文档库 最新最全的文档下载
当前位置:文档库 › 关于 M 序列的相关函数

关于 M 序列的相关函数

关于 M 序列的相关函数
关于 M 序列的相关函数

生成m序列与gold序列

一、生成m序列 function [mseq] = m_sequence(fbconnection); n = length(fbconnection); N = 2^n-1; %m序列的长度 register = [zeros(1,n - 1) 1]; %定义移位寄存器的初始状态 mseq(1)= register(n); %m序列的第一个输出码元 for i = 2:N newregister(1)= mod(sum(fbconnection.*register),2); %寄存器与反馈的模2和 for j = 2:n, newregister(j)= register(j-1); end; register = newregister; %移位后的寄存器 mseq(i) = register(n); %新的寄存器输出 end clear all; close all; clc; fbconnection=[0 0 1 0 1]; %输入本原多项式系数,从C1开始 m_sequence=m_sequence(fbconnection); stem(m_sequence); %对m序列绘图 axis([0 35 -0.2 1.2]); grid on;

二、生成gold序列 function goldseq = g_sequence(connection1,connection2); msequence1 = m_sequence(connection1); %生成第一个m序列 msequence2 = m_sequence(connection2); %生成第二个m序列 N=2^length(connection1)-1; %gold序列长度 for i = 1:N; s = mod(msequence1+msequence2,2); %两个m序列模二加产生gold序列 goldseq = s; end clear all; close all; clc; connection1=[0 0 0 0 1 1]; connection2=[1 0 0 1 1 1]; goldseq = g_sequence(connection1,connection2);

m序列产生及其特性实验

湖南科技大学 移动通信实验报告 姓 名: 吴文建 学 号: 1208030104 专业班级: 应用电子技术教育一班 实验名称: m 序列产生及其特性实验 实验目的: 掌握m 序列的特性、产生方法及其应用 实验仪器:1、pc 机一台 2、 实验原理: 1、m 序列的产生 :m 序列是由带线性反馈的移存器产生的。结构如图: a n-1 a n-r ... a n-3 a n-2 C 1 C r C 3C 2 ...C 0 输出 输出为反馈移位寄存器的结构,其中an-i 为移位寄存器中每位寄存器的状态,Ci 为第i 位寄存器的反馈系数。Ci =1表示有反馈,Ci =0表示无反馈。 一个线性反馈移位寄存器能否产生m 序列,取决于它的反馈系数Ci (例如上图的C3)。 对于m 序列,Ci 的取值必须按照一个本原多项式: ∑==n i i i x C x f 0 )(中的二进制系数来取值。 n 级移位寄存器可以产生的m 序列个数由下式决定: r N r ) 12(-Φ= 其中φ(x )为欧拉函数,表示小于等于x 并与x 互质的正整数个数(包括1在内)。 表1-1-1列出了部分m 序列的反馈系数C i ,按照下表中的系数来构造移位寄存器,就能产生相应的m 序列。

表1-1-1 m序列的反馈系数表 m序列的级数n m序列的周期P 反馈系数Ci(八机制) 3 7 13 4 1 5 23 5 31 45,67,75 6 63 103,147,155 7 127 203,211,217,235,277,313,325,345,367 8 255 435,453,537,543,545,551,703,747 9 511 1021,1055,1131,1157,1167,1175 10 1023 2011,2033,2157,2443,2745,3271 11 2047 4005,4445,5023,5263,6211,7363 12 4095 10123,11417,12515,13505,14127,15053 13 8192 20033,23261,24633,30741,32535,37505 14 16383 42103,51761,55753,60153,71147,67401 15 32765 100003,110013,120265,133663,142305 m序列的具有以下性质: (1)均衡性。m序列中0和1的数目基本相等 (2)游程分布 (3)移位相加性 (4)相关特性。自相关波形如图1-1-3所示 -1/p 1 P 图1-1-3 m序列的自相关波形(5)周期性 (6)伪随机性。分布无规律,具有与白噪声相似的伪随机特性 实验步骤: (1)预习m序列产生原理及其性质,独立设计m序列产生方法。 (2)画出m序列仿真流程图 (3)编写MATLAB程序并上机调试。 (4)验证m序列的相关性质。 (5)撰写实验报告。

求函数解析式的几种常用方法

求函数解析式的几种常 用方法 -CAL-FENGHAI.-(YICAI)-Company One1

求函数解析式的几种常用方法 一、高考要求: 求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. 重难点归纳: 求解函数解析式的几种常用方法主要有: 1.待定系数法,如果已知函数解析式的构造时,用待定系数法; 2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法; 3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法. 二、题例讲解: 例1.(1)已知函数f (x )满足f (log a x )= )1 (1 2x x a a --.(其中a >0,a ≠1,x >0),求f (x )的表达式. (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x )的表达式. 命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力. 知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错. 技巧与方法:(1)用换元法;(2)用待定系数法. 解:(1)令t=log a x (a >1,t >0;01,x >0;0

m序列及相关理论分析

m 序列及相关理论分析 摘要:本文阐述了常用伪随机序列m 序列的产生方法,对其自相关性和互相关性等主要性质进行简要分析。 关键字:m 序列;伪随机序列;相关性; m code sequence and relevant theory analyses Abstict : This paper expounds the generation method of commonly used pseudo-random sequence: m sequence and carries the brief analys on auto correlation mutual correlation. Keywords :m sequence; pseudo-random sequence; correlation 1 引言 在通信系统中,随机噪声会使数字信号出现误码和使模拟信号产生失真和,而且随机噪声也是限制信道容量的一个重要因素。因此人们经常希望消除或减少通信系统中的随机噪声。另一方面,在实际需要时人们产生随机噪声并利用随机噪声。例如,在实验室中可能要故意加入一定的随机噪声对通信设备或系统的各个性能指标进行测试。又如通过利用掺入随机噪声来提高通信的可靠性。为了满足上述实际应用要求,则需要产生满足对应要求的随机噪声信号。实际中,难以重复产生和处理随机噪声是利用随机噪声的最大困难。 2 m 序列的产生 m 序列又称伪随机序列、伪噪声码(PN)或伪随机码。其中:确定序列是可以预先确定并且可以重复实现的序列;随机序列是既不能预先确定又不能重复实现的序列;伪随机序列是不能预先确定但可以重复产生的序列。 m 序列(全称:最长线性反馈移位寄存器序列)是最为常用的一种伪随机序列。m 序列是由带线性反馈的移位寄存器产生的序列,并且具有最长的周期。 由n 级串接的移位寄存器和对应级别的反馈逻辑电路可组成动态移位寄存器,如果反馈逻辑线路只用线性模2和构成,那么就称此寄存器为线性反馈移位寄存器;但是反馈逻辑线路中出现如“与”、“或”等运算,那么称此寄存器为非线性反馈移位寄存器。线性反馈逻辑的移位寄存器设定初始状态后,在时钟促使下,每次移位后各级的寄存器状态就会发生移位改变状态。整个系统中的每一级寄存器都会随着时钟节拍的推移输出一个序列,该序列成为移位寄存器序列,以下图1所示的5级移位寄存器为例,图中线性反馈逻辑服从一下递归关系: 52--⊕=n n n a a a (1) 图1 一种5级移位寄存器 由图中可知:将第二级移位寄存器的输出和第五级移位寄存器的输出经过模2和运算后反馈到第一级的输入中。假设这5级移位寄存器的初始值为00001,第1、2、3、4级移位寄存器存储值为0,第五级存储值为1。在移位时钟节拍的作用下,各级移位寄存器的输出状态转移流程图如下表1所示。经过31个时钟后,第31节拍移位寄存器的状态与第0拍的状态(初始状态)相同,因而再经过一个时钟之后,从第32拍开始,移位寄存器必定重复第1至第31拍的过程。这说明该移位寄存器的状态具有周期性,其周期长度为31。如果从第5级输出,选择1000为起点,便可得到如下序列: 表1 m 序列发生器状态转移流程图

扩频编码M序列和gold序列

M序列 由n级移位寄存器所能产生的周期最长的序列。这种序列必须由非线性移位寄存器产生,并且周期为2n(n 为移位寄存器的级数)。例如,考察图中a的非线性反馈移位寄存器,其状态转移关系如表:

状态(a k-3,a k-2,a k-1)的接续状态是(a k-2,a k-1,a k),其中a k=a k-3嘰a k-1嘰1嘰a k-2a k-1是一种非线性逻辑。从任一状态出发,例如从(000)出发,其接续状态恰好构成一个完全循环(图b),由此产生一个周期为23=8的3级序列。M序列最早是用抽象的数学方法构造的。它出现于组合数学的一些数学游戏中,例如L.欧拉关于哥尼斯堡的七桥问题等。后来发现这种序列具有某些良好的伪随机特性。例如,M序列在一个周期中,0与1的个数各占一半。同时,同样长度的0游程与1游程也各占一半。所有这些性质在数据通信、自动控制、光学技术和密码学诸领域中均有重要应用。 隐蔽通信内容的通信方式。为了使非法的截收者不能理解通信内容的含义,信息在传输前必须先进行各种形式的变化,成为加密信息,在收信端进行相应的逆变化以恢复原信息。电报通信、电话通信、图像通信和数据通信,都有相应的保密技术问题。另一方面,为了从保密通信中获得军事、政治、经济、技术等机密信息,破译技术也在发展。保密技术和破译技术是在相互对立中发展起来的。 1881年世界上出现了第一个电话保密专利。电话保密开始是采用模拟保密或置乱的方法,即把话音的频谱或时间分段打乱。置乱后的信号仍保持连续变化的性质。在第二次世界大战期间,频域和时域的置乱器在技术上已基本成熟。70年代以来,由于采用集成电路,电话保密通信得到进一步完善。但置乱器仍是有线载波和短波单边带电话保密通信的主要手段。模拟保密还可以采用加噪声掩盖、人工混响或逆向混响等方法,但因恢复后话音的质量大幅度下降或保密效果差,这些方法没有得到推广应用。数字保密是由文字密码发展起来的。数字信号(包括由模拟信号转换成的数字信号),由相同速率的密码序列加密,成为数字保密信号;保密信号传输到收信端后由同一密码序列去密,恢复原数字信号。随着集成电路的发展,数字保密通信已成为保密通信的主要发展方向。话音、图像等模拟信号都可以用数字保密方式。一般来说,数字破译要比模拟破译困难得多。数字保密的主要限制是传输数字信号所需带宽要比传输模拟信号的带宽大好多倍。 模拟保密通信话音信号置乱后的带宽基本保持不变,这是模拟保密通信的一个特点。但是,置乱后恢复的话音质量有所下降。置乱的过程越复杂,则话音质量下降的程度越大。 倒频用倒频器(图1)把话音频谱颠倒过来,使高频变为低频,低频变为高频,这是最简单的一种频域置乱方法。频域置乱器的基本电路是平衡调制器和带通滤波器。平衡调制器可以搬移和倒置频谱,而滤波器可以滤取所需要的频谱成分。输入的话音信号经过平衡调制器后输出上、下两个边带。适当地选择

m序列和Gold序列特性研究

扩频通信实验报告 - I- Harbin Institute of Technology 扩频通信实验报告 课程名称: 扩频通信 实验题目: Gold 码特性研究 院 系: 电信学院 班 级: 通信一班 姓 名: 学 号: 指导教师: 迟永钢 时 间: 2012年5月8日 哈尔滨工业大学

第1章实验要求 1.以r=5 1 45E为基础,抽取出其他的m序列,请详细说明抽取过程; 2.画出r=5的全部m序列移位寄存器结构,并明确哪些序列彼此是互反多项式; 3.在生成的m序列集中,寻找出m序列优选对,请确定优选对的数量,并画 出它们的自相关和互相关函数图形; 4.依据所选取的m序列优选对生成所有Gold序列族,确定产生Gold序列族的 数量,标出每个Gold序列族中的所有序列,并实例验证族内序列彼此的自相关和互相关特性; 5.在生成的每个Gold序列族内,明确标出平衡序列和非平衡序列,并验证其 分布关系。 6.完整的作业提交包括:纸质打印版和电子版两部分,要求两部分内容统一, 且在作业后面附上源程序,并加必要注释。 7.要求统一采用Matlab软件中的M文件实现。

第2章 实验原理 2.1 m 序列 二元m 序列是一种伪随机序列,有优良的自相关函数,是狭义伪随机序列。m 序列易于产生于复制,在扩频技术中得到了广泛应用。 2.1.1 m 序列的定义 r 级非退化的移位寄存器的组成如图1所示,移位时钟源的频率为c R 。r 级线性移位寄存器的反馈逻辑可用二元域GF(2)上的r 次多项式表示 2012() {0,1}r r i f x c c x c x c x c =++++∈ (1) 图 2-1 r 级线性移位寄存器 式(1)称为线性移位寄存器的特征多项式,其给出的表示反馈网络的而逻辑关系式是现行的。因此成为线性移位寄存器。否则称为,非线性移位寄存器。 对于动态线性移位寄存器,其反馈逻辑也可以用线性移位寄存器的递归关系式来表示 112233 {0,1}i i i i r i r i a c a c a c a c a c ----=++++∈ (2) 特征多项式(1)与递归多项式(2)是r 级线性移位寄存器反馈逻辑的两种不同种表示法,因其应用的场合不同而采用不同的表示方法。以式(1)为特征多项式的r 级线性反馈移位寄存器所产生的序列,其周期21r N ≤-。假设以GF(2)域上r 次多项式(1)为特征多项式的r 级线性移位寄存器所产生的非零序列{}i a 的周期为21r N =-,称序列为{}i a 是最大周期的r 级线性移位寄存器序列,简称m 序列。

m序列特性

1.移位相加后 function y=yiwei(m) m=[1 0 0 0 1 1 1 1 0 1 0 1 1 0 0]; N=length(m); m0=m; x=input('请输入移位长度:'); m=[m(x+1:N) m(1:x)]; m=mod(m+m0,2); for n=1:N if m0==m disp('满足移位相加后是原序列,移位:');n break; else m=[m(2:N) m(1)]; end if n==N disp('不满足移位后是原序列'); end end 2.游程特性 function y=youcheng(m) m=[1 0 0 0 1 1 1 1 0 1 0 1 1 0 0]; N=length(m); s=0;s0=1;t=0;t0=1; m=[m m(1)]; for i=1:N if m(i)==0&&m(i+1)==1 s=s+1;s1(s)=s0;s0=1; else if m(i)==0&&m(i+1)==0 s0=s0+1; end end if m(i)==1&&m(i+1)==0 t=t+1;t1(t)=t0;t0=1; else if m(i)==1&&m(i+1)==1 t0=t0+1; end end end disp('零游程的个数为:');s disp('他们的长度分别为:');s1 disp('一游程的个数为:');t disp('他们的长度分别为:');t1 3.平衡特性 function y=pingheng(m) m=[1 0 0 0 1 1 1 1 0 1 0 1 1 0 0]; N=length(m); s=0; for i=1:N

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

m序列产生要点

设计内容及要求 基于MATLAB产生m序列 要求: 1.通过matlab编程产生m序列的产生原理及其产生方法。 2.对特定长度的m序列,分析其性质,及其用来构造其它序列的方法。 第二章m序列设计方案的选择 2.1 方案一 MATLAB编程非常简单,无需进行变量声明,可以很方便的实现m序列。 2.2 方案二 图2.1 Simulink实现m序列 Simulink是MATLAB最重要的组件之一,它提供了一个动态系统建模,仿真和综合分析的集成环境。在此环境中无需大量书写程序,而只需通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应性广,结构及流程清晰及仿真精细等优点,基于以上优点,Simulink已被广泛的运用到控制理论和数字信号处理的复杂仿真和设计。

通过比较方案一和方案二,发现方案一的有点具有通用性而方案二利用MATLAB的Simulink直接搭建模块,在移位寄存器较少的情况下利用此方法比较简单,可是当移位寄存器的个数增多时,要搭建那么多的模块就显的很繁琐了,缺乏通用性,因此本次实验选择方案一。 第三章m序列的产生及性质 3.1 m序列的产生原理、结构及产生 m序列是最长线性反馈移位寄存器序列的简称,m序列是由带线性反馈的移位寄存器产生的。 由n级串联的移位寄存器和反馈逻辑线路可组成动态移位寄存器,如果反馈逻辑线路只由模2和构成,则称为线性反馈移位寄存器。 带线性反馈逻辑的移位寄存器设定初始状态后,在时钟触发下,每次移位后各级寄存器会发生变化,其中任何一级寄存器的输出,随着时钟节拍的推移都会产生一个序列,该序列称为移位寄存器序列。 n级线性移位寄存器的如图3.1所示: ◇A 图3.1 n级线性移位寄存器 图中C i表示反馈线的两种可能连接方式,C i=1表示连线接通,第n-i 级输出加入反馈中;C i=0表示连线断开,第n-i级输出未参加反馈。 因此,一般形式的线性反馈逻辑表达式为 ------表达式3.1将等式左边的a n移至右边,并将a n=C0a n(C0=1)带入上式,则上式可以 写成

Gold序列与m序列仿真应用

1. 绪论 m 序列具有优良的双值自相关特性,但互相关特性不是很好。作为CDMA 通信地址码时,由于互相关特性不理想,使得系统内多址干扰影响增大,且可用地址码数量较少。在某些应用场合,利用狭义伪随机序列复合而成复合序列更为有利。这是因为通过适当方法构造的复合序列具有某些特殊性质。Gold 序列就是一种复合序列,而且具有良好的自相关与互相关特性,地址码数量远大于m 序列,且易于实现、结构简单,在工程上得到广泛应用。 表1是m 序列和Gold 序列的主要性能比较,表中max ?为m 序列的自相关峰值,(0)s ?为自相关主峰;()t n 为Gold 序列的互相关峰值,(0)g ?为其自相关主峰。从表1中可以看出:当级数n 一定时,Gold 序列中可用序列个数明显多于m 序列数,且Gold 序列的互相关峰值和主瓣与旁瓣之比都比m 序列小得多,这一特性在实现码分多址时非常有用。 表1. m 序列和Gold 序列性能比较 在引入Gold 序列概念之前先介绍一下m 序列优选对。m 序列优选对,是指在m 序列集中,其互相关函数绝对值的最大值(称为峰值互相关函数)max ()R τ最接近或达到互相关值下限(最小值)的一对m 序列。 设{a i }是对应于r 次本原多项式F 1(x )所产生的m 序列, {b i } 是另一r 次本原多项式F 2(x )产生的m 序列,峰值互相关函数满足 12 max 2 221()214r ab r r R τr ++?+?≤??+? 为奇数 为偶数但不是的整倍数 (1) 则m 序列{a i }与{b i }构成m 序列优选对。 例如:6r =的本原多项式61()1F x x x =++与6522()1F x x x x x =++++所产生的m 序列{}i a 与{}i b ,其峰值互相关函数2622 2 max ()172 12117r ab R τ++=≤+=+=。满足式(1) ,故{}i a 与{}i b 构成m 序列优选对。而本原多项式65323()1F x x x x x =++++所产生的m 序列 {}i c ,与m 序列{}i a 的峰值互相关函数max ()2317ac R τ=>,不满足上式,故{}i a 与{}i c 不 是m 序列优选对。 2. Gold 序列 1967年,R·Gold 指出:“给定移位寄存器级数r 时,总可找到一对互相关函数值是最小的码序列,采用移位相加方法构成新码组,其互相关旁瓣都很小,且自相关函数和互相关函数均有界”。这样生成的序列称为Gold 码(Gold 序列)。 Gold 序列是m 序列的复合序列,由两个码长相等、码时钟速率相同的m 序列优选对的模2

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

M序列原理及代码

1、m序列 1.1概述 1.1.1实验原理 (1)m序列概念和用途 ①概念: m序列是由n级线性移位寄存器产生的周期为P=2^n-1的码序列,是最长线性移位寄存器序列的简称。 ②用途: 码分多址系统主要采用两种长度的m序列:一种是周期为P=2^15-1的m 序列,又称为短PN序列;另一种是周期为P=2^42-1的m序列,又称为长PN 序列。 (2)m序列的产生 ①4级m序列的码序列发生器 假设初始状态为0001,在时钟作用下,产生的m序列的状态表。 4级m序列的周期P=24-1=15,相应的输出序列为:100010011010111。

②线性移位反馈移位寄存器反馈系数Ci ③m序列特性 均衡性:在一个周期中,m序列中“1”的个数比“0”的个数多1个。 游程特性:长度为k的游程数占游程总数的1/2^k 移位相加特性:一个m序列与其循环移位逐位比较,相同码的位数与不同码的位数相差1位。 自相关特性:表征一个信号与延迟后自身信号的相似性。 ④m序列的构造——反馈线性反馈移存器

1.1.2实验意义 m序列是目前广泛应用的一种伪随机序列,在所有的伪随机序列中,m序列是最重要、最基本的一种伪随机序列。它容易产生,规律性强,有很好的自相关性和较好的互相关特性。m序列的生成是接下来的实验的基础,具有指导性的意义。 1.1.3系统的主要功能 设计本原多项式系数为13、23、103、203的m序列。 1.1.4使用方法 输入m后,输出相应的m序列。 1.2程序设计 1.2.1设计思想 由m序列的产生过程,即通过带反馈的移位寄存器产生,容易想到EDA中的结构化的程序设计思想,即以DFF触发器作为底层文件,进行顶层文件设计,获得m序列。此设计的优点是程序思路简单,结构清晰,只要做出一种反馈系数的m序列,容易得到其他反馈系数的m序列;但也存在缺点,那就是结构化的设计使得代码写的过长。

m序列产生及其特性

一、实验目的 通过本实验掌握m 序列的特性、产生方法及应用。 二、实验内容 1、观察m 序列,识别其特征。 2、观察m 序列的自相关特性。 三、基本原理 m 序列是有n 级线性移位寄存器产生的周期为21n -的码序列,是最长线性移位寄存器序列的简称。码分多址系统主要采用两种长度的m 序列:一种是周期为1521-的m 序列,又称短PN 序列;另一种是周期为 4221-的m 序列,又称为长PN 码序列。m 序列主要有两个功能:①扩展调制信号的带宽到更大的传输带宽, 即所谓的扩展频谱;②区分通过多址接入方式使用同一传输频带的不同用户的信号。 3、m 序列的互相关函数 两个码序列的互相关函数是两个不同码序列一致程度(相似性)的度量,它也是位移量的函数。当使 用码序列来区分地址时,必须选择码序列互相关函数值很小的码,以避免用户之间互相干扰。 研究表明,两个长度周期相同,由不同反馈系数产生的m 序列,其互相关函数(或互相关系数)与自 相关函数相比,没有尖锐的二值特性,是多值的。作为地址码而言,希望选择的互相关函数越小越好,这 样便于区分不同用户,或者说,抗干扰能力强。 在二进制情况下,假设码序列周期为P 的两个m 序列,其互相关函数R xy (τ)为 ()xy R A D τ=- (9-9) 式中,A 为两序列对应位相同的个数,即两序列模2加后“0”的个数;D 为两序列对应位不同的个数, 即两序列模2加后“1”的个数。 为了理解上述指出的互相关函数问题,在此以5n =时由不同的反馈系数产生的两个m 序列为例计算它 们的互相关系数,以进一步讲述m 序列的互相关特性。将反馈系数为8(45)和8(75)时产生的两个5级m 序 列分别记做:1m :1000010010110011111000110111010和2m :111110111000101011010000110100,序列1m 和 2m 的互相关函数如表9-3所示。 表9-3序列1m 和2m 的互相关函数表

求函数解析式,的四种常用方法

求函数解析式的四种常用方法 1.待定系数法:若已知f (x )的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可. 2.换元法:设t =g(x ),解出x ,代入f (g(x )),求f (t)的解析式即可. 3.配凑法:对f (g(x ))的解析式进行配凑变形,使它能用g(x )表示出来,再用x 代替两边所有的“g(x )”即可. 4.方程组法:当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解. [再练一题] 3.已知函数f (x )是二次函数,且f (0)=1,f (x +1)-f (x )=2x ,则f (x )=________. 【解析】 设f (x )=ax 2+bx +c ,由f (0)=1得c =1. 又f (x +1)=a (x +1)2+b (x +1)+1, ∴f (x +1)-f (x )=2ax +a +b . 由2ax +a +b =2x ,得????? 2a =2a +b =0, 即a =1,b =-1, ∴f (x )=x 2-x +1. 【答案】 x 2-x +1 1.下列表示函数y =f (x ),则f (11)=( ) A .2

C .4 D .5 【解析】 由表可知f (11)=4. 【答案】 C 2.已知f (x -1)=x 2+4x -5,则f (x )的表达式是( ) A .f (x )=x 2+6x B .f (x )=x 2+8x +7 C .f (x )=x 2+2x -3 D .f (x )=x 2+6x -10 【解析】 法一 设t =x -1,则x =t +1. ∵f (x -1)=x 2+4x -5, ∴f (t )=(t +1)2+4(t +1)-5=t 2+6t , 即f (x )的表达式是f (x )=x 2+6x . 法二 ∵f (x -1)=x 2+4x -5=(x -1)2+6(x -1),∴f (x )=x 2+6x . ∴f (x )的表达式是f (x )=x 2+6x , 故选A . 【答案】 A 3.f (x )=|x -1|的图象是( ) 【解析】 ∵f (x )=|x -1|=????? x -1,x ≥1,1-x ,x <1, 当x =1时,f (1)=0,可排除A ,C.又x =-1时,f (-1)=2,排除D. 【答案】 B 4.若一个长方体的高为80 cm ,长比宽多10 cm ,则这个长方体的体积y (cm 3)与长方体的宽x (cm )之间的表达式是________.

gold序列的生成与相关特性仿真

Gold序列生成与相关性仿真 1.1 references [1] 基于Matlab的Gold码序列的仿真与实现. [2] Code Selection for CDMA Systems. 1.2 m序列的生成原理 1.2.1生成本原多项式 利用Matlab编程环境求解本原多项式,其运行结果如表1所示.选择n=7,采用7级移位寄存器,产生的序列周期是127,其程序如下所示. N=7; %以7级寄存器为例,并组其中的一组优选对:211,,217 connections=gfprimfd(N,'all'); 表(1)n=7 本原多项式 上面的多项式中,仅有9个是独立的.因为第一行和第十行,第二行和四行,第三行和第十六行,第五行和第八行,第六行和第十四行,第七行和第十三行,第九行和第十八行,第十一行和第十二行,第十五行和第十七行是两两对称的.用八进制数表示时,所选择的本原多项式为211、217、235、367、277、325、203、313和345共9条.在这9条本原多项式中,选择一个基准本原多项式,再按要求选择另一本原多项式与之配对,构成m序列优选对,对7级m序列优选对如下表:

表(2)n=7 m序列所以优选对 1.2.2构成移位寄存器 根据产生Gold码序列的方法,从上述本原多项式中选择一对m序列优选对,以211作为基准本原多项式,217作为配对本原多项式,通过并联结构形式来产生Gold序列,生成gold 序列的结构如图(6)所示: 图(6)Gold序列生成结构 1.3 自相关函数 仿真参数及初始值设定如下:

N=7; %以7级寄存器为例,并组其中的一组优选对:211,,217 connections=gfprimfd(N,'all'); f1=connections(4,:); %取一组本原多项式序列,211 f2=connections(16,:); %取另一组本原多项式序列,217 registers1=[1 0 0 0 0 0 0];%给定寄存器的初始状态 registers2=[1 0 0 0 0 0 0];%取相同的初始状态 生成的gold 序列自相关函数如图(7)、(8)所示 图(7) Gold 序列周期自相关函数 结论:自相关函数取值集合{127,15,-1,-17} 图(8)Gold 序列非周期自相关函数 020406080100120140 gold 序列周期自相关函数 020406080100120140 -40 -20 20 40 60 80 100 120 140 gold 序列非周期自相关函数

二次函数解析式的8种求法

二次函数解析式的8种求法 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = . 解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1 由m 2–2m –1 = 2得m =-1 或m =3 ∴ m = 3 . 二、开放型 此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 . 分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一) 三、平移型: 将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变. 例3、二次函数 253212++=χχy 的图像是由22 1χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的.

实验九 m序列产生及其特性实验

实验九 m 序列产生及其特性实验 一、实验目的 通过本实验掌握m 序列的特性、产生方法及应用。 二、实验内容 1、观察m 序列,识别其特征。 2、观察m 序列的自相关特性。 三、基本原理 m 序列是有n 级线性移位寄存器产生的周期为21n -的码序列,是最长线性移位寄存器序列的简称。码分多址系统主要采用两种长度的m 序列:一种是周期为1521-的m 序列,又称短PN 序列;另一种是周期为4221-的m 序列,又称为长PN 码序列。m 序列主要有两个功能:①扩展调制信号的带宽到更大的传输带宽,即所谓的扩展频谱;②区分通过多址接入方式使用同一传输频带的不同用户的信号。 1、产生原理 图9-1示出的是由n 级移位寄存器构成的码序列发生器。寄存器的状态决定于时钟控制下输入的信息(“0”或“1”),例如第I 级移位寄存器状态决定于前一时钟脉冲后的第i -1级移位寄存器的状态。 图中C 0,C 1,…,C n 均为反馈线,其中C 0=C n =1,表示反馈连接。因为m 序列是由循环序列发生器产生的,因此C 0和C n 肯定为1,即参与反馈。而反馈系数C 1,C 2,…,C n -1 若为1,参与反馈;若为0,则表示断开反馈线,即开路,无反馈连线。 D 1 输出 C 0=1 C 1 C 2 C n-1 C n =1 D 2 D 3 D n 图9-1 n 级循环序列发生器的模型 一个线性反馈移动寄存器能否产生m 序列,决定于它的反馈系数(0,1,2,,)i c i n = ,下表中列出了部分m 序列的反馈系数i c ,按照下表中的系数来构造移位寄存器,就能产生相应的m 序列。 表9-1 部分m 序列的反馈系数表 级数n 周期P 反馈系数i C (采用八进制) 3 7 13 4 1 5 23 5 31 45,67,75 6 63 103,147,155 7 127 203,211,217,235,277,313,325,345,367 8 255 435,453,537,543,545,551,703,747

函数解析式的七种求法(讲解)

函数解析式的七种求法(讲解)

函 数 解 析 式 的 七 种 求 法 一、待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求 )(x f 解:设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴? ?????=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或

求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知 221)1(x x x x f +=+ )0(>x ,求 ()f x 的 解析式。 解:2)1()1(2-+=+x x x x f Θ, 21≥+x x 2)(2-=∴x x f )2(≥x

时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x Q x x x f 2)1(+=+ ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x

四、代入法:求已知函数关于某点或者某条直线 的对称函数时,一般用代入法。 例4 已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点 则?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , Θ点),(y x M '''在)(x g y =上 x x y '+'='∴2 把? ??-='--='y y x x 64代入得: )4()4(62--+--=-x x y 整理得672---=x x y ∴67)(2---=x x x g

相关文档
相关文档 最新文档