析速度快 3.样品用量少 可在几十分钟内分离出包含几百种化合物的汽油馏分,然而样品用量仅有数微克在快速分析方面,可在几秒钟内分离含十几个组份的样品。 其独特的特点在于: 渗透性大,分析速度快 传质阻力小,可用长柱,并得高的总柱效。 色谱动力学认为:填充柱可看作是一束长毛细管的组合,其内径约等于粒子粒度,因其弯曲,多径扩散严重,故理论板数少。 毛细管柱完全没有这些缺陷,故理论板数可高大106数量级。 用毛细管柱,有利于: 提高色谱分离能力, 加快色谱分析速度, 促进色谱的应用都是十分必要的: 二、毛细管色谱法的相关理论 在毛细管柱,柱内只有一个流路,故多径项2ldp为0,弯曲因子g=1,且用其液膜厚代替了填充柱中载体的颗粒直径dp。 2.毛细管柱的最小理论板高 毛细管柱的H—U图也是一个双曲线,在U值是最佳值时,H值最小。 式中Cg、C1的大小取决于分配系数及柱的几何性(以相比β为代表),但一般毛细管柱液膜薄,β值较大,液相传质阻力C1项不起控制作用。 当被测物质的k﹥10时,如果每米理论板数大于1000/d时,则所用柱子的性能较好 表中为K值很大时最好柱效(每米板数)值,其值由H/L = 1000 / d 一般认为直径在0.1—0.7mm较好 小于0.1mm,入口压力增加,柱负荷减少 大于0.7mm,虽柱负荷增大,但柱效下降 目前流行0.53mm的大口径管,不必分流。 3.载气线速 从速率方程可知,最小板高时的最佳线速为: 如果Cl很小,则有: 可见,细管径,轻载气更适合于快速分析。 4.样品容量 一根色谱柱的最大允许进样量,约为一块理论板的有效体积。 可见最大允许进样量与柱半径、柱长、分配比成正比,与塔板数成反比 比较填充柱和毛细管柱的柱容量 一根长20米,内径为0.25毫米的毛细管柱,一般可涂上6 mg的固定液,柱内体积 而一根长两米,内径3毫米的不锈钢填充柱,柱内体积 按12:100的液载比,可涂上800mg固定液。 可见,一根2米长的填充柱中固定液的含量是一根20米长毛细管柱中固定液含量约150倍,故允许进样量也在一百倍以上。

气相色谱柱填充柱,毛细管柱

第二章气相色谱柱 第一节气相色谱柱的类型 气相色谱法(gas chromatography, 简称GC)亦称气体色谱法,气相层析法。其核心即为色谱柱。 气相色谱柱有多种类型。从不同的角度出发,可按色谱柱的材料、形状、柱内径的大小和长度、固定液的化学性能等进行分类。色谱柱使用的材料通常有玻璃、石英玻璃、不锈钢和聚四氟乙烯等,根据所使用的材质分别称之为玻璃柱、石英玻璃柱、不锈钢柱和聚四氟乙烯管柱等。在毛细管色谱中目前普遍使用的是玻璃和石英玻璃柱,后者应用范围最广。对于填充柱色谱, 大多数情况下使用不锈钢柱,其形状有U型的和螺旋型的,使用U 型柱时柱效较高。按照色谱柱内径的大小和长度,又可分为填充柱和毛细管柱。前者的内径在24mm,长度为110m左右;后者内径在,长度一般在25100m。在满足分离度的情况下,为提高分离速度,现在也有人使用高柱效、薄液膜的10m短柱。 根据固定液的化学性能,色谱柱可分为非极性、极性与手性色谱分离柱等。固定液的种类繁多,极性各不相同。色谱柱对混合样品的分离能力,往往取决于固定液的极性。常用的固定液有烃类、聚硅氧烷类、醇类、醚类、酯类以及腈和腈醚类等。新近发展的手性色谱柱使用的是手性固定液,主要有手性氨基酸衍生物、手性金属配合物、冠醚、杯芳烃和环糊精衍生物等。其中以环糊精及其衍生物为色谱固定液的手性色谱柱,用于分离各种对映体十分有效,是近年来发展极为迅速且应用前景相当广阔的一种手性色谱柱。 在进行气相色谱分析时,色谱柱的选择是至关重要的。不仅要考虑被测组分的性质,实验条件例如柱温、柱压的高低,还应注意和检测器的性能相匹配。有关内容我们将在以后章节中加以详细讨论。 第二节填充气相色谱柱 填充气相色谱柱通常简称填充柱,在实际分析工作中的应用非常普遍。据资料统计,日常色谱分析工作大约有80%是采用填充柱完成的。填充柱在分离效能和分析速度方面比毛细管柱差,但填充柱的制备方法比较简单,定量分析的准确度较高,特别是在某些分析领域(例如气体分析、痕量水分析)具有独特用途。从发展上看,虽然毛细管柱有逐步取代填充柱的趋势(例如已有一些日常分析使用PLOT柱代替过去常用的气固色谱填充柱),但至少在目前一段时期内,填充柱在日常分析中仍是一种十分有价值的分析分离手段。

常用毛细管色谱柱对应表

常用毛细管色谱柱对应表

毛细管柱应用范围及使用温度 一、 SPB-1型非极性柱(键合,聚二甲基硅氧烷) 对照品牌:HP-1,DB-1,BP-1,CP-SIL 5CB,UItra-1,007-1,RTx-1,AT-1 类似固定相:SE-30,SP-2100,OV-1,OV-101

使用温度:-60℃-320℃ 应用范围:烷烃,芳烃,多环芳烃,醇,酚,酮,酯,醛,胺,卤代烃,吡啶,糖衍生物,氨基酸衍生物,维生素衍生物,镇痛药,农药,溶剂,胆固醇,香料,咖啡,食品添加剂等 二、SPB-5型弱极性柱(键合,5%苯基,95%甲基聚硅氧烷) 对照品牌:HP-5,DB-5,BP-5,CP-SIL 8CB,UItra-2,007-2,RTx-5,AT-5 类似固定相:SE-54,SE-52,OV-73 使用温度:-60℃-320℃ 应用范围:烷基苯,多环芳烃,醇,酚,酮,脂肪酸酯,苯二甲酸酯,硝基芳烃,芳胺,烷基胺,联苯胺,卤代烃,多氯联苯,糖类衍生物,维生素衍生物,有机酸,镇痛药,农药,抗组胺药,溶剂,生物碱,防腐剂,香料等 三、 SUPELCOWAX 10型极性柱(键合,聚乙二醇二万) 对照品牌:HP-Wax,DB- Wax,BP-20,CP- Wax 52CB,HP-INNO Wax,AT- Wax 类似固定相:PEG-20M,CARBOWAX-20M

使用温度:35℃-280℃ 应用范围:低沸点芳烃,醇,酮,酯,醛,醚,乙二醇,丙二醇,甘油,吡啶,胺,亚硝胺,卤代烃,胆汁酸衍生物,冰片,薄荷,精油,香料,酒,苯乙烯,茶,溶剂等 四、 SPB-50型中等极性柱(键合,50%二苯基,50%二甲基聚硅氧烷) 对照品牌:HP-50,HP-17,DB-17, 007-17,RTx-50,AT-50 类似固定相:OV-17,SP-2250 使用温度:30℃-310℃ 应用范围:烷烃,低沸点芳烃,多环芳烃,醇,甘油三酸酯,喹啉,卤素化合物,精油,香料,农药,酯,镇痛药,除草剂等 五 SPB-1701型中等极性柱(键合,14%氰丙基,86%二甲基聚硅氧烷) 对照品牌:HP-1701,DB-1701, 007-1701,RTx-1701,AT-1701,BP-10,CP-Sil 19CB 类似固定相:OV-1701,SP-2250 使用温度:室温-280℃

填充柱气相色谱

第五章填充柱气相色谱 色谱柱又称分离柱,是填充了色谱填料的内部抛光不锈钢柱管或塑料柱管。色谱柱是实现分离的核心部件,要求色谱柱的柱效高、柱容量大和性能稳定。分析型色谱柱的内径通常在4~8mm,柱长通常在50~250mm。液相色谱填充柱内径通常在3~5mm,典型的柱内径是4mm。气相色谱中所用毛细管柱的内径一般小于1mm。微型柱是内径在1mm左右的填充型色谱柱,通常用于高灵敏的微量成分分离。因为气相色谱的载气种类少,分离选择性主要依靠选择固定相。色谱峰能否分离,首先取决于固定相,迄今已有数百上千种气相色谱固定相,常用的不过十几种。 第一节气-固色谱固定相-固体固定相 气—固色谱法广泛应用于永久气体和低沸点烃类的分析。常用的固定相种类有非极性的活性炭,弱极性的氧化铝,极性的分子筛,氢键型硅胶等。 气-固色谱与气-液色谱相比,有许多特点及不同之处,见表5-1。气固色谱适合于分析永久气体,气态烃;热稳定性好,柱温上限高;一般情况下,吸附等温线不成线性,峰不对称;由于固定相表面结构不均匀,所以重现性不好。 吸附等温线 气—固色谱法遵循了气体在吸附剂表面上的吸附规律。气体在吸附剂表面上的吸附平衡可用“吸附等温线”来描述。吸附等温线是在一定温度下气体在吸附剂表面上的浓度随气体在气相中的变化规律。就是在一定温度下达吸附平衡时气体在吸附剂表面上的吸附量。 (1)线性吸附等温线 如图5-1的(A)所示,被测组分在吸附剂上的浓度(Cs)与它在气相上的浓度(Cm)之比是常数,这就是线性吸附等温线,所对应的色谱峰是对称的高斯峰。 (2)朗格缪尔吸附等温线(向下弯曲的吸附等温线) 朗格缪尔吸附等温线如图5-1的(B)所示,它的特点是当气相中被吸附物质的浓度高于M时,吸附剂上的吸附量不随气相中物质浓度的增加而增加,即Cs/Cm不成常数,所对应的色谱峰是不对称的“拖尾峰”。 (3)向上弯的吸附等温线

毛细管色谱柱的用途

内径:0.25、0.32、0.53mm 长度:15、25、30、50、60m 膜厚:0.25、0.33、0.5、1.00、2.65、5.0um 注:长度、膜厚用户可定制。 SE-30毛细管色谱柱 二甲基聚硅氧烷 非极性固定相 适用于分析:碳氢化合物、农药、酚、胺等物质 类似于DB-1、BP-1、R7-1、SPB-1、RSL-1、CPSRL5、HP-1、GB-1 OV-1 毛细管色谱柱 类似于DB-1、BP-1、R7-1、SPB-1、RSL-1、CPSRL5、HP-1、GB-1 OV-101毛细管色谱柱 100%甲基聚硅氧烷 非极性固定相 适用于分析:碳氢化合物、氨基酸等物质 类似于DB-1、BP-1、R7-1、SPB-1、RSL-1、CPSRL5、HP-1、GB-1 SE-54/SE-52毛细管色谱柱 5%苯基-95%甲基聚硅氧烷 非极性固定相 适用于分析:碳氢化合物、多核芳烃、酚、酯、药物胺等物质 类似于DB-5、BP-5、SPB-5、GC-5、007-2、HP-5、RSL-200 OV-1301毛细管色谱柱 6%氰丙基苯基-94%二甲基聚硅氧烷 中极性固定相 类似于HP-1301 PEG-20M 毛细管色谱柱 聚乙二醇-2M 极性固定相 适用于分析:酸、醇、醛、酯、甘醇等物质 类似于HP-20M、DB-WAX、007-20M FFAP 毛细管色谱柱 聚乙二醇TPA 极性固定相 适用于分析:酸、醇、醛、酯、酮、腈等物质 类似于HP-FFAP、BP-21、SP-1000 OV-1701 毛细管色谱柱 7%氰丙基-7%苯基-86%甲基聚硅氧烷 中极性固定相 适用于分析:药物、醇、酯、硝基苯类、除莠剂物质 类似于BP-10、DB-1701、RSL-1701、CPSIL19CB、HP-1701 OV-17毛细管色谱柱 50%苯基-50%甲基聚硅氧烷 中极性固定相 适用于分析:农药、药物等物质

毛细管气相色谱

毛细管气相色谱 一、毛细管柱与填充柱的区别 ◆与填充柱相比,毛细管柱的特点为: 1.分离效能高 2.分析速度快 3.样品用量少 可在几十分钟内分离出包含几百种化合物的汽油馏分,然而样品用量仅有数微克 在快速分析方面,可在几秒钟内分离含十几个组份的样品。 ◆其独特的特点在于: ◇渗透性大,分析速度快 ◇传质阻力小,可用长柱,并得高的总柱效。 ◇色谱动力学认为:填充柱可看作是一束长毛细管的组合,其内径约等于粒子粒度,因其弯曲,多径扩散严重,故理论板数少。 毛细管柱完全没有这些缺陷,故理论板数可高大106数量级。 ◆用毛细管柱,有利于: ⊙提高色谱分离能力, ⊙加快色谱分析速度, ⊙促进色谱的应用都是十分必要的: 二、毛细管色谱法的相关理论 ◆在毛细管柱,柱内只有一个流路,故多径项2λdp为0,弯曲因子γ=1,且用其液膜厚代替了填 充柱中载体的颗粒直径dp。 2.毛细管柱的最小理论板高 ◆毛细管柱的H—U图也是一个双曲线,在U值是最佳值时,H值最小。 ◆式中Cg、C1的大小取决于分配系数及柱的几何性(以相比β为代表),但一般毛细管柱液膜 薄,β值较大,液相传质阻力C1项不起控制作用。 ◆当被测物质的k﹥10时,如果每米理论板数大于1000/d时,则所用柱子的性能较好 ◆表中为K值很大时最好柱效(每米板数)值,其值由H/L = 1000 / d ◆一般认为直径在0.1—0.7mm较好 小于0.1mm,入口压力增加,柱负荷减少 大于0.7mm,虽柱负荷增大,但柱效下降 ◆目前流行0.53mm的大口径管,不必分流。 3.载气线速

◆从速率方程可知,最小板高时的最佳线速为: ◆如果Cl很小,则有: 可见,细管径,轻载气更适合于快速分析。 4.样品容量 一根色谱柱的最大允许进样量,约为一块理论板的有效体积。 ◆可见最大允许进样量与柱半径、柱长、分配比成正比,与塔板数成反比 比较填充柱和毛细管柱的柱容量 一根长20米,内径为0.25毫米的毛细管柱,一般可涂上6 mg的固定液,柱内体积 而一根长两米,内径3毫米的不锈钢填充柱,柱内体积 按12:100的液载比,可涂上800mg固定液。 ◆可见,一根2米长的填充柱中固定液的含量是一根20米长毛细管柱中固定液含量约150倍,故允许进样量也在一百倍以上。 5、柱效能 ◆毛细管柱每米塔片数通常在2000-5000之间,长20米的毛细管柱总柱效为4万至10万。 ◆填充柱每米塔片数在1000-1500之间,长2米的填充柱的柱效为2000-3000 ★所以毛细管柱的总柱效可以比填充柱高10-100倍。 根据上式,分离度正比于总塔片数N。即毛细管柱色谱总效高,其分离效能也高。 如果柱效高,K值也大是最理想的,目前流行大孔厚膜毛细管柱可望具有这两重性质。 6、分析时间 ◆根据公式,样品的保留时间正比于柱长,在以氮为载气时,毛细管柱的线速可达16厘米/秒, 而填充柱在4厘米/秒 ◆毛细管柱可采用很高的载气线速来缩短保留时间。且毛细管柱的K值比填充柱小,因此保留 时间小。 ◆故:毛细管柱上可实现快速分析。 三、毛细管柱的色谱系统 ◆与填充柱系统基本一样。 ◆因毛细管柱内径细,柱容量小,出峰快、峰形窄,因此对色谱仪本身(如进样系统、检测器、 记录器等)有些特殊的要求。 1、进样系统 ◆毛细管柱进样量必须极小(一般液样10—2~10—3微升,气样约1微升)。

相关文档
相关文档 最新文档