文档库 最新最全的文档下载
当前位置:文档库 › 飞翼式模型滑翔机的飞行原理

飞翼式模型滑翔机的飞行原理

飞翼式模型滑翔机的飞行原理

飞翼式弹射滑翔机由机翼、折叠绞链、复位钩兼弹射钩和复位橡筋组成。在机翼翼尖的后缘部分设有调整片(图一)。把两片机翼折起来合成一体,用一根橡筋用力一弹,它就直冲蓝天,不一会机翼展开,象一只大鸟一样飞翔起来,十分有趣,它飞行方便,容易调整,又十分安全。

飞翼就是没有水平尾翼的飞机。飞翼没有尾翼,怎么会飞呢?我们知道滑翔机是由机翼产生升力,由重力向前的分力提供给滑翔机前进速度(图二)。水平尾翼掌握平衡(图三),并使它具有良好的俯仰安定性。飞翼有机翼,也有重力,这与普通滑翔机一样,具有一定的前进速度,能产生升力,但是没有尾翼;怎样来保持平衡和安定呢?原来飞翼的重心都设在很前面,机翼产生的升力一方面用来克服重力,另一方面它产生一个低头力矩,而飞翼翼尖附近的调整片一般向上翘起,产生一个向下的力,这对重心来说是一个抬头力矩,使整架模型保持平衡(图四)。同时,调整片也起到保持飞翼俯仰安定性的作用,这样飞翼与常规飞机就一样了:它有向前的飞行速度、由机翼产生升力克服重力、由调整片来保持平衡和安全。飞翼式弹射滑翔机的飞行方法是:右手持弹射棒,左手拿住合拢后的机翼翼尖部分,弹射橡筋挂在右侧的弹射钩上(即右侧复位钩),弹射方向垂直向上(图五),只要一松开左手,合拢的飞翼模型就像火箭一样射向天空……。这里一定要注意,用右手拿弹射棒时一定要使用右边的弹射钩,你如果使用左边的弹射钩,飞翼就会弹到弹射棒上(图六),甚至会弹到右手。飞翼滑翔姿态依靠调整调整片的角度,调整方法与普通的模型相仿:如果模型向下坠,也就是头重,那么可以把调整片向上扳一些,增加上翘的角度;如果模型产生波状飞行或失速,也就是头轻,那么把调整片向下扳一些,即减小调整片向上的角度,同学们可以在反复的飞行中调整,取得一个最佳的角度。调整时,还应注意飞翼的上反角不宜过大,因为上反角是用来保持模型的横侧安定性的,而飞翼的后掠角也可以起到上反角的作用,因此上反角不宜过大。试飞时如果滑翔机左右摇晃,就是上反角太大了,可以减小一些。飞翼式弹射滑翔机高速上升时,依靠迎面而来的强大空气动力,使两片机翼紧紧合在一起,当速度减小时,空气动力也减小,空气对机翼的压力小于复位橡筋的张力时,飞翼的两片机翼就自然张开,进入滑翔。如果复位橡筋的力量很大,飞翼就弹不高,适当调整复位橡筋的力量,可以使你的模型弹得更高,但是一定要保证机翼能平稳展开。如果你把机翼的后掠角适当地增加一些(图七),可以使你的小飞机飞得更稳定。因为后掠角略为增大一些,可以使翼尖更向后伸展,这样有利于飞翼的安定性。

活力滑翔机设计大赛项目策划书

活力滑翔机设计大赛策划书 申报方简介及优势 建环学院 大学建筑与环境学院分团委是精英荟萃的组织,努力培养学生良好的创新 能力,优秀的综合素质。健康的个性和伟大的人格是建环学院分团委一直坚持的 理念,全心全意为同学们服务是我们的出发点和归宿点;我们的工作与学校教育、 学生生活融为一体,以学生为本,使学生得到了全面的发展。 在活动中我们充分发挥个人的主观能动性、团队合作精神以及学院的专业创 新知识,把活动办得有声有色,让广学和许多科学爱好者收益颇多,更使建环人 活力四射、自强不息、永争第一的精神传达到川大的每一个角落。同时,建环人 的创新思维、专业实力也得到了学校和同学们的充分肯定。在2010年度,我院 成功承办了校级挑战杯宣传活动,取得了显著地效果并在全国大学生“结构设计 大赛”中取得全国二等奖的优秀成果。 建筑与环境学院本学期成功举办了别开生面的“从江安河为什么这么脏到走 进污水处理厂”的特色活动,这是一次大型的科技知识普及活动,吸引了全校 学生的积极参与。由于我们组织严谨,策划详细,并有一支干练的团体队伍,我 们将这次活动举办的有声有色,得到了全校上下的一致好评,由此我们积累了不 少举办此类大型活动的丰富经验,并且在今年4月份又成功竞标了节能减排大 赛,获得了一份不可多得的优势。建筑与环境学院拥有众多在结构设计方面的优 秀专家、教授,因此这也是我院一个不可替代的专业优势。同时,我院是本校历 年参加全国大学生“结构设计”大赛的唯一代表队,并且连续多年在此大赛中获

得优秀成果。所以我们建环学院分团委有绝对的优势、能力和信心举办好此次“活 力滑翔机”学生课外学术科技大赛。我们坚定的相信此次比赛一定会成为川大校 园2011年新学期的活动热点。 电气信息学院 大学电气信息学院组建于1998年,由原科技大学电力工程系、自动化系、 应用电子技术系合并组建而成。学院渊源和发展变革可追溯到1944年,其核心 实体已有60多年的办学历程。到如今拥有十多名教授及数十名副教授组成的强 大师资团队。 电气科协主要是为丰富同学的课余文化生活,为热爱科技和创新的同学提供 一个交流和互相学习的平台,组织和指导本学院学生参加各项竞赛而创办的学生 组织。同时我们承担了挖掘和培养科技创新人才,提高学院学生科技创新水平, 大力向同学们宣传有关学校,省以及全国大学生“挑战杯”等重大比赛的职责。 同时也大力支持本协会自主组织活动和开展竞赛。我们的宗旨是:服务广学,促 进学院学术科技水平不断向上发展。 对于此次申请与建环学院一起承办“活力滑翔机”结构设计大赛,我们具有 的优势有: 本协会下设宣传部,组织部,竞赛部。协会分工明确,拥有强大的组织

尺度水下滑翔机的机翼设计与水动力分析

实验尺度水下滑翔机的机翼设计与水动力分析 宫宇龙,马 捷,刘雁集,张 凯 (上海交通大学 海洋工程国家重点实验室,上海 200030) 摘 要:为获取优化的实验尺度水下滑翔机水平机翼外形,基于CFD 方法建立了滑翔机仿真模型。分析了平板机翼各参数间的关系,结合滑翔机特性,将机翼的表征量简化为安装位置、后掠角、展长、展弦比和根梢比等5个设计参数。通过对比分析各参数对升阻比的影响,提出了一种适用于实验尺度滑翔机的高升阻比水平机翼。仿真研究了设计的机翼对滑翔机运动的影响,结果表明,滑翔机各状态变量快速收敛,保证了滑翔机在水池环境中的稳态滑翔时间。 关键词:水下滑翔机,平板翼型,机翼变量,FLUENT 仿真 中图分类号:U674.941 文献标志码:A 【DOI 】 Flat Wing Designing and Hydrodynamic Analysis for the Laboratory Underwater Glider GONG Y u-long, MA Jie, LIU Yan-ji, ZHANG Kai (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, China) Abstract: T o get a better wing designing for the laboratory underwater glider , a simulation model was made based on CFD. After the analysis of different parameters of the wing and the characters of glider , the five parameters as position, angle, length of the wing, aspect ratio, root shoot ratio are selected to be compared for the designing. After the comparison, a plat wing with higher lift-drag ratio for the laboratory underwater glider was designed. The experiment with the new plat wing indicated that the new design worked better and guaranteed the stability of the underwater glider . Key words: underwater glider; plat wing design; wing parameters; FLUENT simulation 0 引言 实验尺度的滑翔机机体较小,可在常规水池内完成稳态滑翔运动,便于研究滑翔机的参数辨识与控制等。目前,实验尺度滑翔机主要有ROGUE 、GUPPIE 、SNU 及FISH-LIKE 等[1]。N.E.Leonard, J.G .Graver [2]于ROGUE 研究了LQR 控制方法在滑翔机上的应用。D.C. Seo, G .Jo [3]CFD 方法计算了SNU-Glider 的水动力参数,分析了俯仰姿态调节性能。F.T.Zhang, J.Thon [4]立了FISH-LIKE 滑翔机动力学模型,计算了相关水动力参数,并进行了实验研究。以上样机都没有对水平机翼进行特殊设计。机翼是易耗品,加工成本越低越好[5]。平板型滑翔机机翼具有设计加工简单,安装方便,可替换性强等优势。目前国内外对滑翔机平板翼研究较少,没有一套成型的参数,研究平板型水下滑翔机机翼的参数设计具有较高的理论及实际意义。 1 模型设计 要确定水平平板机翼的结构,需要确定图1(a)中所示的各项参数,参数的定义见表1。若对每一个参数都进行对比分析会使计算数组大大增加,增加不必要的工作量,可通过研究参数关系对参数进行筛选。 经过分析可知机翼各参数之间有如下关系: 010110 2() [()]2H b b S b b H b λη=+=+= (1) 因此翼梢弦长、翼根弦长和展长三个参数中只需分析展长参数,并通过计算求出其他两个参数。机翼前段后掠角χ0确定后,机翼后缘后掠角χ1随之确定,因此可省去χ1的分析。L 、R 、a 是滑翔机主体参数,本文选取L

直升飞机飞行原理

直升飞机飞行原理 直升机的机翼与固定翼飞机一样,当气流从机翼前缘流向机翼后缘,从上翼面流过的气流比下翼面走过的路程长,为避免出现真空,上翼面的气流流速比下翼面的大。根据伯努利方程,相同条件下,气流的静压与动压的和恒定,因为上翼面的气流的流速大,导致动压大,所以其静压就小,机翼收到来自上翼面的压力小于来自下翼面的压力,大气对机翼的总压力向上,这个压力就是升力,有了升力直升机就能飞起来,但机翼旋转会对机身产生扭矩,为了不使机身旋转,通过加尾浆的方式平衡掉这个扭矩,所以直升机都是有尾浆的。直升机的机翼旋转面和轴的夹角可以通过杠杆机构来调整,通过调整这个夹角使升力与直升机的重力同轴或不同轴,同轴时,直升机悬停,不同轴时,直升机前飞 直升机升空的原理和竹蜻蜓是一样的,主桨桨叶上产生升力。至于你说的玩具有两个桨,而真机只有一个,应该是上下两层吧,总共四片桨叶,而真机只有一层。都知道,主桨高速转动,会给机身一个反方向的扭矩,如果不加以平衡,机身就会沿着和主桨转动方向相反的方向高速自旋,这样的直升机能飞么?玩具的两层桨叶就是平衡这个扭矩的,你仔细观察下,上下桨的转动方向一定是相反的,也就是靠两对桨叶给机身的扭矩来平衡机身,它们给机身的扭矩方向是相反的,如果大小也相同,那么机身就能保持稳定。但是真机,或者真正的航模直升机,都是单层桨叶的,因为它们都带尾桨,靠尾桨产生的推力来稳住机身。主桨产生的扭矩如果会使机尾顺时针旋转,那么就让尾桨产生逆时针的推力,平衡这个顺时针的扭矩。

一、直升机与普通飞机区别及飞行简单原理:不可否认,直升机和飞机有些共同点。比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。(1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的桨叶(螺旋桨)旋转产生升力。(2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。(3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。(4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。二、平衡分析(对单旋翼式):(1)直升飞机的大螺旋桨旋转产生升力平衡重力。直升飞机的桨叶大概有2—3米长,一般有5叶组成。普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。直升飞机起飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。在飞行中飞行员调节高度时,就只要通过改变大螺旋桨旋转的速度就可以了。(2)直升飞机的横向稳定。因为直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能够阻止机身旋转的装置。而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定航向都是靠它来完成的。同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。三、能量方式分析。根据能量守恒定律可知:能量既不会消失,也不会无中生有,它只能从一种形式转化成为另一种形式。在低速流动的空气中,参与转换的能量只有压力能和动能。一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流动的空气具有动能,流速越大,动能也越大。而空气的流速只有来自于发动机所带的螺旋桨对空气的作用,当然从这里分析 能量也是守衡的

中国水下滑翔机

水下滑翔机

中新社沈阳10月22日电(朱明宇)由中国自主研发的水下滑翔机近日在南海结束为期40天的海上试验。记者22日从中国科学院沈阳自动化研究所了解到,该水下滑翔机此次试验海上总航程达1022.5公里,持续30天,创下中国深海滑翔机海上作业航程最远、作业时间最长记录。 此次试验从9月5日开始至10月15日结束。据中国科学院沈阳自动化研究所研究员俞建成介绍,本次海上试验的内容主要包括两项,一项为多滑翔机同步区域覆盖观测试验,是指岸基监控中心通过控制2台滑翔机,在55公里见方的设定观测轨迹内,执行同步观测,验证水下滑翔机系统的远程控制和协同观测能力;另一项是长航程观测试验,目的在真实海洋环境条件下,考验滑翔机系统的续航能力和系统可靠性。 此次中国制造的水下滑翔机在长航程试验中,无故障工作30天,完成229个1000米深海剖面观测,水平航行距离达到1022.5公里,创下两项新的纪录。 此前,中国水下滑翔机的最远航行纪录为500多公里。此次所以创下两项新的纪录,主要原因为操控软件、设计指标等大幅改进。水下滑翔机研制是中国“十二五”863计划海洋技术领域支持项目,主要目标是开展深海滑翔机工程技术研

究,提高滑翔机系统的综合性能、可靠性和稳定性,解决滑翔机远程监控、海上应用及观测数据处理等问题。 中国水下滑翔机主载体长2米?,直径0.22米,翼展1.2米,重量65公斤,海洋航行深度1000米,呈锯齿状轨迹在海中滑翔探测。速度为0.5节到1节。 据悉,今年以来,中科院沈阳自动化所研制的水下滑翔机完成3次海上试验,海上累计工作80天,航程2400多公里,观测剖面数超过600个。通过多次海上试验,全面考核了水下滑翔机系统的可靠性和稳定性,使中国深海滑翔机达到实用化装备水平,预示将进入推广阶段。其主要应用于探测海洋环境、海水质量等有效参数。

无人机基础知识(飞行原理、系统组成、组装与调试)

近年来无人机的应用逐渐广泛,不少爱好者想集中学习无人机的知识,本文从最基本 的飞行原理、无人机系统组成、组装与调试等方面着手,集中讲述了无人机的基本知识。 第一章飞行原理 本章介绍一些基本物理观念,在此只能点到为止,如果你在学校已上过了 或没兴趣学,请跳过这一章直接往下看。 第一节速度与加速度 速度即物体移动的快慢及方向,我们常用的单位是每秒多少公尺﹝公尺/秒﹞0 加速度即速度的改变率,我们常用的单位是﹝公尺/秒/秒﹞,如果加速度 是负数,则代表减速。 第二节牛顿三大运动定律 第一定律:除非受到外来的作用力,否则物体的速度(v)会保持不变。 没有受力即所有外力合力为零,当飞机在天上保持等速直线飞行时,这时 飞机所受的合力为零,与一般人想象不同的是,当飞机降落保持相同下沉率下降,这时升力与重力的合力仍是零,升力并未减少,否则飞机会越掉越快。 第二定律:某质量为m的物体的动量(p = mv)变化率是正比于外加力 F 并且发生在力的方向上。 此即着名的F=ma 公式,当物体受一个外力后,即在外力的方向产生一个 加速度,飞机起飞滑行时引擎推力大于阻力,于是产生向前的加速度,速度越来越快阻力也越来越大,迟早引擎推力会等于阻力,于是加速度为零,速度不再增加,当然飞机此时早已飞在天空了。 第三定律:作用力与反作用力是数值相等且方向相反。 你踢门一脚,你的脚也会痛,因为门也对你施了一个相同大小的力 第三节力的平衡

作用于飞机的力要刚好平衡,如果不平衡就是合力不为零,依牛顿第二定律就会产生加速度,为了分析方便我们把力分为X、Y、Z三个轴力的平衡及绕X、Y、Z三个轴弯矩的平衡。 轴力不平衡则会在合力的方向产生加速度,飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞,升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称x 及y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞 行。 弯矩不平衡则会产生旋转加速度,在飞机来说,X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会偏航、Z轴弯矩不平衡飞机会俯仰﹝如图1-2﹞。

直升机飞行原理(图解)

飞行原理(图解) 直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题。 直升机主旋翼反扭力的示意图 没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法 直升机抵消反扭力的方案有很多,最常规的是采用尾桨。主旋翼顺时针转,对机身就产生逆

时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力。 抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。

各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆。尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性。尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制。在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。即使不算战损情况,平时使用中,尾桨对地面人员的危险很大,一不小心,附近的人员和器材就会被打到。在居民区或林间空地悬停或起落时,尾桨很容易挂上建筑物、电线、树枝、飞舞物品。 尾桨可以是推式,也可以是拉式,一般认为以推式的效率为高。虽然不管推式还是拉式,气流总是要流经尾撑,但在尾桨加速气流前,低速气流流经尾撑的动能损失较小。尾桨的旋转方向可以顺着主旋翼,也就是说,对于逆时针旋转的主旋翼,尾桨向前转(或者说,从右

模型飞机原理讲义

航空模型基础知识 (一)什么叫航空模型?航空模型各基本组成部分的名称是什么? 航空模型是各种航空器模型的总称,包括模型飞机和其他模型飞行器。一般来说,航空模型具有以下几个特征:有一定的尺寸限制;带有或不带有发动机;重于空气;不能载人。航空模型我们简称其为空模,其各部分名称如下图。 (二)各部分定义 机翼的各部分定义如下(图1-1-2、图1-1-3): 前缘:机翼的前边缘;后缘:机翼的后边缘; 翼弦:翼型前缘与后缘的连线,翼弦长就是机翼的宽度; 翼展:机翼的展开,即机翼左右翼尖之间的距离; 翼型:机翼的剖面; 上反角:机翼摆正时翼前缘与水平线的夹角; 展弦比:翼展与翼弦的比值。 图1-1-2 图1-1-3 (三)飞机为什么能飞起来 飞行中的飞机受力可分为:重力—由地心引力产生;升力—由机翼提供(具体会在下文阐述);拉力(或推力)—由引擎提供;阻力—由空气产生(图1-1-4)。

飞机在起飞过程中(图1-1-5的①),引擎的拉力大于阻力,于是产生向前的加速度,同时机翼产生升力。此时,飞机的速度可以理解成为水平速度与垂直速度的合速度,速度越大,阻力也越大。等到拉力等于阻力的时候,加速度为零,速度不再增加,此时飞机也已经翱翔在蓝天之上了(图1-1-5的②)。(四)机翼是如何产生升力的 机翼的升力可以用“伯努利效应”来解释,(伯努利效应:在水流或气流里,如果速度慢,压力就大,如果速度快,压力就小。例如在日常生活中,我们会发现在两张白纸中吹气,白纸非但没有远离,相反却靠拢了为什么?我们可以用伯努利效应来解释这一现象了:两张纸中间的空气流动较快,压强较小;两张纸外侧的空气流动较慢,压强较大。纸张的外侧压强比内侧压;强大,所以就出现了靠拢的现象。)机翼的升力是由翼型的特殊形状和机翼的迎角这两个原因产生的。翼型是决定机翼性能的重要因素。常见的翼型有以下几种(图 1-1-8):

直升机发动机原理

一、直升机与普通飞机区别及飞行简单原理: 不可否认,直升机和飞机有些共同点。比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。 (1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的桨叶(螺旋桨)旋转产生升力。 (2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。 (3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。 (4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。 二、平衡分析(对单旋翼式): (1)直升飞机的大螺旋桨旋转产生升力平衡重力。 直升飞机的桨叶大概有2—3米长,一般有5叶组成。普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。直升飞机起飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。在飞行中飞行员调节高度时,就只要通过改变大螺旋桨旋转的速度就可以了。 (2)直升飞机的横向稳定。 因为直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能够阻止机身旋转的装置。而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定航向都是靠它来完成的。同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。 三、能量方式分析。 根据能量守恒定律可知:能量既不会消失,也不会无中生有,它只能从一种形式转化成为另一种形式。在低速流动的空气中,参与转换的能量只有压力能和动能。一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流动的空气具有动能,流速越大,动能也越大。 而空气的流速只有来自于发动机所带的螺旋桨对空气的作用,当然从这里分析能量也是守衡的。

航空模型培训教材(汇编)

航空模型活动培训教材 张洪涛 前言 少年儿童是祖国的未来,科学的希望。培养有理想、有道德、有文化、有纪律的社会主义公民,提高整个中华民族的思想道德素质和科学文化素质,必须从少年儿童抓起,必须从引导少年儿童开展有意义的实践活动抓起。 我们都想把少年儿童培养成21世纪的主人,问题是如何培养出适应时代要求的一代新人。广大的教师、家长,都面临着当代教育改革的挑战,都在探索着改革陈腐的教育观念,使教育真正面向现代化,面向世界,面向未来,从长远的目标着眼,从少年儿童的心理、智能实际情况出发,推动有益的教育活动。 科技活动已证明是课堂教育的补充、扩大和发展。尤其航模设计制作活动,它符合少年儿童好奇、好动、好胜的心理特征,活泼新颖,又富有时代气息,对少年儿童富有强烈的吸引力。通过航模活动,将使少年儿童接触到广阔的知识领域:从空气动力到材料结构等有关知识:从加工工艺到调整试飞等有关技能;从现实飞机到新型飞机的创造构思。航模活动的动手又动脑的特性,将带来很多可贵的特殊教育效果。少年儿童在实践活动中获得积极的情感体验,或通过自己的发现而享受创造的喜悦,或在克服困难获得成功中体察到自身的价值和满足感,这些无疑有利于培养少年儿童的自主、自立、自信、自强、自律等优秀的个性品格。尤其针对当前教育上存在的弊端和独生子女的现实情况,更具有它特殊的现实意义。 航模活动的实践性,不仅带来智能上的发展,而且有助于少年儿童树立远大的理想。少年儿童为了制作出一架预想的模型飞机,必须按客观规律办事,建立起科学的、求实的思想方法;必须有坚精品文档

定的意志和顽强的毅力,经受困难和挫折的考验;必须善于群体相处,善于学习别人的长处,建立起集体主义观念。在小小的航模兴趣小组活动中,会逐步学会正确的观察和分析,逐步提高思辨能力和认识水平,从而萌发出高尚的、理性的、为人民服务、为科学献身的远大理想和事业心。千里之行始于足下,这本教材虽然仅是一些浅显的航空模型资料,但它将引导你走向科技制作活动的大门,也将引导你爱科学、爱劳动,培养起善于动脑、动手和勇于进取的好品质,使自己德、智、体、美、劳全面发展,时刻准备着,为祖国美好的明天,为21世纪做出贡献! 一、航空模型概论 1、开展航模活动的作用和意义 航空模型是各种航空器模型的总称。它包括模型飞机和其他模型飞行器。航空模型活动从一开始就引起人们浓厚的兴趣,而且千百年来长盛不衰,主要原因就在于它在航空事业的发展和科技人才的培养方面起着十分重要的作用。 (1)航空模型是探索飞行奥秘的工具。 人类自古以来就幻想着飞行。昆虫、鸟禽、风吹起树叶和上升的炊烟,都曾引起过人类飞行的遐想。西汉刘安在《淮南子》中记载着后羿的妻子嫦娥偷食了长生药而飞上月宫的美妙故事。这反映了古人对飞行的追求和向往。 在载人的航空器出现之前,人类就创造了许多能飞行的航空模型,不断地探索着飞行的奥秘。距今2000多年前的春秋战国时期,我们的祖先就制作出能飞的木鸟模型。《韩非子》中记载着:“墨子为木鸢,三年而成,飞一日而败。”宋朝李鸢等人编的《太平御览》中也有“张衡尝作木鸟,假以羽翮,腹中施机,能飞数里”的记载。另外,还制作出种类繁多的孔明灯、风筝和竹蜻蜒等。 精品文档

航模基础知识及模型教练飞机结构详细讲解

一、什么叫航空模型 在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。 其技术要求是: 最大飞行重量同燃料在内为五千克; 最大升力面积一百五十平方分米; 最大的翼载荷100克/平方分米; 活塞式发动机最大工作容积10亳升。 1、什么叫飞机模型 一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。 2、什么叫模型飞机 一般称能在空中飞行的模型为模型飞机,叫航空模型。 二、模型飞机的组成 模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。 1、机翼———是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧安定。 2、尾翼———包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。 3、机身———将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架———供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。 5、发动机———它是模型飞机产生飞行动力的装置。模型飞机常用的动装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。 三、航空模型技术常用术语 1、翼展——机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。

2、机身全长——模型飞机最前端到最末端的直线距离。 3、重心——模型飞机各部分重力的合力作用点称为重心。 4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。 5、翼型——机翼或尾翼的横剖面形状。 6、前缘——翼型的最前端。 7、后缘——翼型的最后端。 8、翼弦——前后缘之间的连线。 9、展弦比——翼展与平均翼弦长度的比值。展弦比大说明机翼狭长。 练习飞行的要素与原则分析 玩模型飞机和玩模型大脚车完全是两种不同的运动,模友们千万别想当然,买来了就上天,否则就只能看着飞机的残骸落泪了。在开展模型飞机运动前,最需要有一套合理、简单的教程来指导你学会为什么这么飞和怎么样飞,让你更快更安全的把爱机送上蓝天。 开篇还是先把基础飞行练习的要素与原则强调一下,这与你能否成功的掌握飞行技能有直接的关系。 第一:飞行练习的要素 掌握飞行技巧,需要以掌握最基本的要素为基础,不断的练习,最终实现自己对飞机启动、助跑、起飞、航线和降落等环节的控制,达到这种境界,模型界称之为“单飞”。 单飞的要素有以下几点: 1、一架精心调整的遥控上单翼教练机(飞机的调整我们在专门的板块里详细说明) 2、理解各种操纵对飞机控制的作用 3、飞机起飞 4、学会直线飞行与航线控制 5、学会转弯飞行与转弯控制 6、地面参照物对航线的辅助

直升机与普通飞机区别及飞行简单原理

直升机与普通飞机区别及飞行简单原理: 不可否认,直升机和飞机有些共同点。比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。 (1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的桨叶(螺旋桨)旋转产生升力。 (2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。(3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。 (4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。 三、平衡分析(对单旋翼式): (1)直升飞机的大螺旋桨旋转产生升力平衡重力。 直升飞机的桨叶大概有2—3米长,一般有5叶组成。普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。直升飞机起飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。在飞行中飞行员调节高度时,就只要通过改变大螺旋桨旋转的速度就可以了。 (2)直升飞机的横向稳定。 因为直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能够阻止机身旋转的装置。而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定航向都是靠它来完成的。同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。 四、能量方式分析。 根据能量守恒定律可知:能量既不会消失,也不会无中生有,它只能从一种形式转化成为另一种形式。在低速流动的空气中,参与转换的能量只有压力能和动能。一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流动的空气具有动能,流速越大,动能也越大。 而空气的流速只有来自于发动机所带的螺旋桨对空气的作用,当然从这里分析能量也是守衡的。 直升机螺旋桨升力计算公式 一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。 也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。

模型飞机飞行原理

第一章空气动力学基本知识 空气动力学是一门专门研究物体与空气作相对运动时作用在物体上的力的一门科学。随着航空科学事业的发展,飞机的飞行速度、高度不断提高,空气动力学研究的问题越来越广泛了。航模爱好者在制作和放飞模型飞机的同时,必须学习一些空气动力学基本知识,弄清楚作用在模型飞机上的空气动力的来龙去脉。这将有助于设计、制作、放飞和调整模型飞机,并提高模型飞机的性能。 第一节什么是空气动力 当任何物体在空气中运动,或者物体不动,空气在物体外面流过时(例如风吹过建筑物),空气对物体都会有作用力。由于空气对物体作相对运动,在物体上产生的这种作用力,就称为空气动力。 空气动力作用在物体上时,不是只作用在物体上的一个点或一个部分,而是作用在物体的整个表面上。空气动力表现出来的形式有两种,一种是作用在物体表面上的空气压力,压力是垂直于物体表面上的。另一种虽然也作用在物体表面上,可是却与物体表面相切,称为空气与物体的摩擦力。物体在空气中运动时所受到的空气作用力就是这两种力的总和。 作用在物体上的空气压力也可以分两种,一种是比物体前面的空气压力大的压力,其作用方向是从外面指向物体表面(图1-1),这种压力称为正压力。另一种作用在物体表面的压力,比物体迎面而来的空气压力小,压力方向是从物体表面指向外面的,这种压力称为负压力,或吸力(图1-1)。空气对物体的摩擦力与物体对空气之间相对运动的方向相反。这些力量作用在物体上总是使物体向气流流动的方向走。如果是空气不动,物体在空气中运动,那么空气 摩擦力便是与物体运动的方向相反,阻止物体向 前运动。 很明显,空气动力中由于粘性产生的空气摩 擦力对模型飞机飞行是有害的。可是空气作用在 模型上的压力又怎样呢?总的看来,空气压力对模 型的飞行应该说是有利的。事实上模型飞机或真 飞机之所以能够克服本身的重量飞起来,就是因图1-1作用在机翼上的压强分布 为机翼上表面产生很强的负压力,下表面产生正压力,由于机翼上、下表面压力差,就使模型或真飞机飞起来。可是作用在物体上的压力也并不是完全有利的。一般物体前面的压力大,后面的压力小,由于物体前后压力差便会阻碍物体前进,产生很多困难。只有物体的形状适当才可以获得最大的上、下压力差和最小的前后压力差,也就是通常所说的最大的升力和最小的阻力。所以空气压力对于物体的运动有

模型飞机的放飞方法

模型飞机的放飞方法 【阅读】 一架调整好的模型飞机,只有同时以正确的姿势放飞,才能真正飞出好的成绩,所以掌握正确的放飞方法很重要。 1、放飞时站立的姿势:两脚左右并列,微微分开,双膝略弯,身体向右转过一些。 2、手执模型的部位方法:用左手拇指和食指捏住螺旋桨桨尖,右手拇指和食指、中指一起捏住翼台下面机身重心部位,手腕、手臂自然放松。 3、模型机头略略抬高,飞行动力越大,机头越高,同时模型飞机向右侧倾斜,模型高度比我们的肩膀略高一些。 4、左手松开,让螺旋桨转动,右手保持原来的倾斜角度,把模型沿机身方向轻轻向前送出,同时带动身体左转,右髋上提。 5、模型起飞时,要正对风向略偏左,这样有利于模型飞机的起飞爬升。 【实践】 按照我们学到的放飞模型方法,练习放飞出手模型,同时比较飞行效果。 橡筋动力模型飞机的调整(一) 【讨论】 前一课我们制作了一架橡筋动力模型飞机,是不是做好了的模型飞机就能飞好呢?一架模型飞机要飞得好,飞得高、时间长,还需要做些什么工作呢? 【实践】 怎样调整模型飞机呢? 1、检查模型各零部件安装是否正确、准确、精确,机翼两边上反角是否对称,水平尾翼是否平衡,垂直尾翼是否垂直等等。 2、检查模型飞机重心是否适中。方法是将模型飞机沿水平方向轻轻手掷滑翔,观察飞行姿态。 3、检查模型飞机滑翔方向。方法是把模型飞机轻轻向水平方向掷出,观察滑翔姿态。 A、右偏:说明方向偏右,如偏得过大的话,要将方向舵向左打,直到方向微微右偏为止,这样模型在飞行时可以右盘旋上升。 B、直线:说明模型方向很正,调试模型飞机右盘旋姿态的话,要将方向舵向右打一点。 C、左偏:说明模型方向偏左,需打右舵使模型飞机略偏右滑翔。 4、检查模型小动力时的爬升姿态:左手从下面捏住机身衷心处,用右手指把螺旋桨按顺时针方向转动绕紧橡筋(约100转),然后捏住螺旋桨换右手拿模型,放平模型轻轻地水平送出,观察模型飞行姿态。 A、右旋坠地:说明模型右旋力量较大,需将右边机翼后缘略向下扳一些,增加一点“好扭”,或者将方向舵向左打。 B、左旋坠地:检查水平尾翼是否平整,或者把方向舵向右打。 C、拉翻:说明初期模型升力过大,需把方向舵向右大一些,使模型向右转弯。 D、正常爬升姿态。 【课外实践】 用以上方法初步调整你制作的模型飞机。

木弹射滑翔机模型教学设计与反思

P1T木弹射滑翔机模型教学设计与反思 教学内容:P1T木弹射滑翔机的制作与放飞 教学目的:1、培养学生的科学素养科学兴趣和科学理想。2、培养学生勇于提出问题和解决问题的能力和动手制作飞机模型及放飞的能力。 教学材料与工具:200×55×3mm木块(机翼),100×40×1mm的木片(水平尾翼),45×40×1mm的木片(垂直尾翼),300×20×3mm松木片(机身),橡皮筋,铅笔,木挫,砂纸,白乳胶,大头针。 教学过程设计: (一)情景导入 1、出示教学样机谈话导入。 2、检查学生材料与工具的准备情况。 (二)教学制作方法:1、机身制作,先如书中图所示或说明书所示,在长木条上用铅笔和直尺标出相应的点,即按照飞机头部到前机翼部分的8cm,前机翼5.5cm,前机翼到尾翼的10cm,尾翼4cm以及留出的1.5cm这几段的要求,大致定出飞机的各部件安装的位置。后让学生自己按照自己的设计或者是设计图(说明书)的要求,来设计飞机头部和飞机的尾部。这里很强调学生的自己设计,因为学生的兴趣就是从中培养出来的。还有一个是前机翼后面的长15.5cm段切割,一般是按照七上八下,也就是割掉上底边长15.5cm,下底边长13.5cm ,高7mm的直角梯形,当然为了飞机的美观或者是重心平稳可以作出较大的改进,如九上六下,但要注意向后的斜切或弧形切割的平滑,均匀的画出线条,并小心切削。(如同我们所见的,位于空中飞机的侧面图)削出平面和弧形,再用木锉(砂纸)磨光。注意:木料的纹路以及长、阔、厚的数据要准确,机身的尾部要水平。 2、水平尾翼、垂直尾翼的制作:按书中图示制作机身的方法,取料并加工。注意:木料的纹路以及长、阔、厚的数据要准确(其实这一步我们的材料都已经加工好了)我们只要检查一下,各个部分是否无均匀、对称,和数据不符合,我们再自己加工,加工好后并在水平尾翼上用圆珠笔画出左右的对称线。 3、机翼的制作:按图所示用上述方法取料并加工,注意:木料的纹路,机翼的截面的形状,即一面为平面,一面为弧形,前缘厚,后缘薄,两片机翼应完全对称的木料、形状、重量,以及两翼拼接的上反角的度数。(这一步也是我们的材料已经加工好了的)我们只要做好如下几步我想就差不多了:1)、分清前机翼的背面与正面,制作飞机有的学生太积极,一不注意就常常如此搞错,背面是纯水平的,而正面靠前三分之一处,最厚,后三分之二是慢慢变薄。这可是飞机能飞行的关键!这就是物理学中的气流往机翼上下方通过速度不一样,造成一个向上抬起飞机的升力。我们为了让飞机飞行得更好也可以加工机翼的前后部分,增加飞机的升力(至于前面和后面薄到什么程度,以飞机飞得好为准这个应该在不断的调试中完成),然后打磨均匀光滑。 2)、在前机翼的背面用刀头轻划一条机翼左右的对称线,沿正面的线缝对折,但不宜折断为好,因为那个角度非常重要,折好后机翼水平面的长度恰好为19.2mm 4、整机装配: a) 固定机身:将机身水平放在工作板上,并用大头针夹住机身,钉在木板上,使机身左右不能移动,以便安装。取两块等高的小木块(高度与机身尾部的高度相等),把它拼在机身尾部的两侧,以便安装水平尾翼时搁置,使它保持平稳。 b) 安装机翼:将已加工好的前机翼,按图示的方法,中间缝隙处用胶水使它们粘合在一起,待两片机翼粘牢干燥后,再将它们粘贴在机身的固定位置上,并在机翼翼下的左右两端垫上相同高度的木块,高度为30mm。以便使机翼保持对称。注意:两片机翼与水平面之间的夹角应完全相等。 c) 安装水平尾翼和垂直尾翼:先将水平尾翼用胶水粘合在机身的固定位置。然后再将垂直尾翼用胶水粘合在水平尾翼的中间,应使它的尾部右偏0.5度,这个地方我想到有三个处理办法(一是直接在飞机机身的尾部侧面削除一层,但要注意由薄到厚(或由厚到薄);二是直接安插在机身上面,这就要求先在机身上面用刀尖左到右(或右到左)划一条小沟然后粘贴就更牢固;三是先把水平尾翼和垂直尾翼粘贴但要注意角度,后再粘贴到机身上),以保证在飞行中模型飞机能转弯。注意:水平尾翼必须安装得水平,垂直尾翼必须垂直于机身。 d)调整重心:装配完毕并待胶水干燥固定后,必须校正整架飞机的重心位置,看它是否在图中所示位置,即距离机身头端94mm处。测定重心位置的方法是:将飞机反转(机肚朝上),用食指的端头顶在两片机翼之间,找出能使飞机平衡的某点,再对照力学中重心位置。如发现飞机的重心不在规定的位置上,必须进行调整。如果整机前(后)倾,应在机身尾部(头部)粘上橡皮或用薄金属片(做成马鞍形)夹在机身尾部(头部)。如果整机左(右)倾,应将左(右)翼磨削。 5、全机完成后试飞:这也是非常重要的一步,其实每种飞机模型你想最后飞得好,很多不是靠做出

飞机模型原理

一、飞行原理 飞机在空气中运动时,是靠机翼产生升力使飞机离陆升空的。机翼升力是怎样产生的呢?这首先得从气流的基本原理谈起。在日常生活中,有风的时候,我们会感到有空气流过身体,特别凉爽;无风的时候,骑在自行车上也会有同样的体会,这就是相对气流的作用结果。滔滔江水,流经河道窄的地方时,水流速度就快;经过河道宽的地方时,水流变缓,流速较慢。空气也是一样,当它流过一根粗细不等的管子时,由于空气在管子里是连续不断地稳定流动,在空气密度不变的情况下,单位时间内从管道粗的一端流进多少,从细的一端就要流出多少。因此空气通过管道细的地方时,必须加速流动,才能保证流量相同。由此我们得出了流动空气的特性:流管细流速快;流管粗流速慢。这就是气流连续性原理。 实践证明,空气流动的速度变化后,还会引起压力变化。当流体稳定流过一个管道时,流速快的地方压力小。流速慢的地方压力大。 飞机在向前运动时,空气流到机翼前缘,分为上下两股,流过机翼上表现的流线,受到凸起的影响,使流线收敛变密,流管(把两条临近的流线看成管子的管壁)变细;而流过下表面的流线也受凸起的影响,但下表面的凸起程度明显小于上表面,所以,相对于上表面来说流线较疏松,流管较粗。由于机翼上表面流管变细,流速加快,压力较小,而下表面流管粗,流速慢,压力较大。这样在机翼上、下表面出现了压力差。这个作用在机翼各切面上的压力差的总和便是机翼的升力(见图)。其方向与相对气流方向垂直;其大小主要受飞行速度、迎角(翼弦与相对气流方向之间的夹角)、空气密度、机翼切面形状和机翼面积等因素的影响。当然,飞机的机身、水平尾翼等部位也能产生部分升力,但机翼升力是飞机升空的主要升力源。飞机之所以能起飞落地,主要是通过改变其升力的大小而实现的。这就是飞机能离陆升空并在空中飞行的奥秘。 二、飞机的主要组成部队及其功用 自从世界上出现飞机以来,飞机的结构形式虽然在不断改进,飞机类型不断增多,但到目前为止,除了极少数特殊形式的飞机之外,大多数飞机都是由下面六个主要部分组成,即:机翼、机身、尾翼、起落装置、操纵系统和动力装置。它们各有其独特的功用。 (一)机身 机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。 (二)机翼

橡筋动力模型飞机的制作与飞行(教学设计)

橡筋动力模型飞机制作 设计思路: 天驰橡筋动力飞机创意套材内含螺旋桨、尾钩、橡筋及其它一些制作模型飞机的材料,学生自行设计其余部分配件并组装成一架橡筋动力飞机,通过制作可让学生亲身体验,培养其动脑动手和发现问题,解决问题的能力。 活动目标: 1.了解橡筋动力模型飞机的基本结构。 2.制作橡筋动力模型飞机,激发学生对航空飞机的兴趣和热爱。 3.通过模型制作,培养学生动脑动手,发现问题,解决问题,学会合作的能力。活动重、难点:制作橡筋动力模型飞机。 活动准备:橡筋动力模型飞机套材、尺子、学生剪、砂纸 活动过程: 一、激趣导入,确定主题 1. 人类的航空航天梦。 2. 了解模型飞机的基本结构: 主翼尾翼机身 动力:电动、油动、橡筋动力等 3.橡筋动力飞机简介: “橡筋动力飞机”是靠储存在橡筋内的能量带动螺旋桨旋转产生拉力而使飞机上升的模型。橡筋动力用完后,模型滑翔下降。 二、橡筋动力飞机的制作 课件出示 1.整理套材零件 2.定型主翼 (1)按照主翼压痕轻轻折出机翼翼型; (2)将定型片粘贴到机翼上反角背面,用加强胶带加固; 3. 安装翼台 将翼台安装到机身上,大约6CM,注意翼台前后不能搞错,安装好后将双面胶贴到翼台上。

4. 安装机翼 (1)机翼粘帖到翼台上,前后缘不要搞错,粘帖两边机翼要对称; (2)用塑料片和小橡皮圈将机翼再次加固固定; 5. 安装尾翼 (1)安装尾钩和尾翼翼座; (2)粘贴垂直尾翼和水平尾翼,水平尾翼要和机身水平,垂直尾翼要和水平尾翼垂直; 6. 安装螺旋桨 7. 美化机身 8. 安装橡筋 三、展示交流 1.展示评价 检视模型:从模型头部直视,安装完好的模型应无扭曲,并且左右对称。2.制作过程中发现的问题 3.如何解决出现的问题 四、拓展延伸 1. 飞机飞行的动力学原理: 在飞机的飞行过程中,如何提升飞机的升力对于飞机的飞行是至关重要的。飞机的升力主要取决于飞机的翼型的设计。在设计翼型时,机翼的上表面有一个流线型的突起。当飞机的上下表面距离不同时,飞机在前进过程中受到的空气压力也就不同。上表面的空气流速快,飞机受到的压力小,小表面的空气流速慢,飞机受到的空气压力大。所以就会产生向上的升力。 2.飞行与调整

相关文档
相关文档 最新文档