文档库 最新最全的文档下载
当前位置:文档库 › 稀土对SAPO_11分子筛结构与性能的影响_张钺伟

稀土对SAPO_11分子筛结构与性能的影响_张钺伟

稀土对SAPO_11分子筛结构与性能的影响_张钺伟
稀土对SAPO_11分子筛结构与性能的影响_张钺伟

13x分子筛再生

水分、乙炔和二氧化碳都是极性或不饱和分子。分子筛对它们都有很强的亲和力。当使用一段时间后,需要对其进行再生,这样能保证其性能,13x分子筛哪家好?您可以选择安徽天普克环保吸附材料有限公司,下面小编为您介绍,希望能给您带来一定程度上的帮助。 分子筛的共吸附性能使它可以在吸水的同时还可以吸附其他物质,这种亲和力的顺序是:水分>乙炔>二氧化碳。由于是共吸附,势必会使分子筛对每种组分的吸附容量减小。在出吸附剂床层的空气中很快会出现甲烷(CH4)和乙烷(C2H6),接着乙烯(C2H4)和丙烷 (C3H8)几乎与二氧化碳同时在出吸附剂层的空气中出现;以后才依次出现乙炔(C2H2)、丙烯(C3H6)、丁烷(C4H10) 和丁烯(C4H8)。

由于分子筛吸附器的工作周期必须在出口空气中出现二氧化碳之前结束,即切换,空分装置一般配置两台纯化器,正常工作时,一台吸附,吸附时间一般为3小时左,吸附压力为0.5mp,另一台再生,压力为0.005mp,温度为150℃,两台交替运行。这表明乙炔、丙烯、丁烷和丁烯等杂质不能随空气进入空分设备冷箱内。在分 子筛吸附器的设计中,除选用性能好的吸附剂外,吸附剂的再生也不容忽视。即利用加热脱附原理,以出冷箱的污氮气作为再生载体,通过再生蒸汽加热器加热,完成再生。如果再生不完全,必定会影响下一个周期的吸附效率。若如此循环下去,最终将使吸附过程无法持续进行。为此系统配置了电加热器实施高温特殊再生,特殊再生时,

温度甚至高达300,来完成系统长周期运行或吸附剂受到意外污染吸附剂吸附能力下降,使其恢复正常吸附性能。 安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安徽合肥空港寿县新桥产业园投资建设生产基地。公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。 产品系列化、经营多元化,这些都是企业的发展方针,而OEM----更是公司多年的经营模式,并且得到广泛好评。我们的用户涉及石油、化工、冶金、汽车、空调、电子仪表等行业,我们的客户群不仅是在国内而且遍及东南亚、欧美等地。公司热忱欢迎国内外客商与我们真诚合作。我们将以精美的产品、可靠的技术、精益求精的服务满足广大客户的要求。 分子筛广泛用于制氧、炼油、化工化肥、医药、钢铁、冶金、酒精、玻璃行业,是气体、液体纯制、分离干燥的好的产品。安徽天普克环保吸附材料有限公司始建于2001年,已有18多年历史,产品有分子筛系列3A分子筛、4A分子筛、5A分子筛、lOX分子筛、13x 分子筛、K13X中空玻璃专用分子筛、变压吸附、富氧专用分子筛、活性氧化铝、瓷球等塔填料。

分子筛主要是吸收什么

近年来,沸石分子筛由于具有独特的性能,已经在吸附分离、催化等领域取得了广泛的应用。那么,分子筛主要是吸收什么?为此,安徽天普克环保吸附材料有限公司为大家总结了相关信息,希望能够为大家带来帮助。 (1)脱水。利用低硅铝比的沸石分子筛(如A型,X型等)的极性亲水性,可以进行空气的干燥。(2)净化空气中的污染物。随着工业的迅速发展,H2S、SO2、NOX以及甲醛的排放量日益增多,造成的污染给人们的生活和环境带来了严重的危害。 吸附分离领域的应用:(1)混合二甲苯的分离。混合二甲苯一般用作溶剂和汽油掺合剂廉价出售,资源浪费十分严重。但混合二甲苯的四个异构体:乙苯、对二甲苯、间二甲苯和邻二甲苯都是重要的化工原料,因此有必要将其逐一分离。(2)N2/ O2的分离。在变压吸附(PSA)法中,沸石分子筛是利用N2/O2两气体在其表面平衡吸附的差异,选择性地吸附N2。(3)提高汽油辛烷值。由于异构烷烃的辛烷值大大高于正构烷烃,因此利用吸附分离法可以脱除正

构烷烃。实际应用中一般将吸附分离与C5/C6烷烃异构化相配合,将通过吸附分离出来的正构烷烃进行异构化,从而更大程度的提高汽油的辛烷值。 催化领域的应用:沸石分子筛具有复杂多变的结构和独特的孔道体系,是一种性能优良的催化剂。ZSM- 5 与Y型沸石分子筛共同作用应用于FCC 反应,以获得较高产率的汽油、丙烯和丁烯。 安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安徽合肥空港寿县新桥产业园投资建设生产基地。公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。 二期工程将建成4000吨分子筛生产线。公司全面推行ISO9001质量管理体系,建有现代化的实验室和质量控制中心。现有工程技术人员20人,其中工程师8人。 产品系列化、经营多元化,这些都是企业的发展方针,而

17种稀土元素名称及用途

17种稀土元素名称及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce)"铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨. (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。 镨的广泛应用: (1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。

沸石的两种再生方法

沸石的两种再生方法 利用沸石的离子交换性能去除废水中氨氮并进行生物再生不仅具有处理效率高、节省再生药剂等优点,而且可以回收氮,在废水处理领域有着广泛的应用前景。沸石的生物再生实质上是化学和生物再生的结合,每一步都需优化。目前,沸石的生物再生还处于研究阶段,而运用于工程实际还需进一步研究: ①进一步优化沸石的生物再生工艺。克服由于溶解氧浓度较低而限制了硝化速率及污水中竞争性阳离子对沸石去除NH4+的干扰等问题。 ②在长期运行中,生物膜的存在是否会影响沸石的离子交换能力还需进一步考察。 一、沸石的化学再生 目前多采用湿法进行沸石的再生。研究后认为pH=12.5时的再生效果最好。推荐采用NaCl和NaOH的混合物作为再生盐,比单独使用NaCl可以减少90%的再生盐用量。而使用腐蚀性的再生液会对沸石造成一定的磨损。发现再生流速在4~20BV(bedvolume)/h时再生效果与流速无关。得出类似结果。发现采用0.34mol/L的NaCl再生液,再生流速为5BV/h,需再生4h;但流速提高到7BV/h时,只需1.4h。采用的负荷为150~180BV,再生间隔为12h。采用的方法为3h再生一次,负荷为80BV。推荐使用Ca(OH)2做为再生液,但认为钠离子比钙离子再生沸石更快,更有效。 二、生物再生 1、原理 所谓生物再生,实际上是化学再生和硝化菌硝化作用的结合。其优点是可以降低盐的消耗。实验结果表明,硝化速率和水中的NH4+浓度有关,而与沸石表面吸附的NH4+量无关,

同时水中NH4+浓度又会影响沸石表面NH4+的离子交换过程。其反应过程可用下式表示:[Z]NH4++NaHCO3←→[Z]Na++NH4++HCO3-(离子交换)NH4++2O2→NO3-+2H++H2O(总硝化反应)两个反应结合如下式:

稀土的性质及用途

立志当早,存高远 稀土的性质及用途 稀土元素系典型的金属元素,其金属活泼性仅次于碱金属和碱土金属。稀土元素的电子层结构和核结构决定了稀土元素及其化合物的性质,而稀土的许多独特性质,又决定着它们的应用。有关稀土的结构与性质的关系示于下表。经历了60 多年的开发,因提取工艺复杂,产品价格昂贵,发展速度缓慢,消费量也不大。20 世纪50 年代以后,稀土分离技术得到了迅速的发展,近代的离子交换法、溶剂萃取法取代了经典的分级结晶、分步沉淀法,并在工业生产中获得各种较纯的单一稀土产品,从而为稀土的应用奠定了基础。近十年,稀土广泛用于冶金、石油化工、玻璃陶瓷、新材料领域。 在冶金工业方面:稀土金属或氧化物、硅化物加入钢中,能起到精练、脱硫、中和低熔点有害质的作用,并可以改善钢的加工性能;稀土铁合金、稀土硅镁合金作为球化剂生产稀土球墨铸铁,由于这种球墨铸铁特别适用于生产有特殊要求的复杂球铁件,被广泛用于汽车、拖拉机,柴油机等机械制造业;稀土金属添加至镁、铝、铜、锌、镍等有色合金中,可以改善合金的物理化学性能,并提高合金室温及高温机械性能。 在石油化工方面:用稀土制成的分子筛催化剂,具有活性高、选择性好,抗重金属中毒能力强的优点,因而取代了硅酸铝催化剂用于石油催化裂化过程;在合成氨生产过程中,用少量的硝酸稀土为助催化剂,其处理气特比镍铝催化剂大1.5 倍;在合成顺丁橡胶和异戊橡胶过程中,采用环烷酸稀土-三异丁基铝型催化剂,所获得的产品性能优良,具有设备挂胶少,运转稳定,后处理工序短等优点;复合稀土氧化物还可以用作内燃机尾气净化催化剂,环烷酸铈还可用作油漆催干剂等。 在玻璃陶瓷方面:稀土氧化物或经过加工处理的稀土精矿,可作为抛光粉广

分子筛更换方案

涠洲作业区技能竞赛操作工工艺方案试题 一、涠洲终端轻烃回收系统工艺流程介绍 来自原油处理系统的生产分离器、电脱水罐、原油稳定罐和稳定塔的未凝气经脱硫厂脱出硫化氢后经过中压机一级进口分离器V-B01分离出未凝气中所含的液体,液体排到含油污水处理系统处理,气体进入压缩机C-B02经一级增压和水冷器HE-B03冷却后,天然气中的部分重烃就在二级进口分离器V-B04中分离出来,气体再经过二级压缩和水冷器HE-B06冷却后,在二级出口分离器V-B07中全部C5以上重烃以及部分C3和C4组分都被冷凝下来。出口分离器V-B07分离出来的气体进入脱水单元与海管气会合。二级进口分离器V-B04A/B和二级出口分离器V-B07这三个分离器中分离出来的重烃经过重烃预热器HE-B08加热到60O C后在重烃闪蒸罐V-B09中闪蒸,然后用进料泵将闪蒸后的重烃打到分馏单元的脱丁烷塔进行处理。 海上油田来的天然气经8”海管上岸后进入收球器PR-B29和捕集器V-B30A,在捕集器中分离出凝析液,凝析液排到原油处理系统进行处理。从捕集器出来的天然气进入预分离器V-B31进一步脱出天然气中的液体和水分,然后进入分子筛V-B32A/B脱水,再经粉尘过滤器FT-B33过滤出天然气中的杂质,天然气被送到冷分离系统。分子筛有两个,一个脱水,一个再生,脱水时天然气从顶部进底部出,再生时再生气从底部进顶部出。两个分子筛交替进行脱水和再生。从粉尘过滤器出来的一小股天然气(2600m3/h)经过再生气加热炉HE-B36升温到300O C后作为再生气对分子筛进行再生,再生气从分子筛底部进顶部出,饱含水蒸气的再生气经水冷器HE-B34冷却后进入再生气分离器V-B35脱出水分后再生气送到配气站作为透平机组的用气。 经脱水干燥后的天然气分两股进入预冷冷箱HE-B37和HE-B38,进入HE-B38的天然气与脱乙烷塔出来的乙烷干气换热,把乙烷气体加热到20O C,同时天然气本身得到预冷,进入HE-B38的天然气流量以满足乙烷干气的加热温度要求,用温度控制器TI-B381来控制HE-B38的流量,其余的大部分天然气全部进入HE-B37与膨胀机出来的干气换冷,这两股气体会合,温度被冷却到4O C,一起进入丙烷蒸发器HE-B39,经丙烷制冷系统进行制冷,温度冷却到-34O C后大部分C3和C4以上组分被冷凝下来,在一级低温分离器V-B40中进行气液分离,液体进入脱乙烷塔,气体再进入二级低温分离器HE-B41与膨胀机出来的干气换冷,进一步冷却到-61O C后全部C3以上组分及大部分C2组分都被冷凝下来,在二级低温分离器V-B42中进行气液分离,分离出来的液体进入脱乙烷塔,气体经膨胀压缩机的膨胀端节流膨胀做功,温度进一步下降,低温甲烷干气为二级换热器和一级换热器提供冷量换冷后进入膨胀压缩机的压缩机端增压至0.5MPa后送到配气站。 从冷分离单元的一级和二级低温分离器中来的液体分两股进入脱乙烷塔,再脱乙烷塔中分馏出乙烷干气,乙烷干气经板式换热器HE-B38与原料气换热把温度升高到20O C作为再生气和透平用气。脱出乙烷干气后的液体进入脱丁烷塔进一步处理。 脱乙烷塔为填料塔,塔内分为4段,内装填料,有两个进料口,塔底为收液段,塔底液体大部分进入塔底重沸器HE-B47,在重沸器中被热介质油加热,加热后形成气液混合体进入塔底,这样形成对流流动,液体不断被加热,轻组分被蒸发出去向上流动,为脱乙烷塔提供塔底操作温度,在塔中液体向下流过逐步被加热,产生的气体向上流向塔顶,使轻组分被蒸发出来,通过气体向上,液体向下,在填料层中进行逆向传质,达到气液分离的目的。脱乙烷塔保证一定的液位,以保证热虹吸式重沸器能够形成对流既可。来自原油稳定塔和中压单元的重烃闪蒸罐的液态烃在进入脱丁烷塔前先与塔底轻油换热使进料得到预热后从另一个进料口进入脱丁烷塔。塔中蒸发出来的C3和C4组分从塔顶出来,经水冷器HE-B54冷凝下来积蓄在塔顶回流罐V-B55中,回流罐中的液态烃即为液化气,一部分作为回流泵回到塔顶,为塔顶产品提供冷量,另一部分作为液化气产品泵到液化气储罐。 脱丁烷塔也为填料塔,塔内分为3段,内装填料,有两个进料口,在塔中液体向下流过逐步被加热,产生的气体向上流向塔顶,液体大部分进入塔底重沸器HE-B49,在重沸器中被热介质油加热,加热后形成气液混合体进入塔底,这样形成对流流动,液体不断被加热,轻组分被蒸发出去向上流动,为脱丁烷塔提供塔底操作温度。通过气体向上,液体向下,在填料层中进行逆向传质,达到气液分离的目的。脱丁烷塔保证一定的液位,以保证热虹吸式重沸器能够形成对流循环只可,经过液位控制阀流排出进入未稳定轻烃闪蒸罐V-B50,闪蒸出来的未凝气经水冷器冷却后进入原油储运系统,稳定轻烃经与进料换热后再经水冷到轻烃储罐。 各压力容器的安全泄压都是到火炬

分子筛的主要特性

分子筛的主要特性 1、物理特性: 比热:约0.95KJ/KgXK(0.23Kcal/KgX℃ 导热系数(脱水物):2.09KJ/MXK(0.506Kcal/mX℃ 水吸附热:约3780KJ/Kg(915Kcal/Kg) 2、热稳定性和化学稳定性: 分子筛能承受600—700℃的短暂高温,但再生温度一般在400℃以下。分子筛可在PH值5-10范围的介质中使用;在盐溶液中能交换某些金属阳离子。 3、基本特性: a)分子筛对水或各种气,液态化合物可逆吸附及脱附。 b)金属阳离子易被交换。 c)分子筛内部空腔和通道形成非常高的内表面积。其内表面可高于分子筛颗粒的外表面积的10000-100000倍。 分子筛的选择吸附特性: 1、根据分子大小和形状的不同选择吸附——分子筛效应 分子筛晶体具有蜂窝状的结构,晶体内的晶穴和孔道相互沟通,并且孔径大小均匀,固定(分子筛空腔直径一般在6—15埃之间),与通常分子的大小相当,只有那些直径比较小的分子才能通过沸石孔道被分子筛吸附,而构型庞大的分子由于不能进入沸石孔道,则不被分子筛吸附。而硅胶,活性氧化铝和活性碳没有均匀的孔径,孔径分布范围十分宽广,所以没有筛分性能。 2、根据分子极性,不饱和度和极化率的选择吸附 分子筛对于极性分子和不饱和分子有很高的亲和力;在非极性分子中,

对于极化率在的分子有较高的选择吸附优势。此外,沸点越低的分子,越不易被分子筛所吸收。 分子筛的高效吸附特性: 分子筛对于H2O、NH3、H2S、CO2 等高分子极性具有很高的亲和力,特别是对于水,在低分压(甚至在133帕以下)或低浓度,高温(甚至在100℃以上)等十分苛刻的条件下仍有很高的吸附容量。 1、低分压或低浓度下的吸附 在相对湿度30% 时分子筛的吸水量比硅胶,活性氧化铝都高。随着相对湿度的降低,分子筛的优越性越发显著,而硅胶,活性氧化铝随着湿度的增加,吸附量不断增加,在相对湿度很低时,它们的吸附量很少。2、高温吸附 分子筛是唯一可用的高温吸附剂。在100 ℃和1.3 %相对湿度时分子筛可吸附15%重量的水分,比相同条件下活性氧化铝的吸水量大10倍;而比硅胶大20倍以上。所以在较高的温度下,分子筛仍能吸附相当数量的水分,而活性氧化铝,特别是硅胶,大大丧失了吸附能力。 3、高速吸附 分子筛对像水等极性分子在分压或浓度很低时的吸附速率要远远超过硅胶,活性氧化铝。虽然在相对湿度很高时,硅胶的平衡吸水量要高于分子筛,但随着吸附质的线速度的提高,硅胶的吸水率越来越不如分子筛效率高。 分子筛的离子交换性 分子筛的一个重要性能是可以进行可逆的离子交换。通过这种交换,改进了分子筛的吸附和催化性能,从而获得了广泛的应用(如可用于软化水和废水处理)。

各种稀土元素的应用领域

各种稀土元素的应用领域 镧(La):镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce):1,铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。2,目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。3,硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。4,Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr):1,镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉

混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。2,用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。3,用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。4,镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。 钕(Nd):钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代"永磁之王",以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。

分子筛特殊再生

分子筛特殊再生 一、特殊再生的目的; 在下述情况下必须进行特殊再生。 1、容器R01/R02刚充填分子筛和氧化铝。 2、分子筛受到意外的污染。 3、分子筛在大气恶劣地区使用七~八年以后,吸附效率下降。 特殊再生的主要目的就是通过高温(290℃)再生除掉分子筛内的残余水分,此操作的最终结果是为了提高分子筛的吸附效率。 二、特殊再生的必要性 分子筛纯化系统作为空分设备的关键系统之一,其运行效果不佳,直接影响着空分设备的运行负荷;更何况分子筛纯化系统还是空分设备安全生产的重要保障。 但是目前,随着分子筛长周期的运行,部分分子筛失活。到了夏季,分子筛入口空气含湿量大,分子筛吸附负荷大。如遇到环境CO2含量偏高,就很容易发生穿透。这样,频繁穿透,给生产稳定造成很大的影响。 更严重的是,随着CO2的穿透,一些烃类也会通过分子筛进入主塔,积累聚集,给安全带来很大的隐患。 因此,针对本装置运行情况,需要对分子筛进行特殊再生,使得分子筛再次活化,保证吸附效果,确保生产安全。 三、特殊再生的操作: 1、汽轮机C01D已投用。 2、HCV1027、HV1296A/B、HV1215、加温总阀,在空压机C01升压前全部关 闭。 3、空压机C01升压至465~470Kap、流量265000Nm3/h左右,增压机C02不 加载。 4、预冷投用,控制E07出口温度小于21℃。适当打开HCV027,降低E60水 温。

5、慢开HV1215,同时调整PIC1213至FI1213:45000Nm3/h左右。(FILL1213: 8000Nm3/h) 6、投用E08。缓慢打开HCV1027降低E60水温。 7、E09送电,检查无故障。 8、纯化器吸附总时间210分钟,以及出口温度TI1247A/B 180℃要解除。 9、纯化器再生加热时程序切手动,再生气先从HV1240、E08走,把TI1247A/B 入口温度升至150℃,大约5小时后,出口温度TI1223/TI1224到达100℃以上,可以转E09特殊再生。 10、缓慢打开VNR031C、缓慢关闭HV1240,同时将HV1215关一些,依据 PI1213压力及FI1213流量。当PDI1218阻力足够高时(PDIL1218:4.0kpa、PDILL1218:2.8kpa),将E09投入使用,根据TI1247A/B情况合上HS1218A/B/C/D/E/F。E09六组电加热器的投用与经过E09的再生气量,有很大关系,量大投多、量少投用少,以TI1240温度决定。一般15分钟投一组。投用5组,第6组根据TI1240情况决定开关,290℃开、305℃停。 投用5组加热器,加温气量控制在16600Nm3/h为宜。(要增加加温气流量可以在程序里面强制打开KV1209/KV1210,加温结束时关闭。) 11、E09内部温度大于350℃,电加热器跳停。E09在投用过程中如跳停,必须 到现场按复位按钮(RESET),然后中控再复位(HS1218A/B/C/D/E/F),待允许启动才能投用。E09跳停后投用时先不要超过3组电加热器,再根据温度依次投电加热器。 12、特殊再生过程中AI1258一定要往下(含水分析)。由于水的沸点在100℃, 所以特殊再生时R01/R02出口温度在100℃时停留时间较长(大约7~8小时),一旦过100℃后,出口温度上升加快。(加热时间一般在20小时左右,其中纯化器入口温度TI1247A/B在275℃以上大约8~9小时,最高出口温度大于180℃)。 13、当加热完成后,毎10分钟停一组E09加热器,待TI1240温度下降到180℃ 以下。缓慢关闭VNR031C,打开HV1240,转为正常加温,其间注意PI1213压力变化。把HV1242手动关闭(关气源阀也可),手动步进对吸附器进行冷吹。当TI1223/TI1224温度足够低,温差小于5℃时冷吹结束。(冷吹时流

稀土超稳Y型分子筛催化裂化催化剂的研究_孙书红

稀土超稳Y型分子筛催化裂化催化剂的研究 孙书红 庞新梅 郑淑琴 张忠东 (兰州炼化公司石化研究院,兰州730060) 摘要 针对我国FCC汽油辛烷值偏低及FCC装置剂油比难以提得很高的现状,兰州炼化公司石化研究院开发了稀土超稳Y型裂化催化剂,在实验室对NaY分子筛的稀土改性制备工艺、稀土与磷对催化剂性能的影响进行了考察。结果表明,提高稀土含量可以提高催化剂活性,但超过一定量则会降低汽油的M ON;改性可使B/L酸比例提高,同时改善催化剂的活性、稳定性及抗磨性能。制备的REUSY催化剂,具有活性高、干气和焦炭选择性好、裂化汽油辛烷值较高的特点。 关键词:Y型分子筛 裂化催化剂 稀土 磷 制备 性能 1 前 言 我国FCC汽油总量占商品汽油的70%以上,但FCC汽油辛烷值偏低,同时,目前的FCC装置特别是早期设计的装置,存在剂油比难以提得很高的问题,因此,开发稀土超稳Y(REUSY)型分子筛催化裂化催化剂,对提高FCC汽油辛烷值,适应环保法规和新配方汽油的要求具有重大意义。 NHSY分子筛是采用化学脱铝与水热处理相结合的方法制备的高硅Y型分子筛,该分子筛具有结构铝空位少、铝分布均匀、二次孔结构发达和热稳定性较高的特点。本工作对NHSY分子筛进行稀土改性,制得RE USY型分子筛,以RE USY型分子筛为活性组分制备了催化剂,并考察了制备工艺、稀土与磷化物对催化剂性能的影响。 2 实 验 2.1 REUSY分子筛的制备 采用常规半合成FCC催化剂制备工艺,以有机酸为脱铝剂,在一定温度及酸性条件下,对NaY 分子筛进行改性处理,然后经稀土交换、高温水气焙烧、铵盐交换降钠而制得。 2.2 分析测定方法 (1)晶胞参数和结晶度用X射线衍射法,在日本Rigaku公司D/max-3C X射线衍射仪上进行测试。 (2)微反活性(MAT)在华阳公司生产的CSA-B 型催化剂评定装置上进行。老化条件为800℃、100%水蒸气、老化时间4h(或17h),反应原料为大港轻柴油,反应温度460℃,反应时间70s,催化剂装量5.0g,剂油比3.2。 (3)IR酸性表征在Nicolet510P型红外光谱仪上进行。测试条件,样品在350℃/4h下抽真空至10-3mPa, 然后降温至200℃吸附吡啶,饱和5min。并在10-2Pa下抽去物理吸附的吡啶,然后测试得到在1300~1800cm-1范围的IR图。 (4)反应选择性采用小型固定流化床反应器测定。试验条件,催化剂经800℃、100%水蒸气预处理10h,反应剂油比3.7,空速16h-1,反应温度500℃。 3 结果与讨论 3.1 REUSY分子筛的制备 由于分子筛在水热处理过程中产生铝碎片,在随后的交换中不易负载稀土,因此,先用有机脱铝剂脱除一部分骨架铝后,再进行分子筛的稀土交换,然后进行水热处理,使大笼中的稀土离子脱除部分或全部结合水后向小笼迁移,制得具有较好酸性分布的分子筛。 3.1.1 稀土交换利用率的考察 采用不同稀土含量的分子筛来考察稀土利用率,结果见表1。 由表1可知,分子筛在二次交换过程中,稀土基本可以定量交换,但在随后的三次交换(硫酸铵交换)过程中,存在NH+4与RE3+的反交换,使分子筛上稀土含量降低;从E3/E2比值和E3/T比值 收稿日期:2000-08-16;修改稿收到日期:2000-12-05。 作者简介:孙书红,工程师,1993年毕业于华东理工大学化学系,现从事催化裂化催化剂的研制工作。

稀土的分类及其用途

稀土的分类及其用途 2009年09月28日 09点34分06秒 【概述】 稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(RareEarth)。简称稀土(RE或R)。 韩国并不是主要的稀土使用国,目前我国出口的稀土数量达到每年5万吨(合法出口),主要的应用大国为日本,欧洲和北美。与此同时稀土在我国的应用也在积极开展,目前占到7万吨。我国每年稀土实际的矿产的实际投入量大约为15万吨,这个数字近年来没有明显变化。尽管如此,稀土的数量仍然不能满足目前全球在汽车,电子等行业用量的要求。特别是稀土在抛光,催化,磁性材料方面的增长也是非常突出。然而稀土的应用也存在着参差不齐的问题,一些元素,例如:Sm,Gd,Ho,Er等就没有得到充分的应用而大量荒弃,非常可惜。 【稀土的分类】 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rareearthmetals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE 表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 【17种稀土元素名称的由来及用途】 稀土一词是历史遗留下来的名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土或铈组稀土;把钆、铽、镝、钬、铒、铥、镱、镥钇称为重稀土或钇组稀土。也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。 这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。钷是美国人马林斯基、格兰德宁(L.E.Glendenin)和科列尔(C.D.Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。 镧(La)"镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。

分子筛的三种活化方式

分子筛的活化 在了解分子筛的活化方式之前我简单的将分子筛是什么,查找了一些相关资料进行一定了解,但相关资料比较庞杂,以下这种说法我看来还是比较准确“分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体或铝氧四面体通过氧桥键相连而形成。结构中有规整而均匀的孔道,孔径为分子大小的数量级,它只允许直径比孔径小的分子进入,因此能将混合物中的分子按大小加以筛分。”当然由于分子筛的种类比较繁多而用途也各异,而分子筛的吸附原理也并非只是简单的物理吸附这么简单,有些分子筛同时也具有化学吸附的作用,物理吸附的吸附力为分子间作用力,而化学吸附是由化学键的作用力产生得。而13X分子筛,13X型分子筛的孔径为10A,吸附小于10A 任何分子。 而分子筛的作用主要是将压缩空气中的水分和乙炔、二氧化碳、烃类化合物、及氮氧化物吸附,以符合工艺生产的要求。 二氧化碳(CO2)和一氧化二氮(N2O)会冻结在换热器和冷凝器的管道中从而堵塞通道。如果碳氢化合物含量过高如烃类,特别是乙炔,如果累积在主冷凝蒸发器中有可能形成爆炸性混合物。但是即使用分子筛也未必能将所用的碳氢化合物都除去,特别是丙烷和甲烷,很容易通过分子筛而进入主冷在主冷积聚,这样就只能不断的更新主冷中的液氧将这些碳氢化合物带走,使其维持在一个安全的范围内。除了丙烷和甲烷外还有一些氮氧化合物也会沉积在换热器和主冷中对设备造成损害,而我们厂也针对氮氧化合物添加了相应的吸附剂CAX,以保证工艺的正常运行。相应

的为了增加13X分子筛的吸附效率,还专门用了活性氧化铝来吸收空气中的水分,由于颗粒较13X分子筛坚硬也优先吸附水分被安放在床层的最低端来吸收水分和抵御气流的冲击。 各杂质在分子筛中的吸附量如图所示 分子筛层上应含有CaX吸收残余的氮氧化合物。 有时在启停车过程中由于气流过大也会发生冲床的事故,还由于吸附是发生在高压低温利于吸附,低压高温利于解析所以,因此在启停车过程中压力短暂的降低会影响但吸附剂的吸附容量所以吸附流量不得高于正常工作流量的70%。 还有改变出口温度也会对床层的吸附量产生很的大影响如

分子筛的主要特性

分子筛的主要特性 今天小编来介绍一下分子筛的主要特性。让大家对分子筛的特性有一个全面的了解。 一、物理特性: 比热:约0.95KJ/KgXK(0.23Kcal/KgX℃ 导热系数(脱水物):2.09KJ/MXK(0.506Kcal/mX℃ 水吸附热:约3780KJ/Kg(915Kcal/Kg) 二、热稳定性和化学稳定性: 分子筛能承受600—700℃的短暂高温,但再生温度一般在400℃以下。分子筛可在PH值5-10范围的介质中使用;在盐溶液中能交换某些金属阳离子。 三、分子筛的特性 1、基本特性 a)分子筛对水或各种气,液态化合物可逆吸附及脱附。 b)金属阳离子易被交换。 ·石墨烯·分子筛·碳纳米管·黑鳞·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

c)分子筛内部空腔和通道形成非常高的内表面积。其内表面可高于分子筛颗粒的外表面积的10000-100000倍。 (1)根据分子大小和形状的不同选择吸附——分子筛效应 分子筛晶体具有蜂窝状的结构,晶体内的晶穴和孔道相互沟通,并且孔径大小均匀,固定(分子筛空腔直径一般在6—15埃之间),与通常分子的大小相当,只有那些直径比较小的分子才能通过沸石孔道被分子筛吸附,而构型庞大的分子由于不能进入沸石孔道,则不被分子筛吸附。而硅胶,活性氧化铝和活性碳没有均匀的孔径,孔径分布范围十分宽广,所以没有筛分性能。 (2)根据分子极性,不饱和度和极化率的选择吸附 分子筛对于极性分子和不饱和分子有很高的亲和力;在非极性分子中,对于极化率在的分子有较高的选择吸附优势。此外,沸点越低的分子,越不易被分子筛所吸附。 2、分子筛的高效吸附特性 ·石墨烯·分子筛·碳纳米管·黑鳞·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

稀土元素及用途

稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。稀土的分类】 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 【名称由来】 17种稀土元素名称的由来及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce) "铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.

高分子材料的结构特点和性能精选. - 副本

高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料。 高分子材料的性能是其内部结构和分子运动的具体反映。掌握高分子材料的结构与性能的关系,为正确选择、合理使用高分子材料,改善现有高分子材料的性能,合成具有指定性能的高分子材料提供可靠 的依据。 高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特点。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。 1. 近程结构 (1) 高分子链的组成 高分子是链状结构,高分子链是由单体通过加聚或缩聚反应连接而成的链状分子。高分子链的组成是指构成大分子链的化学成分、结构单元的排列顺序、分子链的几何形状、高聚物分子质量及其分布。 高分子链的化学成份及端基的化学性质对聚合物的性质都有影响。通常主要是指有机高分子化合物,它是由碳-碳主链或由碳与氧、氮或硫等元素形成主链的高聚物,即均链高聚物或杂链高聚物。 高密度聚乙烯(HDPE)结构为-[CH2CH2]n-,是高分子中分子结构最为简单的一种,它的单体是乙烯,重复单元即结构单元为CH2CH2 ,称为链节,n为链节数,亦为聚合度。聚合物为链节相同,集合度不同的混合物,这种现象叫做聚合物分子量的多分散性。 聚合物中高分子链以何种方式相连接对聚合物的性能有比较明显的影响。对于结构完全对称的单体(如乙烯、四氟乙烯),只有一种连接方式,然而对于CH2=CHX或CH2=CHX2类单体,由于其结构不对称,形成高分子链时可能有三种不同键接方式:头-头连接,尾-尾连接,头-尾连接。如下所示: 头-头(尾-尾)连接为: 头-尾连接为: 这种由于结构单元之间连接方式的不同而产生的异构体称为顺序异构体。一般情况下,自由基或离子型聚合的产物中,以头-尾连接为主。用来作为纤维的高聚物,一般要求分子链中单体单元排列规整,使 聚合物结晶性能较好,强度高,便于抽丝和拉伸。 (2) 高分子链的形态 如果在缩聚过程中有三个或三个以上的官能度的单体存在,或是在加聚过程中有自由基的链转移反应发生,

分子筛再生注意事项

分子筛再生注意事项 分子筛使用前都必须经过高温脱水活化,才能有效地发挥作用。活化温度不能高于600℃,一般控制在550±10℃加热二小时,活化后待温度降到200℃左右应立即取出存放在干燥器内备用,用过的或吸附饱和后的分子筛,经过重新活化,可反复使用。但是我在杂志上看到一篇文章,讲述他们的实例,分子筛大量进水后,利用上述方法再生,但是导致两个分子筛都有大量水,两个都再生,最后都失去了吸附作用。原因是:分子筛大量进水后,水分和分子筛作用,水由游离态的水变成了分子筛的结晶水,即使再生温度为200度也不能去除结晶水,必须拿到厂家400℃以上回炉才能恢复分子筛的吸附功能! 假如你的分子筛大量进水,进水时间超过10分钟,并且从再生气放空能看到明显水渍,那就可以判定分子筛必须回炉了,没必要再生了。指望再生的温度解吸分子筛那是根本不可能的事情了。 如果分子筛发生进水,能够急时有效地进行处理,可能需要高温活化几个周期,便可以恢复其吸附性能;如果是分子筛发生大量进水,在高温活化状态时,水中大量微生物,在高温状态下形成碳酸钙及碳酸镁等,会使分子筛吸附剂形成永久吸附,甚至还会使部分吸附剂在长周期高温活化状态下会形成粉化及发黄,失去其吸附性能;也正是如那篇文章上所说的,在这种状态下,只能更换新的分子筛; 3A分子筛再生:

为了取得好的操作性能和尽可能长的寿命,3A分了筛使用一定时间后必须再生,再生通常是与吸附逆向进行的,这样可以使被容纳于吸附床入口处的大部分吸附物质不必通过整个床层,部分分子筛也可不与湿热气体接触,从而提高分子筛寿命。 先将吸附罐内原料退出,罐体抽真空,再用加热的干燥N2或过热蒸汽做再生气(在生气尽可能的干燥,否则会影响吸附效率),逆向进入分子筛干燥罐(A/B)进行再生,控制进口温度220~350℃,出口温度≧150℃,恒温吹扫6~8小时,使分子筛脱除吸附水,然后使用常温干燥氮气对干燥罐(A/B)进行降温处理冷吹至出口气体温度降到30余度时,即可结束备用。 再生气体数据表 上表可以看出同一气体露点下,温度越高,活化效果越好(分子筛残余水量越低)。同一温度条件下,再生气体露点越低,活化效果越好。

相关文档