文档库 最新最全的文档下载
当前位置:文档库 › 电磁场导论实验课作业

电磁场导论实验课作业

电磁场导论实验课作业
电磁场导论实验课作业

电磁场导论实验课作业

题目:

设有一个截面为矩形的无限延伸导体槽,导体槽宽为16m,高为10m,槽的盖板(导体)同两侧面绝缘,盖板100v,周边电位均为0V(如下图所示)。试分析槽内的电位分布情况。

答案:

h = 1 ; % 步长

v0 = 100 ; % 导体槽盖电位

hx = 15 * h + 1 ; % 网格横向节点数

hy = 9 *h + 1 ; % 网格纵向节点数

%- - - - - - - - - - - - - - - - - - 设置零级近似值- - - - - - - - -

v1 = zeros (hy , hx) ; % 用零矩阵对网格各节点电位进行初值化

v1 (hy , :) = ones (1 ,hx) * v0 ; % 对沿盖板各节点赋初值100

v1 (2 :hy - 1 ,2 :hx - 1 ) = ones (hy - 2 ,hx - 2 ) * v0 / 2 ; % 对内节点赋一任意初值

v2 = zeros (hy , hx) ; % 初值化结果变量

%- - - - - - - - - - - - - - - - - - 以v1 开始迭代计算v2 - - - - - -

for i = 1 :hy

for j = 1 :hx

if i ==hy

v2 (i , j) = v0 ; % 盖板电位100

elseif i == 1| j == 1| j == hx

v2 (i , j) = 0 ; % 周边电位0

else

v2 (i , j) = (v1 (i , j - 1 ) + v1 (i , j + 1 ) + v1 (i - 1 ,j) + v1 (i + 1 ,j) ) / 4 ;

end

% 拉普拉斯方程

end

end

%- - - - - - - - - - - - - - - 用v2 代替v1 ,以v1 循环迭代计算v2 - - for k = 1 :500 % 循环次数

v1 = v2 ;

for i = 1 :hy

for j = 1 :hx

if i == hy

v2 (i , j) = v0 ; % 盖板电位100

elseif i == 1| j == 1| j == hx

v2 (i , j) = 0 ; % 周边电位0

else

v2 (i , j) = (v1 (i , j - 1 ) + v1 (i , j + 1 ) + v1 (i - 1 ,j) + v1 (i + 1 ,j) ) / 4 ;

end % 拉普拉斯方程

end

end

%- - - - - - - - - - - - 结果成图- - - - - - - - - -

subplot (1 ,2 ,1) % 分割图形窗口为1 ×2 个子坐标系,且第1个为当前坐标系

mesh ( v2) % 绘三维曲面图

h1 = mesh ( v2) ;

set ( h1 ,'LineWidth' ,1 ,'EdgeColor' ,' b' )

xlabel('b'),ylabel('h'),zlabel('v')

axis ( [ 0 ,42 ,0 ,25 ,0 ,100 ]) ;

subplot (1 ,2 ,2)

contour ( v2 ,'k-' ) % 绘等值线图

xlabel('b'),ylabel('h')

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 00 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

3 静电场基本知识点 (1)基本方程 00 22=?==?- =?=?=??=?=?????A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电 位方程(注意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计 算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 :

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

《工程电磁场导论》练习题及答案

《工程电磁场导论》练习题 一、填空题(每空*2*分,共30分) 1.根据物质的静电表现,可以把它们分成两大类:导电体和绝缘体。 2.在导电介质中(如导体、电解液等)中,电荷的运动形成的电流成为传导电流。 3.在自由空间(如真空中)电荷运动形成的电流成为运流电流。 4.电磁能量的储存者和传递者都是电磁场,导体仅起着定向导引电磁能流的作用,故通常称为导波系统。 5.天线的种类很多,在通讯、广播、雷达等领域,选用电磁辐射能力较强的 细天线。 6.电源是一种把其它形式的能量转换成电能的装置,它能把电源内导电原子或分子的正负电荷分开。 7.实际上直接危及生命的不是电压,而是通过人体的电流,当通过人体的工频电流超过8mA 时,有可能发生危险,超过30mA 时将危及生命。 8.静电场中导体的特点是:在导体表面形成一定面积的电荷分布,是导体内的电场为0,每个导体都成等位体,其表面为等位面。 9.恒定电场中传导电流连续性方程∮S J.dS=0 。 10.电导是流经导电媒质的电流与导电媒质两端电压之比。 11.在理想导体表面外侧的附近介质中,磁力线平行于其表面,电力线则与其表面相垂直。 12.如果是以大地为导线或为消除电气设备的导电部分对地电压的升高而接地,称为工作接地。 13. 电荷的周围,存在的一种特殊形式的物质,称电场。 14.工程上常将电气设备的一部分和大地联接,这就叫接地。如

果是为保护工作人员及电气设备的安全而接地,成为保护接地。 二、回答下列问题 1.库伦定律: 答:在无限大真空中,当两个静止的小带电体之间的距离远远大于它们本身的几何尺寸时,该两带电体之间的作用力可以表示为: 这一规律成为库仑定律。 2.有限差分法的基本思想是什么? 答:把场域用网格进行分割,再把拉普拉斯方程用以各网格节点处的电位作为未知数的差分方程式来进行代换,将求拉普拉斯方程解的问题变为求联立差分方程组的解的问题。 3.静电场在导体中有什么特点? 答:在导体表面形成一定的面积电荷分布,使导体内的电场为零,每个导体都成为等位体,其表面为等位面。 4.什么是击穿场强? 答:当电场增大到某一数值时,使得电介质中的束缚电荷能够脱离它们的分子而自由移动,这时电介质就丧失了它的绝缘能力,称为被击穿。某种材料能够安全地承受的最大电场强度就称为该材料的击穿场强。 5. 什么叫静电屏蔽? 答:在工程上,常常把不可受外界电场影响的带电体或不希望去影响外界的带电体用一个接地的金属壳罩起来,以隔离有害的的静电影响。例如高压设备周围的屏蔽网等,就是起静电屏蔽作用的。 6.分离变量法的基本思想是什么? 答:把电位函数φ用两个或三个仅含一个坐标变量的函数乘积表示,带入偏微分

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总结 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )(???????? ?????? ???? ??ρ 本构关系: E J H B E D ? ???? ?σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000?????????????ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-??????????? ???((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0)0 )(0 )==-?==-?==-?==-?????????? ???((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ ???????? 本构关系: E D ? ?ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : ρ s 球对称 轴对称 面对称

《工程电磁场导论》练习题及答案

《工程电磁场导论》练习题 1、填空题(每空*2*分,共30分) 1.根据物质的静电表现,可以把它们分成两大类:导电体和绝缘体 。 2.在导电介质中(如导体、电解液等)中,电荷的运动形成的电流成为传导电流。 3.在自由空间(如真空中)电荷运动形成的电流成为运流电流 。 4.电磁能量的储存者和传递者都是电磁场,导体仅起着定向导引电磁能流的作用,故通常称为导波系统。 5.天线的种类很多,在通讯、广播、雷达等领域,选用电磁辐射能力较强的 细天线 。 6.电源是一种把其它形式的能量转换成电能的装置,它能把电源内导电原子或分子的正负电荷分开。 7.实际上直接危及生命的不是电压,而是通过人体的电流,当通过人体的工频电流超过 8mA 时,有可能发生危险,超过 30mA 时将危及生命。 8.静电场中导体的特点是:在导体表面形成一定面积的电荷分布,是导体内的电场为0,每个导体都成等位体,其表面为等位面。 9.恒定电场中传导电流连续性方程∮S J.dS=0 。 10.电导是流经导电媒质的电流与导电媒质两端电压之比。 11.在理想导体表面外侧的附近介质中,磁力线平行于其表面,电力线则与其表面相垂直。 12.如果是以大地为导线或为消除电气设备的导电部分对地电压的升高而接地,称为工作接地。 13. 电荷的周围,存在的一种特殊形式的物质,称电场。

14.工程上常将电气设备的一部分和大地联接,这就叫接地。如 果是为保护工作人员及电气设备的安全而接地,成为保护接地 。 二、回答下列问题 1.库伦定律: 答:在无限大真空中,当两个静止的小带电体之间的距离远远大于它们本身的几何尺寸时,该两带电体之间的作用力可以表示为: 这一规律成为库仑定律。 2.有限差分法的基本思想是什么? 答:把场域用网格进行分割,再把拉普拉斯方程用以各网格节点处的电位作为未知数的差分方程式来进行代换,将求拉普拉斯方程解的问题变为求联立差分方程组的解的问题。 3.静电场在导体中有什么特点? 答:在导体表面形成一定的面积电荷分布,使导体内的电场为零,每个导体都成为等位体,其表面为等位面。 4.什么是击穿场强? 答:当电场增大到某一数值时,使得电介质中的束缚电荷能够脱离它们的分子而自由移动,这时电介质就丧失了它的绝缘能力,称为被击穿。 某种材料能够安全地承受的最大电场强度就称为该材料的击穿场强。 5. 什么叫静电屏蔽? 答:在工程上,常常把不可受外界电场影响的带电体或不希望去影响外界的带电体用一个接地的金属壳罩起来,以隔离有害的的静电影响。例

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总 结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

电磁场与电磁波课程知识点总结 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ω e =εE 2/2 或者电容(C=Q/φ)。 (3)典型问题 导体球(包括实心球、空心球、多层介质)的电场、电位计算; 长直导体柱的电场、电位计算; 平行导体板(包括双导体板、单导体板)的电场、电位计算; 电荷导线环的电场、电位计算; 电容和能量的计算。 例: a b ρ r ε ρs r S a b ε q l 球对称 轴对称 面对称

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

试题.习题—--冯慈璋马西奎工程电磁场导论课后重点习题解答

1—2—2、求下列情况下,真空中带电面之间的电压。 (2)、无限长同轴圆柱面,半径分别为a 和b (a b >),每单位长度上电荷:内柱为τ而外柱为τ-。 解:同轴圆柱面的横截面如图所示,做一长为l 半径为r (b r a <<)且与同轴圆柱面共轴的圆柱体。对此圆柱体的外表面应用高斯通量定理,得 l S D s τ=?? d 考虑到此问题中的电通量均为r e 即半径方向,所以电通量对圆柱体前后两个端面的积分为0,并且在圆柱侧面上电通量的大小相等,于是 l rD l τπ=2 即 r e r D πτ2=, r e r E 02πετ= 由此可得 a b r e e r r E U b a r r b a ln 2d 2d 00 ? ? επτ=?επτ=?= 1—2—3、高压同轴线的最佳尺寸设计——高压同轴圆柱电缆,外导体的内半径为cm 2,内外导体间电介质的击穿场强为kV/cm 200。内导体的半径为a ,其值可以自由选定但有一最佳值。因为a 太大,内外导体的间隙就变得很小,以至在给定的电压下,最大的E 会超过介质的击穿场强。另一方面,由于 E 的最大值m E 总是在内导体的表面上,当a 很小时,其表面的E 必定很大。 试问a 为何值时,该电缆能承受最大电压?并求此最大电压。 (击穿场强:当电场增大达到某一数值时,使得电介质中的束缚电荷能够

脱离它的分子 而自由移动,这时电介质就丧失了它的绝缘性能,称为击穿。某种材料能安全地承受的最大电场强度就称为该材料的击穿强度)。 解:同轴电缆的横截面如图,设同轴电缆内导体每单位长度所带电荷的电量为τ,则内外导体之间及内导表面上的电场强度分别为 r E πετ2=, a E πετ 2max = 而内外导体之间的电压为 a b r r r E U b a b a ln 2d 2d πετπετ? ?=== 或 )ln(max a b aE U = 0]1)[ln(a d d max =-+=a b E U 即 01ln =-a b , cm 736.0e ==b a V)(1047.1102736.0ln 5 5max max ?=??==a b aE U 1—3—3、两种介质分界面为平面,已知014εε=,022εε=,且分界面一侧的电场强度V/m 1001=E ,其方向与分界面的法线成045的角,求分界面另一侧的电场强度2E 的值。

电磁场与电磁波课程知识点汇总和公式

电磁场与电磁波课程知识点汇总和公式

————————————————————————————————作者:————————————————————————————————日期:

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : a b ρ r ε ρs r S a b ε q l 球对称 轴对称 面对称

工程电磁场导论-知识点-教案_第一章

电磁场理论 第一章静电场1.1 电场强度电位 4 2 2 了解:定义法求解带电体电场强度和电位方法 掌握:库仑定律、电场强度、电位的定义及定义式 掌握:静电场环路定律及应用,叠加法计算电场强度和电位 知识点:库仑定律;电场强度定义;电位定义;叠加法计算;电力线;等 位线(面);静电场环路定律;电场强度与电位关系的微分表示及意义;电偶 极子定义及其在远区场的电场强度和电位. 重点:静电场环路定律,电场强度与电位关系 难点:静电场环路定律的微分表示,电场强度与电位关系的微分表示及意义 1. 从学生比较熟悉的大学物理中的电场强度和电位的积分式及意义引出 其微分式及意义;=-?? E 2. 从高等数学中的Stocks定理讲解静电场环路定律.0 ??= E 《工程电磁场导论》(冯慈璋马西奎主编,高等教育出版社) P13 1-1-1 直接应用1.1节三个例题(均匀带电直导线、平面、球面)的结果简化运算 1-1-3 =-?? E的应用 上机编程:用数值积分法研究静电场场分布(2学时,地点:新实验楼B215)

电磁场理论 1.2 高斯定律 2 2 了解:静电场中导体和电介质的性质 掌握:各向同性线性电介质中,电极化强度、电通量密度与电场强度的关系掌握:高斯定律积分式、微分式及应用 知识点:静电场中导体的特点;静电场中电介质的特点;电极化强度;电通量密度;高斯定律 重点:高斯定律 难点:电极化强度、电通量密度与电场强度的关系 用高斯定律计算电场强度 1. 从高等数学中的高斯定理讲解高斯定律.??=ρ D 2. 应用高斯定律计算1.1节三个例题,和本节例1-8, 并总结均匀带电直导线、平面、球面、球体的电场强度和电位特点. 《工程电磁场导论》(冯慈璋马西奎主编,高等教育出版社) P13 1-1-1 直接应用1.1节三个例题(均匀带电直导线、平面、球面)的结果简化运算 1-1-3 =-?? E的应用

电磁场与电磁波实验报告

实验一 静电场仿真 1.实验目的 建立静电场中电场及电位空间分布的直观概念。 2.实验仪器 计算机一台 3.基本原理 当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。 点电荷q 在无限大真空中产生的电场强度E 的数学表达式为 204q E r r πε= (r 是单位向量) (1-1) 真空中点电荷产生的电位为 04q r ?πε= (1-2) 其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为 1221014n i n i i i q E E E E r r πε==+++=∑ (i r 是单位向量)(1-3) 电位为 121014n i n i i q r ????πε==+++=∑ (1-4) 本章模拟的就是基本的电位图形。 4.实验内容及步骤 (1) 点电荷静电场仿真 题目:真空中有一个点电荷-q ,求其电场分布图。

程序1: 负点电荷电场示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; E=(-q./m1).*r; surfc(x,y,E);

负点电荷电势示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; z=-q./m1 surfc(x,y,z); xlabel('x','fontsize',16) ylabel('y','fontsize',16) title('负点电荷电势示意图','fontsize',10)

哈工大电磁场与电磁波课程总结

电磁场与电磁波课程总结 时代背景 麦克斯韦方程组是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律。麦克斯韦方程组在电磁学中的地位,如同牛顿运动定律在力学中的地位一样。它揭示出电磁相互作用的完美统一,而这个理论被广泛地应用到技术领域。 1831年,法拉第发现了电磁感应现象,揭示了电与磁之间的重要联系,为电磁场完整方程组的建立打下了基础。截止到1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年),安培-毕奥-萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。场是一种看不见摸不着而又确实存在的东西,它可以用来描述空间中的物体分布情况,进而用空间函数来表征。“场”概念的提出,使得人们从牛顿力学的束缚中摆脱出来,从而对微观以及高速状态等人类无法用肉眼观测的世界,有了更加深入的认识。1864年,麦克斯韦集以往电磁学研究之大成,创立了电磁场的完整方程组。1868年,麦克斯韦发表了《关于光的电磁理论》这篇短小而重要的论文,明确地将光概括到电磁理论中,创立了“光的电磁波学说”。这样,原来相互独立发展的电、磁和光就被巧妙地统一在电磁场这一优美而严整的理论体系中,实现了物理学的又一次大综合。 德国物理学家赫兹深入研究了麦克斯韦电磁场理论,决定用实验来验证它。通过多年的实验探索,于1886年首先发现了“电磁共振”现象,紧接着在1888年发表了《论动电效应的传播速度》一文,以确凿的实验事实证实了麦克斯韦关于电磁波的预言和光的电磁理论的正确性,到此,麦克斯

电磁场与电磁波实验报告 2

电磁场与电磁波实验报告

实验一 电磁场参量的测量 一、 实验目的 1、 在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。 2、 熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波 的相位常数β和波速υ。 二、 实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反) 方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ的值,再由 λ πβ2=,βωλν==f 得到电磁波的主要参量:β和ν等。 本实验采取了如下的实验装置 设入射波为φj i i e E E -=0,当入射波以入射角1θ向介质板斜投射时,则在 分界面上产生反射波r E 和折射波t E 。设介质板的反射系数为R ,由空气进入介质板的折射系数为0T ,由介质板进入空气的折射系数为c T ,另外,可动板 2r P 和固定板1r P 都是金属板,其电场反射系数都为-1。在一次近似的条件下, 接收喇叭处的相干波分别为1001Φ--=j i c r e E T RT E ,2002Φ--=j i c r e E T RT E

这里 ()13112r r r L L L ββφ=+=;()()231322222L L L L L L r r r r βββφ=+?+=+=; 其中12L L L -=?。 又因为1L 为定值,2L 则随可动板位移而变化。当2r P 移动L ?值,使3r P 有零指示输出时,必有1r E 与2r E 反相。故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。从而测出电磁波的波长λ和相位常数β。下面用数学式来表达测定波长的关系式。 在3r P 处的相干波合成为()210021φφj j i c r r r e e E T RT E E E --+-=+= 或写成 () ?? ? ??+-?Φ-=200212cos 2φφj i c r e E T RT E (1-2) 式中L ?=-=?Φβφφ221 为了测量准确,一般采用3r P 零指示法,即02cos =?φ 或 π)12(+=?Φn ,n=0,1,2...... 这里n 表示相干波合成驻波场的波节点(0=r E )数。同时,除n=0以外的n 值,又表示相干波合成驻波的半波长数。故把n=0时0=r E 驻波节点为参考节点的位置0L 又因 L ??? ? ??=?λπφ22 (1-3) 故 ()L n ??? ? ??=+λππ2212 或 λ)12(4+=?n L (1-4) 由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的 值。当n=0的节点处0L 作为第一个波节点,对其他N 值则有: n=1,()λ24401=-=?L L L ,对应第二个波节点,或第一个半波长数。 n=1,()λ24412=-=?L L L ,对应第三个波节点,或第二个半波长数。

北邮电磁场与电磁波演示试验

. 频谱特性测量演示实验 1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz 2.ESPI 测试接收机的RF输入端口 最大射频信号: +30dbm,最大直流:50v 3.是否直观的观测到电磁波的存在?(回答是/否) 否 4.演示实验可以测到的空间信号有哪些,频段分别为: 广播:531K~1602KHz GSM900:上行:890~915 MHz 下行:935~960 MHz GSM1800:上行:1710~1755 MHz 下行:1805~1850 MHz WCDMA:上行:1920~1980MHz 下行:2110~2170MHz CDMA2000:上行:1920~1980MHz 下行:2110~2170MHz TD-SCDMA:2010~2025MHz 5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视? 模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。 数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。 6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图: GSM900上行: '. .

GSM900下行: '. . CDMA下行:

3G下行: '. . 7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请分别说明,并指出其频率) 可以 该频谱仪能检测的频谱范围为9KHz—3GHz 所以,能够观察到:WIFI:2.4G

工程电磁场导论 复习题

全国2007年4月高等教育自学考试 电磁场试题 课程代码:02305 一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.两点电荷所带电量大小不等,则电量大者所受作用力() A.更大 B.更小 C.与电量小者相等 D.大小不定 2.静电场中,场强大处,电位() A.更高 B.更低 C.接近于零 D.高低不定 3.A和B为两个均匀带电球,S为与A同心的球面,B在S之外,则S面的通量与B的()A.电量及位置有关 B.电量及位置无关 C.电量有关、位置无关 D.电量无关、位置有关 4.一中性导体球壳中放置一同心带电导体球,若用导线将导体球与中性导体球壳相联,则导体球的电位() A.会降低 B.会升高 C.保护不变 D.变为零 5.相同场源条件下,均匀电介质中的电场强度值为真空中电场强度值的() 6.导电媒质中的恒定电流场是() A.散度场 B.无散场 C.旋度场 D.无旋场 7.在恒定电场中,电流密度的闭合面积分等于() A.电荷之和 B.电流之和

C.非零常数 D.零 8.电流从良导体进入不良导体时,电流密度的切向分量() A.不变 B.不定 C.变小 D.变大 9.磁感应强度B的单位为() A.特斯拉 B.韦伯 C.库仑 D.安培 10.如果在磁媒介中,M和H的关系处处相同,则称这种磁媒质为()A.线性媒质 B.均匀媒质 C.各向同性媒质 D.各向异性媒质 11.关于洛仑兹力的正确说法是() A.对运动电荷做功 B.改变运动电荷的速度方向 C.改变运动电荷的速度大小 D.与运动电荷的运动方向平行 12.磁场能量密度的单位为() A.焦耳/米3 B.亨利/米3 C.安培/米3 D.伏特/米3 13.在恒定电流场中,对于各向同性媒质,损耗密度为() 14.在理想介质中,波阻抗为() A.实数 B.虚数 C.复数 D.零 15.相速度是() A.波的加速度

相关文档
相关文档 最新文档