文档库 最新最全的文档下载
当前位置:文档库 › (完整版)聚合物共混改性

(完整版)聚合物共混改性

(完整版)聚合物共混改性

聚合物共混改性原理与应用 第二章 聚合物共混的基本概念

1.试述聚合物共混改性的目的:获得预期性能的共混物。

2.试述共混改性的方法:1.熔融共混;2.溶液共混;

3.乳液共混;

4.釜内共混。

1、共混物形态的三种基本类型(1)均相体系 (2)两相体系①海—岛结构 ②海—海结构 其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿。

2、均相体系的判定

如果一种共混物具有类似于均相材料所具有的性能,这种共混物就可以认为是具有均相结构的共混物.在大多数情况下,可以用玻璃化转变温度(Tg)作为判定的标准。

①如果两种聚合物共混后,形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系. ②部分相容性的聚合物为两相体系,两种聚合物的共混物具有两个Tg,且两个Tg 峰较每一种聚合物自身的Tg 更为接近。 ③不相容的聚合物的共混物有两个Tg 峰,其位置与每一种聚合物的Tg 峰基本相同。

第三章 聚合物共混过程及其调控

3、简述分布混合与分散混合的概念

分布混合:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的.

分散混合:既增加分散相空间分布的随机性,又减小分散相粒径,改变分散相粒径分布过程. 4、简述分散相颗粒分散过程的两种主要机理 P17—18

①液滴分裂机理:在分散相颗粒的分散过程中,一个分散相大粒子(大液滴)分裂成两个较小的粒子(小液滴),较小的粒子再进一步分裂。展示的分散过程是逐步进行的重复破裂过程。 ②细流线破裂机理:分散相大粒子(大液滴)先变为细流线,细流线再在瞬间破裂成细小的粒)(毛细管不稳定现象)。其展示的分散过程是在瞬间完成的。 5、影响共混过程的5个主要因素是什么?

a.聚合物两相体系的熔体黏度(特别是黏度比值)以及熔体弹性: 调控共混温度,改变剪切应力,助剂调节,改变分子量.

b.聚合物两相体系的界面能(界面张力)及相容剂:降低界面张力使分散相粒径变小;添加相容剂改善相容性降低界面张力是分散相粒径变小.

c.聚合物两相体系的组成含量配比以及物料的初始状态;

d.流动场的形式(剪切流动、拉伸流动)和强度(如剪切流动中的剪切速率);

e.共混时间:分散粒径随时间增加而降低,粒径更均匀。 6、依据“液滴模型”和“双小球模型”(1)液滴模型:①剪切速率γ的影响:剪切速率增大,使We 值增大,进而使形变增大; ②大粒子比小粒子容易变形:较大的分散相粒径,使We 值增大,易于变形.液滴的变形到达③连续相粘度ηm :连续相的黏度增大,使We 值增大,进而使液滴(分散相)的形变增大; ④界面张力σ:两相间的界面张力σ下降,使We 值增大,进而使液滴的形变增大; ⑥熔体弹性; ⑦液滴破碎的判据:τ(19λ+16)/16(λ+1) > σ/R ,式中τ为剪切应力. ⑧流动场形式的影响 (2)双小球模型:

①剪切应力、分散相内力:增大剪切应力或降低分散相内力有利于分散相颗粒的破碎分散; ②粒径大的分散相颗粒易破碎分散,发生分散相粒径的自动均化过程;

③在分散相的破碎分散过程中,分散相颗粒会发生伸长变形和转动.当伸长变形的分散相颗粒转动到剪切应力平行的方向时,就难以进一步破碎了。 7、采用哪些方法,可以对聚合物熔体黏度进行调控 P35—37

①调节共混温度; ②调节剪切应力; ③用助剂进行调节; ④改变相对分子质量.

第四章 聚合物共混物的微观形态

8、简述总体均匀性与分散度概念

总体均匀性:分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。 分散度:分散相颗粒的破碎程度;用分散相平均粒径表征。

9、共混物组成、共混过程、共混物性能与共混物形态的基本关系 答:共混物的组成、共混工艺条件,都会对共混物的微观形态产生重要影响。与此同时,共混物的微观形态,又与各种宏观性能(如力学性能)之间,有着密切的联系.因而,共混物的微观形态可以成为联结共混物的组成、共混工艺条件和共混材料宏观性能的一个重要的枢纽。

10、简述影响分散相粒径的因素 P54

熔体黏度与组分配比是影响分散相粒径的重要因素;共混过程中共混体系所受到的外力作用(通常是剪切应力),对分散相粒径也有重要影响;两相之间界面张力对分散相物料的分散过程产生影响,进而影响分散相粒径。

第五章 共混物的相容热力学和相界面

11、简述聚合物表面张力的影响因素

(1)温度 表面张力的本质是分子间相互作用。由于分子间力随温度升高而下降,且与温度呈线性关系。聚合物的表面张力也随温度升高而下降,且与温度呈线性关系。

(2)聚合物物态 结晶性聚合物发生结晶或熔融时,密度发生变化。根据Macled 方程,密度变化会引起表面张力变化,密度增大,表面张力也增大;因而,结晶性聚合物发生相变时,表面张力会发生相应的变化。结晶体的密度高于熔体的密度,相应的,结晶体的表面张力高于熔体的表面张力。这种变化,会使表面张力与温度的线性关系受到影响。 (3)相对分子质量 ;分子量大,表面张力也大。 (4)内聚能密度及溶解度参数

内聚能密度

2i

ii C δ=;表面张力和内聚能密度都与分子间相互作用有关,两者彼此有关联; 溶解度参数 14.043

.0m

V K δφσ=;表面张力随溶解度参数的增大而增大。

12、简述共混体系界面张力、界面层厚度与相容性的关系

溶解度参数接近的体系,或者B 参数较小的体系,相容性相应的较好,界面张力较低,界面层厚度也较厚。

13、共混体系的相容剂有哪些类型及其作用机理 非反应性共聚物,反应性共聚物。 作用机理是富集在两相界面处,改善两相之间的界面结合. 14、转矩流变仪:可配置有多套不同的混炼装置,如双转子混炼器、单螺杆挤出机,以转矩值来表征黏度。

第六章 聚合物共混物的性能

15、试述影响共混体系熔融流变性能的因素

因素主要有:剪切速率、温度、粘弹性、共混物组分含量、第三组分(调节剂)。 16、简述非弹性体增韧与弹性体增韧的区别,以及非弹性体增韧的优势 (1)区别 弹性体 非弹性体 增韧改性剂 橡胶、热塑性弹性体 脆性塑料 增韧对象 韧性基体、脆性基体 有一定韧性的基体 增韧机理 由橡胶引发银纹或剪切带,橡胶球 本身不消耗能量 脆性塑料粒子发生形变,基体

也发生形变,都消耗能量

增韧剂用量 较宽的范围,抗冲击性能随弹性体 用量增大而增加 较窄的范围内,超过此范围,

抗冲击性能急剧下降

刚性 随用量增大而下降 不会降低 加工流动性 较差 改善 相同点 要求增韧改性剂与基体有良好的相容性,有较好的界面结合

料的刚性,此外,非弹性体(脆性塑料)一般具有良好的加工流动性。 17、影响玻纤增强PA 性能的主要因素

(1)玻璃纤维的直径的影响:用于PA 增强的玻璃纤维直径在10—20μm 左右; (2)玻纤长度的影响;(3)玻璃纤维表面处理的影响;(4)玻纤含量的影响 18、表面处理作用机理

(1)提高碳纤维的表面能(实质是提高碳纤维表面的含氧量),减少纤维与基体、树脂表面能

之差值,以达到改善基体与纤维间的浸润性,实现纤维与基体间的有关粘结;

(2)通过一定处理后,可在碳纤维表面形成大量可与基体形成化学键及氢键或范德华力结合的活性基团,可明显提高CFRP 层间剪切强度;

(3)改善碳纤维表面物理状态,及增加表面粗糙或在纤维表面生成凹凸结构,以通过机械契合或者说“锚固效应”达到好的界面性能 19、如何提高极性尼龙和非极性聚烯烃弹体的相容性?给出至少3种表征PA/POE 共混物相容性的方法。(1)添加相容剂,作用机理是富集在两相界面处,改善两相之间的界面结合。 (2)固体物性表征:热分析法(DSC)、膨胀计法、动态力学分析法(DM)。热力学表征:熔点降低法,吸附探针法和反气相色谱法等。

20、试述聚合物表面改性的必要性及其意义。

答:表面改性技术是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等门薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。

聚合物共混改性-a(答案)知识讲解

聚合物共混改性2007-A(答案)

四川大学期考试试题(闭卷)A (2006 ——2007学年第 2 学期) 课程号:30004720 课序号:课程名称:聚合物共混改性原理任课教师:成绩: 适用专业年级: 2004级学生人数:印题份数:学号:姓名:

5、根据下图分析啮合型同向旋转双螺杆挤出机可分为哪几个工作区段?各段的作用是什么? 答:1、固体输送区。作用:(1)输送物料;(2)将松散的粉状物料压实或提高粒状物料在螺杆中的充满度,以促进物料在下一区的熔融塑化。(2分) 2、熔融和混合。物料经输送区受到一定的压缩后开始熔融,并发生混合。(2分) 3、混合区(第二混合段)。将组分尺寸进一步细化与均化;侧加料,加入添加剂等。(2分) 4、脱挥、排气。完全熔融状态的物料经压缩后突然减压,可挥发性物料在真空条 件下迅速挥发,脱离熔体。(2分) 5、熔体输送、增压挤出。物料必须建立起一定的压力,使模口处物料有一定的致 密度,一般来说,在此区,物料可进一步混合,主要功能是输送与增压。(2分) 6、简述影响聚合物共混物形变的因素。(10分) 答:1、基体性质。聚合物共混物屈服形变时,银纹和剪切形变两种成分的比例在很大程度上取决于连续相基体的性质。一般而言,连续相的韧性越大,则剪切成分所占的比例越大。(2分) 2、应力的影响。a. 应力大小(1分):形变中银纹成分的比例随应力和形变速率 的增加而增加;b. 形变速率(1分):增加形变速率会使银纹成分的比例提高;c. 应力性质的影响(1分):由于银纹化伴随着体积的增加,所以压应力抑制银纹,张应力则促进银纹的生成。 3、大分子取向的影响。大分子取向常常减小银纹成分的比例。例如橡胶增韧塑 料,拉伸时基体大分子取向,橡胶颗粒会变成椭球状,结果应力集中因子减小。取向的结果使剪切成分的比例增加而银纹化成分的比例下降。(2分)

聚合物共混改性原理及应用

聚合物共混改性原理及应用 ``````` 4057 一.名词解释(每题5分,共20分) 1.聚合物共混 答:共混改性包括物理共混、化学共混和物理/化学共混三大类型。其中,物理共混就是通常意义上的“混合”。如果把聚合物共混的涵义限定在物理共混的范畴之内,则聚合物共混是指两种或两种以上聚合物经混合制成宏观均匀物质的过程。 2.分布混合和分散混合 答:分布混合,又称分配混合。是混合体系在应变作用下置换流动单元位置而实现的。分散混合是指既增加分散相空间分布的随机性,又减少分散相粒径,改变分散相粒径分布的工程。 分布混合和分散混合在实际的共混工程中是共生共存的,分布混合和分散混合的驱动力都是外界施加的作用力。 3.总体均匀性和分散度 答:总体均匀性是指分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。分散度则是指分散相颗粒的破碎程度。对

于总体均匀性,则采用数理统计的方法进行定量表征。分散度则以分散相平均粒径来表征。 4.分散相的平衡粒径 答:在分散混合中,由于分散相大粒子更容易破碎,所以共混过程是分散相粒径自动均化的过程,这一自动均化的过程的结果,是使分散相例子达到一个最终的粒径。即“平衡粒径”。 二.选择题(每题分,共15分) 1.热力学相容条件是混合过程的吉布斯自由能( A ) A.小于零 B 大于零 C 等于零 D 不确定 2.共混物形态的三种基本类型不包括( D ) 3. A.均相体系 4. B 海-岛结构 5.C 海--海结构 6. D 共混体系 3.影响熔融共混过程的因素不包括(B )

A 聚合物两相体系的熔体黏度 B 聚合物两相体系的表面张力 C 聚合物两相体系的界面张力 D 流动场的形式和强度 4.共混物形态研究的主要内容不包括( D ) A 连续相和分散相祖分的确定 B 两相体系的形貌 C 相界面 D 分散相的物理性能 5.熔体黏度调节的方法不包括(B) A 温度 B 时间 C 剪切应力 D 用助剂调节 6.聚合物共混物的使用性能影响要素不包括( A ) A 结晶时间 B 结晶温度 C 结晶速度

聚合物共混改性-作业题答案

1. 聚合物共混改性的主要目的有哪些? 物性(谋求新的功能提高性能):功能化、高性能化、耐久性 成型加工性:流动性、收缩性、离型性、尺寸稳定性、结晶性、结晶速度、热熔融强度等 经济性:增量、代用、省资源、循环利用等 2. 聚合物共混改性的主要方法有哪些? 物理共混:是指两种或两种以上聚合物材料、无机材料以及助剂在一定温度下进行机械掺混,最终形成一种宏观上均匀的新材料的过程。 化学共混:聚合物的化学共混改性是通过聚合物的化学反应,改变大分子链上的原子或原子团的种类及其结合方式的一类共混改性方法。 物理/化学共混:是在物理共混的过程中发生某些化学反应 3. 简述混合的基本方式及其特点。 基本方式:分配混合(分布混合、层流混合)、分散混合 特点:在混合中仅增加粒子在混合物中分布均匀性而不减小粒子初始尺寸的过程,称为分配混合。 分布混合:只改变分散相的空间分布状况,增加分散相分布的随机性。分散相物料主要通过对流作用来实现;层流混合:是分布混合的一种特定形式,其理论基于一种假设,即在层流混合的过程中,层与层之间不发生扩散。分散混合:在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程。 4. 试述聚合物共混物的形态及特点。 海-岛结构:是一种两相体系,一相为连续相,另一相为分散相,分散相分散在连续相中,亦即单相连续体系。 海-海结构:也是一种二相体系,但两相皆为连续相,相互贯穿,亦即两相连续体系。 两相互锁或交错结构:也是一种二相体系,这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。 梯度结构:为二相体系,特殊的共连续体系(两相连续体系)其组成在空间上互为增减。 阶跃结构:为二相体系,特殊的共连续体系(两相连续体系),在极小过渡区域内,其组成在空间上互为增减。 单相连续体系:海-岛结构、两相互锁或交错结构 共连续体系:海-海结构、梯度结构、阶跃结构 5. 影响熔融共混的主要因素有哪些? (1)聚合物两相体系的熔体黏度(比值)及熔体弹性。(2)聚合物两相体系的界面张力。(3)聚合物两相体系的组分含量以及物料的初始状态。(4)流动场形式和强度。(5)共混时间。 1. 试述聚合物共混的概念。 聚合物共混是指将两种或两种以上聚合物材料、无机材料以及助剂在一定温度下进行机械掺混,最终形成一种宏观上均匀,而且力学、热学、光学、电学及其他性能得到改善的新材料的过程,这种混合过程称为聚合物的共混改性,所得到的新的共混产物称为聚合物共混物,简称共混物。 2. 共混物的形态学要素有哪些? 分散相和连续相、分散相的分散状况、两相体系的形貌、相界面 3. 简述分散相颗粒分散过程的两种主要机理。 液滴分裂机理:分散相的大粒子,分裂成两个较小的粒子,然后,较小的粒子在进一步分裂,这一过程不断重复,直至平衡。细流线破裂机理:分散相的大粒子,在拉伸应力下变形为细流线,细流线再在瞬间破裂成细小的粒子。 4. 依据“液滴模型”,讨论影响分散相变形的因素。 Weber数:We很小时,σ占据主导作用,形成稳定的液滴。“液滴模型”认为,对于特定的体系和在一定条件下,We可以有特定的Wecrit,当We < Wecrit,液滴稳定;We>Wecrit,液滴会变得不稳定,进而破裂。 γ γ :↑→We ↑→D ↑。

聚合物共混改性

1.高分子的来源是来自天然高分子、半天然高分子、以及合成高分子。而其中天然高分子是自然界存在的高分子 2.共混方法:物理方法:机械混合溶液混合胶乳混合粉末混合 化学方法:接枝共聚(组分间有化学反应)嵌段共聚(组分间有化学应) 互穿网络(组分间没有化学反应)渐变处理(组分间没有化学反应) 3.高分子材料共混技术进展 相容剂技术(见离聚体进展报告) 互穿聚合物网络技术(见第五章内容) 动态硫化技术(见第三章) 反应挤出成型技术 形态结构研究 增韧机理研究 4.反应挤出成型技术特点: 可连续且小批量的生产; 投资少; 不使用溶剂,节省能源和减少公害; 对制品和原料有较大选择余地; 可方便地进行混炼、聚合等操作,简化脱挥发物、造粒和成型加工等过程,并可使其一体化; 在控制化学结构的同时还可控制微相等物理结构,以制备具有良好性能的新物质。 5.弹性体增韧理论 a 多重银纹理论 Mertz等人首次提出了聚合物的增韧理论。该理论认为,作增韧体的部分橡胶粒子会横跨在材料变形所产生的很多微细的裂缝上,阻止其迅速发展,而橡胶在变形过程中消耗了能量,从而提高了材料的韧性。此理论的主要弱点是注意了橡胶而忽视了母体。后来Newman等人计算了拉伸断裂过程中橡胶断裂所耗散的能量仅占总能量的10%,这说明该理论并未真正揭示橡胶增韧的本质原因。 Bucknall等人发展了Mertz等人的微缝理论,提出了多重银纹理论。该理论认为,在橡胶增韧塑料体系中,橡胶相颗粒起了应力集中的作用。当材料受到冲击时,它能引发大量的银纹,但由于大量银纹之间的应力场的相互干扰并且如果生产着的银纹前峰处的应力集中低于临界值或银纹遇到另一橡胶颗粒时,则银纹就会终止,橡胶相粒子不仅能引发银纹而且能控制银纹。材料受到冲击时产生的大量银纹可吸收大量的冲击能量,从而保护了材料不受破坏 6.弹性体增韧和非弹性体增韧两种理论比较 a 增韧剂种类不同:前者是橡胶或热塑性弹性材料,模量低、易于挠曲、流动性差;后者是脆性塑料或刚性无机粒子,模量高,几乎不发生塑性形变,流动性好。 b 增韧对象不同:前者可增韧脆性或韧性材料;后者则要求基体本身有—定韧性。 c 增韧剂含量变化的效果不同:前者随加入量的增加韧性一直增加;后者有一合适的增韧范围,超过这一范围后无增韧效果。 d 复合体系性质不同:前者在提高材料韧性的同时,材料的模量、强度和热变形温度等大幅度降低;后者则在提高材料韧性的同时,提高材料的模量、强度和热变形温度,不过,前者对基体韧性提高幅度大;后者则通常不能大幅度提高韧性。

聚合物共混改性考试试题及答案

聚合物共混改性考试试卷 一、名称解释 20分 聚合物共混改性: 答:是以聚合物(聚合物或者共聚物)为改性剂,加入到被改性的聚合物材料(合成树脂,又叫基体树脂)中,采用合适的加工成型工艺,使两者充分混合,从而制得具有新颖结构特征和新颖性能的改性聚合物材料的改性技术。 相逆转: 答:聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。在相逆转的组成范围内,常可形成两相交错、互锁的共连续形态结构,使共混物的力学性能提高。 热塑性塑料: 答:热塑性塑料是指加热后软化、可塑,冷却后硬化,再次加热可熔融软化,固化成型,具有反复可加工成型的特点。 增容作用: 答:使聚合物之间易于相互分散,能够得到宏观均匀的共混体系。改善聚合物之间相界面的性能,增加两相间的粘合力,使P-P共混物具有长期稳定的性能。 二、聚合物共混物的形态结构及特点 10分 答:单相连续结构:构成聚合物共混物的两个相或者多个相中只有一个相连续,其他的相分散于连续相中。单相连续结构又因分散相相畴的形状、大小以及与连续相结合情况的不同而表现为多种形式。 两相互锁或交错结构:这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。有时也称为两相共连续结构,包括层状结构和互锁结构。 相互贯穿的两相连续结构:共混物中两种组分均构成连续相,互穿网络聚合物(IPNs)是两相连续结构的典型例子。 三、聚合物共混物相容性分哪两类?各自的定义是什么?画出聚合物共混物的UCST、LCST 相图。15分 答:分为热力学相容性和工艺相容性两类。 热力学相容性是指相互混合的组分以任意比混合,都能形成均相体系,这种相容性叫热力学相容性。 工艺相容性是指对于一些热力学相容性不太好的共混高聚物,经适当加工工艺,形成结构和性能稳定的共混高聚物,则称之为工艺相容性。 相图略 四、界面层的结构组成和独立相区的区别 10分 答:①界面层内两种分子链的分布是不均匀的,从相区内到界面形成一浓度梯度; ②界面层内分子链比各自相区内排列松散,因而密度稍低于两相聚合物的平均密度; ③界面层内往往易聚集更多的表面活性剂及其他添加剂等杂质,分子量较低的聚合物分子也易向界面层迁移。这种表面活性剂等低分子量物越多,界面层越稳定,但对界面粘结强度不利。 五、以PC/PP共混体系为例,举例说明哪些手段可以用来加强体系的相容性?10分 答:1. 通过共聚改变某聚合物的极性; 2. 通过化学改性的方法,在一组分或两组分上引入极性基团或反应基团; 3. 在某聚合物上引入特殊作用基团;加入第三组分进行增容;

聚合物共混改性(小字)

1.试述聚合物共混改性的目的:获得预期性能的共混物。 2.试述共混改性的方法:1.熔融共混;2.溶液共混; 3.乳液共混; 4.釜内共混。 1、共混物形态的三种基本类型(1)均相体系 (2)两相体系①海—岛结构 ②海—海结构 答:其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿。 2.均相体系的判定:如果一种共混物具有类似于均相材料所具有的性能,该共混物就可以认为是具有均相结构的共混物.在大多数情况下,可以用玻璃化转变温度(Tg)作为判定的标准.如果两种聚合物共混后, 形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系. 3、简述分布混合与分散混合的概念 分布混合:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的. 分散混合:既增加分散相空间分布的随机性,又减小分散相粒径,改变分散相粒径分布过程. 4 P17— 18 , 一个分散相大粒子(大液滴)分裂成两个较小较小的粒子再进一步分裂。展示的分散过程是逐步进行的重复破裂过程。 (大液滴)先变为细流线,细流线再在瞬间破裂成细小的粒。其展示的分散过程是在瞬间完成的。 5、影响共混过程的5答:a. 调控共混温度,改变剪 ,使We 值增大,进而使形变增大; ,使We 值增大,易于变形.液滴的变形到达,使We 值增大,进而使液滴(分散相)的形变增大; σ下降,使We 值增大,进而使液滴的形变增大; 的影响; ⑥熔体弹性; ⑦液滴破碎的判据:τ(19λ+16)/16(λ+1) > σ/R ,式中τ为剪切应力. ⑧流动场形式的影响 (2)双小球模型: ①剪切应力、分散相内力:增大剪切应力或降低分散相内力有利于分散相颗粒的破碎分散; ②粒径大的分散相颗粒易破碎分散,发生分散相粒径的自动均化过程; ③在分散相的破碎分散过程中,分散相颗粒会发生伸长变形和转动.当伸长变形的分散相颗粒转动到剪切应力平行的方向时,就难以进一步破碎了。 7、采用哪些方法,可以对聚合物熔体黏度进行调控 P35—37 答:①调节共混温度; ②调节剪切应力; ③用助剂进行调节; ④改变相对分子质量. 8、简述总体均匀性与分散度概念 总体均匀性:分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。 分散度:分散相颗粒的破碎程度;用分散相平均粒径表征。 9、简述影响分散相粒径的因素 P54 答:熔体黏度与组分配比是影响分散相粒径的重要因素;共混过程中共混体系所受到的外力作用(通常是剪切应力),对分散相粒径也有重要影响;两相之间界面张力对分散相物料的分散过程产生影响,进而影响分散相粒径。 10、简述聚合物表面张力的影响因素 (1)温度 表面张力的本质是分子间相互作用。由于分子间力随温度升高而下降,且与温度呈线性关系。聚合物的表面张力也随温度升高而下降,且与温度呈线性关系。 (2)聚合物物态 结晶性聚合物发生结晶或熔融时,密度发生变化。根据Macled 方程,密度变化会引起表面张力变化,密度增大,表面张力也增大;因而,结晶性聚合物发生相变时,表面张力会发生相应的变化。结晶体的密度高于熔体的密度,相应的,结晶体的表面张力高于熔体的表面张力。这种变化,会使表面张力与温度的线性关系受到影响。 (3)相对分子质量 ;分子量大,表面张力也大。 (4)内聚能密度及溶解度参数 内聚能密度 2i ii C δ=;表面张力和内聚能密度都与分子间相互作用有关,两者彼此有关联; 溶解度参数 14.043 .0m V K δφσ =;表面张力随溶解度参数的增大而增大。 11、简述共混体系界面张力、界面层厚度与相容性的关系 答:溶解度参数接近的体系,或者B 参数较小的体系,相容性相应的较好,界面张力较低,界面层厚度也较厚。 12、共混体系的相容剂有哪些类型? 两类,非反应性共聚物,反应性共聚物。 13、试述影响共混体系熔融流变性能的因素 答:因素主要有:剪切速率、温度、粘弹性、共混物组分含量、第三组分(调节剂)。 答:(1)玻璃纤维的直径的影响:用于PA 增强的玻璃纤维直径在10—20μm 左右; (2)玻纤长度的影响;(3)玻璃纤维表面处理的影响;(4)玻纤含量的影响 16、表面处理作用机理 答:(1)提高碳纤维的表面能(实质是提高碳纤维表面的含氧量),减少纤维与基体、树脂表面能之差值,以达到改善基体与纤维间的浸润性,实现纤维与基体间的有关粘结; (2)通过一定处理后,可在碳纤维表面形成大量可与基体形成化学键及氢键或范德华力结合的活性基团,可明显提高CFRP 层间剪切强度; (3)改善碳纤维表面物理状态,及增加表面粗糙或在纤维表面生成凹凸结构,以通过机械契合或者说“锚固效应”达到好的界面性能 17、如何提高极性尼龙和非极性聚烯烃弹体的相容性?给出至少3种表征PA/POE 共混物相容性的方法。 答:(1)添加相容剂,作用机理是富集在两相界面处,改善两相之间的界面结合。 (2)固体物性表征:热分析法(DSC)、膨胀计法、动态力学分析法(DM)。热力学表征:熔点降低法,吸附探针法和反气相色谱法等. 18、试述聚合物表面改性的必要性及其意义。 答:表面改性技术是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等门薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高 温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。 1.试述聚合物共混改性的目的:获得预期性能的共混物。 2.试述共混改性的方法:1.熔融共混;2.溶液共混; 3.乳液共混; 4.釜内共混。 1、共混物形态的三种基本类型(1)均相体系 (2)两相体系①海—岛结构 ②海—海结构 答:其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿。 2.均相体系的判定:如果一种共混物具有类似于均相材料所具有的性能,该共混物就可以认为是具有均相结构的共混物.在大多数情况下,可以用玻璃化转变温度(Tg)作为判定的标准 .如果两种聚合物共混后,形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系。 3、简述分布混合与分散混合的概念 分布混合:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的. 分散混合:既增加分散相空间分布的随机性,又减小分散相粒径,改变分散相粒径分布过程. 4 P17—18 ,一个分散相大粒子(大液滴)分裂成两个较小较小的粒子再进一步分裂。展示的分散过程是逐步进行的重复破裂过程。 (大液滴)先变为细流线,细流线再在瞬间破裂成细小的粒。其展示的分散过程是在瞬间完成的。 5、影响共混过程的5 答:a. 调控共混温度,改变剪,使We 值增大,进而使形变增大; ,使We 值增大,易于变形.液滴的变形到达,使We 值增大,进而使液滴(分散相)的形变增大; σ下降,使We 值增大,进而使液滴的形变增大; 的影响; ⑥熔体弹性; ⑦液滴破碎的判据:τ(19λ+16)/16(λ+1) > σ/R ,式中τ为剪切应力. ⑧流动场形式的影响 (2)双小球模型: ①剪切应力、分散相内力:增大剪切应力或降低分散相内力有利于分散相颗粒的破碎分散; ②粒径大的分散相颗粒易破碎分散,发生分散相粒径的自动均化过程; ③在分散相的破碎分散过程中,分散相颗粒会发生伸长变形和转动.当伸长变形的分散相颗粒转动到剪切应力平行的方向时,就难以进一步破碎了。 7、采用哪些方法,可以对聚合物熔体黏度进行调控 P35—37 答:①调节共混温度; ②调节剪切应力; ③用助剂进行调节; ④改变相对分子质量. 8、简述总体均匀性与分散度概念 总体均匀性:分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。 分散度:分散相颗粒的破碎程度;用分散相平均粒径表征。 9、简述影响分散相粒径的因素 P54 答:熔体黏度与组分配比是影响分散相粒径的重要因素;共混过程中共混体系所受到的外力作用(通常是剪切应力),对分散相粒径也有重要影响;两相之间界面张力对分散相物料的分散过程产生影响,进而影响分散相粒径。 10、简述聚合物表面张力的影响因素 (1)温度 表面张力的本质是分子间相互作用。由于分子间力随温度升高而下降,且与温度呈线性关系。聚合物的表面张力也随温度升高而下降,且与温度呈线性关系。 (2)聚合物物态 结晶性聚合物发生结晶或熔融时,密度发生变化。根据Macled 方程,密度变化会引起表面张力变化,密度增大,表面张力也增大;因而,结晶性聚合物发生相变时,表面张力会发生相应的变化。结晶体的密度高于熔体的密度,相应的,结晶体的表面张力高于熔体的表面张力。这种变化,会使表面张力与温度的线性关系受到影响。 (3)相对分子质量 ;分子量大,表面张力也大。 (4)内聚能密度及溶解度参数 内聚能密度 2i ii C δ=;表面张力和内聚能密度都与分子间相互作用有关,两者彼此有关联; 溶解度参数 14.043.0m V K δφσ=;表面张力随溶解度参数的增大而增大。 11、简述共混体系界面张力、界面层厚度与相容性的关系 答:溶解度参数接近的体系,或者B 参数较小的体系,相容性相应的较好,界面张力较低,界面层厚度也较厚。 12、共混体系的相容剂有哪些类型? 两类,非反应性共聚物,反应性共聚物。 13、试述影响共混体系熔融流变性能的因素 答:因素主要有:剪切速率、温度、粘弹性、共混物组分含量、第三组分(调节剂)。 答:(1)玻璃纤维的直径的影响:用于PA 增强的玻璃纤维直径在10—20μm 左右; (2)玻纤长度的影响;(3)玻璃纤维表面处理的影响;(4)玻纤含量的影响 16、表面处理作用机理 答:(1)提高碳纤维的表面能(实质是提高碳纤维表面的含氧量),减少纤维与基体、树脂表面能之差值,以达到改善基体与纤维间的浸润性,实现纤维与基体间的有关粘结; (2)通过一定处理后,可在碳纤维表面形成大量可与基体形成化学键及氢键或范德华力结合的活性基团,可明显提高CFRP 层间剪切强度; (3)改善碳纤维表面物理状态,及增加表面粗糙或在纤维表面生成凹凸结构,以通过机械契合或者说“锚固效应”达到好的界面性能 17、如何提高极性尼龙和非极性聚烯烃弹体的相容性?给出至少3种表征PA/POE 共混物相容性的方法。 答:(1)添加相容剂,作用机理是富集在两相界面处,改善两相之间的界面结合。 (2)固体物性表征:热分析法(DSC)、膨胀计法、动态力学分析法(DM)。热力学表征:熔点降低法,吸附探针法和反气相色谱法等. 18、试述聚合物表面改性的必要性及其意义。 答:表面改性技术是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等门薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。

最新聚合物改性考试试题题

一、名称解释 20分 聚合物共混改性: 答:是以聚合物(聚合物或者共聚物)为改性剂,加入到被改性的聚合物材料(合成树脂,又叫基体树脂)中,采用合适的加工成型工艺,使两者充分混合,从而制得具有新颖结构特征和新颖性能的改性聚合物材料的改性技术。 相逆转: 答:聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。在相逆转的组成范围内,常可形成两相交错、互锁的共连续形态结构,使共混物的力学性能提高。 热塑性塑料: 答:热塑性塑料是指加热后软化、可塑,冷却后硬化,再次加热可熔融软化,固化成型,具有反复可加工成型的特点。 增容作用: 答:使聚合物之间易于相互分散,能够得到宏观均匀的共混体系。改善聚合物之间相界面的性能,增加两相间的粘合力,使P-P共混物具有长期稳定的性能。 二、聚合物共混物的形态结构及特点 10分 答:单相连续结构:构成聚合物共混物的两个相或者多个相中只有一个相连续,其他的相分散于连续相中。单相连续结构又因分散相相畴的形状、大小以及与连续相结合情况的不同而表现为多种形式。 两相互锁或交错结构:这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。有时也称为两相共连续结构,包括层状结构和互锁结构。 相互贯穿的两相连续结构:共混物中两种组分均构成连续相,互穿网络聚合物(IPNs)是两相连续结构的典型例子。 三、聚合物共混物相容性分哪两类?各自的定义是什么?画出聚合物共混物的UCST、LCST相图。15分 答:分为热力学相容性和工艺相容性两类。 热力学相容性是指相互混合的组分以任意比混合,都能形成均相体系,这种相容性叫热力学相容性。 工艺相容性是指对于一些热力学相容性不太好的共混高聚物,经适当加工工艺,形成结构和性能稳定的共混高聚物,则称之为工艺相容性。 相图略 四、界面层的结构组成和独立相区的区别 10分 答:①界面层内两种分子链的分布是不均匀的,从相区内到界面形成一浓度梯度; ②界面层内分子链比各自相区内排列松散,因而密度稍低于两相聚合物的平均密度; ③界面层内往往易聚集更多的表面活性剂及其他添加剂等杂质,分子量较低的聚合物分子也易向界面层迁移。这种表面活性剂等低分子量物越多,界面层越稳定,但对界面粘结强度不利。 五、以PC/PP共混体系为例,举例说明哪些手段可以用来加强体系的相容性?10分 答:1. 通过共聚改变某聚合物的极性; 2. 通过化学改性的方法,在一组分或两组分上引入极性基团或反应基团; 3. 在某聚合物上引入特殊作用基团;加入第三组分进行增容; 4. 两相之间产生部分交联,形成物理或化学缠结; 5. 形成互穿网络结构(IPN); 6. 改变加工工艺,施加强烈的力剪切作用。 六、一般采有PP熔融接枝MAH单体,并挤出制备TPU/PP共混物,请阐明PP接枝MAH对共混物的形态结构及性能有何影响。为什么?10分 答:采用PP-g-MAH作为增容剂,熔融法制备TPU/PP共混物。发现,马来酸酐接枝聚丙烯是聚氨酯与聚丙烯共混体系有效的增容剂,有效地改善

聚合物共混改性原理与应用

聚合物共混改性原理与应用第二章聚合物共混的基本概念 1.试述聚合物共混改性的目的:获得预期性能的共混物。 2.试述共混改性的方法:1.熔融共混;2.溶液共混; 3.乳液共混; 4.釜内共混。 1、共混物形态的三种基本类型(1)均相体系 (2)两相体系①海—岛结构②海—海结构 答:其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相 为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿。 2、均相体系的判定 答:如果一种共混物具有类似于均相材料所具有的性能,这种共混物就可以认为是具有 均相结构的共混物。在大多数情况下,可以用玻璃化转变温度(Tg)作为判定的标准。如果两 种聚合物共混后,形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系。 第三章聚合物共混过程及其调控 3、简述分布混合与分散混合的概念 分布混合:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的. 分散混合:既增加分散相空间分布的随机性,又减小分散相粒径,改变分散相粒径分布过程. 4P17—18 答:在分散相颗粒的分散过程中,一个分散相大粒子(大液滴)分裂成两个较 展示的分散过程是逐步进行的重复破裂过程。 (大液滴)先变为细流线,细流线再在瞬间破裂成细小的粒。其展示的分散过程是在瞬间完成的。 5、影响共混过程的5 答:a.调控共混温度,改变剪 答:(1,使We值增大,进而使形变增大; 较大的分散相粒径,使We值增大,易于变形.液滴的变形 连续相的黏度增大,使We值增大,进而使液滴(分散相)的形变增大; σ下降,使We值增大,进而使液滴的形变增大; 的影响;⑥熔体弹性;⑦流动场形式的影响 ⑧液滴破碎的判据:τ(19λ+16)/16(λ+1) > σ/R ,式中τ为剪切应力. (2)双小球模型: ①剪切应力、分散相内力:增大剪切应力或降低分散相内力有利于分散相颗粒的破碎分散; ②粒径大的分散相颗粒易破碎分散,发生分散相粒径的自动均化过程; ③在分散相的破碎分散过程中,分散相颗粒会发生伸长变形和转动.当伸长变形的分散相 颗粒转动到剪切应力平行的方向时,就难以进一步破碎了。 7、采用哪些方法,可以对聚合物熔体黏度进行调控 P35—37 ①调节共混温度; ②调节剪切应力; ③用助剂进行调节; ④改变相对分子质量. 第四章聚合物共混物的微观形态 8、简述总体均匀性与分散度概念 总体均匀性:分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。 分散度:分散相颗粒的破碎程度;用分散相平均粒径表征。 9、简述影响分散相粒径的因素 P54 答:熔体黏度与组分配比是影响分散相粒径的重要因素;共混过程中共混体系所受到的外力 作用(通常是剪切应力),对分散相粒径也有重要影响;两相之间界面张力对分散相物料的分 散过程产生影响,进而影响分散相粒径。

聚合物共混改性原理知识点

聚合物共混改性原理知识点 By Jimluoyu 亚稳态是指聚合物共混在达到平衡状态之前,因动力学的原因或局部能量低处于暂时稳定的状态。 聚合物共混物(Polymer Blend)是将两种或两种以上的聚合物按适当的比例,通过共混,以得到单一聚合物无法达到的性能的材料。 聚合物共混物的研究呈现出在共混过程中对材料的相态进行控制的趋势,因为决定新材料性能的关键因素是共混物中的形态结构。 聚合物共混物的形态控制主要由热力学和动力学两方面的因素决定。 高分子—高分子共混原则: (1) 极性相匹配原则。与选择溶剂的情形类同,两相高分子材料极性相似,有助于混溶。 (2) 表面张力相近原则,这是一条胶体化学原则。因为表面张力相近,易在两种混合高分子颗粒表面接触处形成较稳定的界面层,从而提高共混稳定性。 (3) 扩散能力相近原则,这是一条分子动力学原则。已知在界面层上两相高分子链段相互渗透,扩散。若扩散能力相近,易形成浓度变化较为对称的界面扩散层,提高材料物理、力学性能。 (4) 等粘度原则,这是一条流变学原则。指两相高分子熔体或溶液粘度接近,易混合均匀混合。若粘度相差较大、易发生“软包硬”,或粒子迁移等流动分级现象,影响共混质量。 (5) 溶解度参数相近原则。这是一条热力学原则。两相高分子共混不同于高分子溶液。两相共混的目的是取长补短,升发新性能,因此并不要求两相一定达到分子级的均匀混合,而希望各相保持各自的特性,一般要求达到微米级的多相结构即可,即所谓“宏观均相,微观非均相”的分相而又不分离的状态。但是,为了混合的稳定性,为了提高力学性能,要求两相颗粒界面之间有一定的微小混溶层。溶解度参数相近有助于稳定混溶层的形成。 聚合物共混物相容性概念 所谓聚合物之间的相容性(Miscibility),从热力学角度而言,是指在任何比例混合时,都能形成分子分散的、热力学稳定的均相体系,即在平衡态下聚合物大分子达到分子水平或链段水平的均匀分散。 机械相容性(Compatibility),是指能得到具有良好物理、机械性能的共混材料时聚合物共混物之间的相容性。这时,共混时聚合物各组分间存在一定的相界面亲合力、且分散较为均匀,分散相粒子尺寸不太大。 对于非晶态高分子共混物可用溶解度参数较准确地预测其相容性,而含有结晶高分子时就有偏差。 影响聚合物共混物相容性的因素: 1、溶度参数,高分子间溶度参数越相近,其相容性越好。 2、共聚物组成,共聚物组成不同导致不同的分子间和分子内作用力,从而影响共混物的相容性。 3、极性,高分子的极性愈相近,其相容性愈好极性越大,分子间作用力越大。 4、表面张力,共混组分的表面张力愈接近,两相间的浸润、接触和扩散愈好,界面结合愈好。

聚合物共混改性考试试题及答案教学内容

聚合物共混改性考试试题及答案

3. 在某聚合物上引入特殊作用基团;加入第三组分进行增容; 4. 两相之间产生部分交联,形成物理或化学缠结; 5. 形成互穿网络结构(IPN); 6. 改变加工工艺,施加强烈的力剪切作用。 六、一般采有PP熔融接枝MAH单体,并挤出制备TPU/PP共混物,请阐明PP接枝MAH对共混物的形态结构及性能有何影响。为什么?10分 答:采用PP-g-MAH作为增容剂,熔融法制备TPU/PP共混物。发现,马来酸酐接枝聚丙烯是聚氨酯与聚丙烯共混体系有效的增容剂,有效地改善了共混物的形态和力学性能。 原因:机理:PP-g-MAH中的酸酐基团可能一部分与TPU中羟基反应,另一部分是与N-H基团发生氢键作用,从而有效降低了表面张力,提高了表面粘结力。 七、聚合物共混物的制备方法有那些?各有什么特点?10分 答:1. 物理共混法,简单机械共混技术简单的机械共混技术也称为单纯共混技术,它是在共混过程中,直接将两种聚合物进行混合制得聚合物混合材料。又包括:粉料(干粉)共混,熔体共混,溶液共混,乳液共混 2. 共聚-共混法 特点:特点:共聚—共混法制取聚合物共混物是一种化学方法,这一点是与机械共混法显然不同的。 3. 互穿聚合物网络法 八、增容作用的本质是什么?通常采用哪些增容方法?15分 答:增容作用的物理本质:降低共混组分之间的界面张力,促进分散程度的提高;提高相结构的稳定性,使得共混塑料的性能得以提高;改善共混组分之间的界面粘结,有利于传递外力。 常用的增容方法: 1. 利用氢键作用导致相容 2. 利用离子间相互作用 3. 利用电荷转移作用 4. 加入增容剂 5. 混合过程中化学反应所引起的增容作用 6. 共聚物/均聚物共混体系 7. 共溶剂法和IPN法

共混改性名词解释

名词解释 1、聚合物共混与聚合物共混物——聚合物共混是指两种或两种以上均聚物或共聚物的经混合制成宏观均匀的材料的过程。聚合物共混物是指两种或两种以上均聚物或共聚物的经混合制成宏观上均匀的高分子聚合物的混合物。 2、相容性与混溶性——相容性是指满足热力学相容条件,在任何比例混合时,都能形成分子分散的、热力学稳定的均相体系。即在平衡态下聚合物大分子达到分子水平或链段水平的均匀分散。混溶性,是指共混物各组分之间彼此相互容纳的能力。表示了共混组分在共混中相互扩散的分散能力和稳定状态,是指非相容聚合物共混物中各成分物质的界面结合能力。 3、NG机理和SD机理——处于介稳定的体系,相分离不能自发进行,需要成核作用,包含核的形成和核的增长两个阶段,这样的相分离过程机理称为成核-增长分离过程机理即NG机理。处于不稳定的体系,在相分离过程中,物质向浓度较大的方向扩散,即反向扩散来完成的,称为旋节分离,即为SD机理。 4、分散相与相畴——在共混物中两个或多个相中只有一个连续相,此连续相为分散介质,称之为基体,其他分散于连续相中的相是分散相。在复相聚合物体系中,每一相都以一定的聚集态存在,因为相之间的交错,所以连续性较小的相或不连续的相就被分成很多的微小区域,这种微小区域称为相畴。 5、银纹与银纹化、剪切与剪切带——玻璃态聚合物在应力作用下会产生发白现象,这种现象叫应力发白现象,亦称银纹现象,这种产生银纹的现象也叫银纹化。聚合物中产生银纹的部位称为银纹体或简称银纹。 聚合物在一定的剪切应力作用下,可产生明显的局部的形变,这种形变称为剪切形变,由剪切形变所构成的形变区域称为剪切带。 6、应变软化与应变硬化——应变软化就是材料对应变的阻力随应变的增加而减小,是由于在较大应变时大分子链各物理交联点发生重新组合形成有利于形变发展的超分子结构的缘故。当形变值很大时,这种大形变能导致大分子链的明显取向,造成应变硬化现象。 7、热塑性弹性体:在常温下显示橡胶状弹性、在高温下能够塑化成型的一类新型高分子材料,是一类介于橡胶和塑料之间的弹性体材料,如SBS,SIS等。热塑性弹性体最大特征是具有多相结构,含有呈现橡胶状弹性的柔软相(软段)和产生表观强度的硬相,即约束相(硬段)成分,前者的玻璃化温度低于室温,后者的玻璃化温度高于室温,因此后者在室温下处于“冻结”状态,起到相当于硫化橡胶中交联点的作用。(2分) 8、机械共混物:机械共混物是通过双辊塑炼,密炼,挤出机挤出等方式,将两种聚合物在熔融状态下进行机械混合制备的聚合物共混复合材料。(2分) 9、相逆转:聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。在相逆转的组成范围内,常可形成两相交错、互锁的共连续形态结构,使共混物的力学性能提高。(2分) 10、增容剂:增容剂是以界面活性剂的形式分布于共混物两相界面处,使界面张力降低,增加共混组分之间的相容性和强化聚合物之间的界面粘结。(2分) 11、分散相的平衡粒径:在分散混合中,由于分散相大粒子更容易破碎,所以共混过程是分散相粒径自动均化的过程,这一自动均化的过程的结果,是使分散相例子达到一个最终的粒径。即“平衡粒径”。 12、聚合物纳米复合材料:两相或多相的含聚合物混合物中至少有一相的一维尺度小 于100nm 量级的复合材料。

聚合物共混改性原理及应用考题

聚合物共混改性原理及 应用考题 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

聚合物共混改性原理及应用 ``````` 一.名词解释(每题5分,共20分) 1.聚合物共混 答:共混改性包括物理共混、化学共混和物理/化学共混三大类型。其中,物理共混就是通常意义上的“混合”。如果把聚合物共混的涵义限定在物理共混的范畴之内,则聚合物共混是指两种或两种以上聚合物经混合制成宏观均匀物质的过程。 2.分布混合和分散混合 答:分布混合,又称分配混合。是混合体系在应变作用下置换流动单元位置而实现的。分散混合是指既增加分散相空间分布的随机性,又减少分散相粒径,改变分散相粒径分布的工程。 分布混合和分散混合在实际的共混工程中是共生共存的,分布混合和分散混合的驱动力都是外界施加的作用力。 3.总体均匀性和分散度 答:总体均匀性是指分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。分散度则是指分散相颗粒的破碎程度。对于总体均匀性,则采用数理统计的方法进行定量表征。分散度则以分散相平均粒径来表征。 4.分散相的平衡粒径 答:在分散混合中,由于分散相大粒子更容易破碎,所以共混过程是分散相粒径自动均化的过程,这一自动均化的过程的结果,是使分散相例子达到一个最终的粒径。即“平衡粒径”。 二.选择题(每题分,共15分) 1.热力学相容条件是混合过程的吉布斯自由能( A ) A.小于零 B 大于零 C 等于零 D 不确定 2.共混物形态的三种基本类型不包括( D ) A.均相体系 B 海-岛结构 C 海--海结构 D 共混体系 3.影响熔融共混过程的因素不包括(B ) A 聚合物两相体系的熔体黏度 B 聚合物两相体系的表面张力 C 聚合物两相体系的界面张力 D 流动场的形式和强度 4.共混物形态研究的主要内容不包括( D ) A 连续相和分散相祖分的确定 B 两相体系的形貌 C 相界面 D 分散相的物理性能 5.熔体黏度调节的方法不包括( B) A 温度 B 时间 C 剪切应力 D 用助剂调节 6.聚合物共混物的使用性能影响要素不包括( A ) A 结晶时间 B 结晶温度 C 结晶速度 D 结晶共混物的结构形态 7.影响热力学相容性的因素不包括( B ) A 相对分子质量 B 共混组分的性能 C 温度 D 聚集态结构 8.共混物性能的影响因素不包括( C ) A 各组分的性能与配比 B 共混物的形态 C 温度 D 外界作用条件

聚合物共混改性_思考题答案

1.试述聚合物共混的概念。 答:聚合物共混是指将两种或两种以上聚合物材料、无机材料以及助剂在一定温度下进行机械掺混,最终形成一种宏观上均匀,而且力学、热学、光学、电学及其他性能得到改善的新材料的过程,这种混合过程称为聚合物的共混改性,所得到的新的共混产物称为聚合物共混物,简称共混物。 2.共混物的形态学要素有哪些? 答:1. 分散相和连续相;2. 分散相的分散状况;3. 两相体系的形貌;4. 相界面。 3.简述分散相颗粒分散过程的两种主要机理。 答:液滴分裂机理:分散相的大粒子,分裂成两个较小的粒子,然后,较小的粒子在进一步分裂,这一过程不断重复,直至平衡。 细流线破裂机理:分散相的大粒子,在拉伸应力下变形为细流线,细流线再在瞬间破裂成细小的粒子。 4.依据“液滴模型”,讨论影响分散相变形的因素。 答:Weber数粒径;连续相黏度;界面张力;熔体弹性;流动场;两相粘度比。 5.依据“双小球模型”,讨论影响分散相破碎的因素。 答:K值的影响;r*值的影响;初始位置(分散相粒径)的影响 6.采用哪些方法,可以对聚合物熔体黏度进行调控。 答:调节剪切应力;通过助剂调节;调节共混组分的相对分子量。 1.影响共混物性能的因素有哪些? 答:一、各组分的性能与配比的影响;二、共混物形态的影响;三、制样方法和条件的影响;四、测试方法与条件的影响 2.试述聚合物大形变时的形变机理及两种过程。 答:玻璃态聚合物大形变时的形变机理包含两种可能的过程 剪切形变过程:剪切过程包括弥散型的剪切屈服形变和形成局部剪切带两种情况。 剪切形变只是使物体形状改变,分子间的内聚能和物体的密度基本上不受影响。 银纹化过程:银纹化过程则使物体的密度大大下降。这两种机理各自所占的比重与聚合物结构及实验条件有关。 3.形成局部应变的两种原因是什么? 答:1)是纯几何的原因(试样截面积的波动)。这种纯几何的原因仅在一定的负荷条件下才会产生局部应变 2)应变软化(材料对应变的阻力随应变的增加而减小)。是由聚合物材料的本性引起的。 4.试述银纹的结构和性质。

聚合物共混改性

1.目的:获得预期性能的共混物。方法:①熔融共混②溶液共混③乳液共混④釜内共混. 1、共混物形态的三种基本类型 (1)均相体系 (2)两相体系①海—岛结构 ②海—海结构 其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿。 2.均相体系的判定 答:如果一种共混物具有类似均相材料所具有的性能,这种共混物就可以认为是具有均相结构的共混物.在大多数情况下,可以用玻璃化转变温度Tg 作为判定的标准。 ①如果两种聚合物共混后 ,形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系. ②部分相容性的聚合物为两相体系,两种聚合物的共混物具有两个Tg,且两个Tg 峰较每一种聚合物自身的Tg 更为接近。 ③不相容的聚合物的共混物有两个Tg 峰,其位置与每一种聚合物的Tg 峰基本相同。 3.分布混合:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的. 分散混合:既增加分散相空间分布的随机性,又减小分散相粒径,改变分散相粒径分布过程. 4 ,一个分散相大粒子(大液滴)分裂成两个较小较小的粒子再进一步分裂。展示的分散过程是逐步进行的重复破裂过程。 (大液滴)先变为细流线,细流线再在瞬间破裂成细小的粒 )(毛细管不稳定现象)。其展示的分散过程是在瞬间完成的。 5 a. , 改变剪切应力,助剂调节,分散相粒径变小;剪切流动,拉伸流动),粒径更均匀. 6 ,使We 值增大,进而使形变增大; ,使We 值增大,易于变形.液滴的变形到达连续相的黏度增大,使We 值增大,进而使液滴(σ下降,使We 值增大,进而使液 ⑥熔体弹性; ⑦液滴破碎的判据:τ(19λ+16)/16(λ+1)>σ/R ,式中τ为剪切应力. ⑧流动场形式的影响 (2)双小球模型:②粒径大的分散相颗粒易破碎分散,发生分散相粒径的自动均化过程; ①剪切应力、分散相内力:增大剪切应力或降低分散相内力有利于分散相颗粒的破碎分散; ③在分散相的破碎分散过程中,分散相颗粒会发生伸长变形和转动.当伸长变形的分散相颗粒转动到剪切应力平行的方向时,就难以进一步破碎了。 7.熔体黏度调控的方法: 调节共混温度,剪切应力;用助剂进行调节;改变相对分子质量. 8、总体均匀性:分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。 分散度:分散相颗粒的破碎程度;用分散相平均粒径表征。 9、共混物组成、共混过程、共混物性能与共混物形态的基本关系 答:共混物的组成、共混工艺条件,都会对共混物的微观形态产生重要影响。与此同时,共混物的微观形态,又与各种宏观性能(如力学性能)之间,有着密切的联系.共混物的微观形态可以成为联结共混物的组成、共混工艺条件和共混材料宏观性能的一个重要的枢纽。 10.分散相粒径的因素 答:熔体黏度与组分配比是影响分散相粒径的重要因素;共混过程中共混体系所受到的外力作用(通常是剪切应力),对分散相粒径也有重要影响;两相之间界面张力对分散相物料的分散过程产生影响,进而影响分散相粒径。 11.简述聚合物表面张力的影响因素 (1)温度 表面张力的本质是分子间相互作用。由于分子间力随温度升高而下降,且与温度呈线性关系。聚合物的表面张力也随温度升高而下降,且与温度呈线性关系。 (2)聚合物物态 结晶性聚合物发生结晶或熔融时,密度发生变化。根据Macled 方程,密度变化会引起表面张力变化,密度增大,表面张力也增大;因而,结晶性聚合物发生相变时,表面张力会发生相应的变化。结晶体的密度高于熔体的密度,相应的,结晶体的表面张力高于熔体的表面张力。这种变化,会使表面张力与温度的线性关系受到影响。 (3)相对分子质量;分子量大,表面张力也大。 (4)溶解度参数 ;表面张力随溶解度参数的增大而增大; 内聚能密度;表面张力和内聚能密度都与分子间相互作用有关,两者彼此有关联。 12、简述共混体系界面张力、界面层厚度与相容性的关系 溶解度参数接近的体系,或者B 参数较小的体系,相容性相应的较好,界面张力较低,界面层厚度也较厚。 13、共混体系的相容剂有哪些类型及其作用机理 非反应性共聚物,反应性共聚物。 作用机理是富集在两相界面处,改善两相之间的界面结合. 14、转矩流变仪:可配置有多套不同的混炼装置,如双转子混炼器、单螺杆挤出机,以转矩值来表征黏度。 15.共混体系熔融流变性能因素:剪切速率,温度,粘弹性,共混物组分含量,第三组分(调节剂). 非弹性体增韧的最大优越性在于脆性塑料在提高材料抗冲击性能的同时,并不会降低材料的刚性,此外,非弹性体(脆性塑料)一般具有良好的加工流动性。 18、表面处理作用机理 (1)提高碳纤维的表面能(实质是提高碳纤维表面的含氧量), 减少纤维与基体、树脂表面能之差值,以达到改善基体与纤维间的浸润性,实现纤维与基体间的有关粘结; (2)通过一定处理后,可在碳纤维表面形成大量可与基体形成化学键及氢键或范德华力结合的活性基团,可明显提高CFRP 层间剪切强度; (3)改善碳纤维表面物理状态,及增加表面粗糙或在纤维表面生成凹凸结构,以通过机械契合或者说“锚固效应”达到好的界面性能. 19、如何提高极性尼龙和非极性聚烯烃弹体的相容性?表征PA/POE 共混物相容性的方法。 (1)采用马来酸酐接枝到聚烯烃单体上作为相容剂,与PA 发生化学反应,改善相容性。 (2)玻璃化转变温度,浊点法(光散射法),扫描电镜法,红外光谱法。固体物性表征:热分析法(DSC),膨胀计法,动态力学分析法.热力学表征:熔点降低法,吸附探针法,反气相色谱法. 17PA 性能的主要因素: 直径,长度,表面处理,含量 (1) 用于PA 增强的玻璃纤维直径在10-20μm 左右。玻纤过细,玻纤容易,没有足够的长径比,玻纤就失去了增强作用;玻纤过粗,,不能得到力学性能优良的改性PA 产品。 (2)PA 增强的玻纤有长玻纤和短玻纤两类,长玻纤是在双螺杆挤出机;短玻纤是和原料从加料口混合加入.短纤维增强的制品中,纤维受剪切严重,其长度较短.理论上讲,纤维越长,增强效果越好,但制品表面粗糙,成型难度增加.玻纤的长双螺杆挤出机的螺杆组合和螺杆转速对玻纤的长度有较大影响。 (3) 市售玻纤一般均已经过表面浸润处理,玻纤浸润剂主要成分为 常用偶联剂均为硅烷类有机化合物,成膜剂主要有丙烯酸、聚氨酯、环氧类缩水甘油醚、聚乙烯醇、聚醋酸乙烯酯等。 在使用玻纤增强PA 时,须根据基体材料的种类及产品性能要求来选择合适的玻纤种类,最好选用聚氨酯、环氧类缩水甘油醚、丙烯酸等成膜剂处理后的纤维。 玻纤生产过程中,偶联剂用量偏小,在与PA 共混挤出时,应适当添加一定量的偶联剂。 (4)玻纤含量的影响 力学性能 玻纤含量对玻纤增强PA6(上表)和PA66(下表)力学性能的影响。随玻纤含量增加,增强PA 的力学性能迅速提高,但玻纤含量过高,增强材料表面粗糙,且加工性能下降,同时玻纤含量的增加会增大设备磨损。 20、试述聚合物表面改性的必要性及其意义。 答:表面改性技术是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等门薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。使原来在高速、 高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。 1.目的:获得预期性能的共混物。方法:①熔融共混②溶液共混③乳液共混④釜内共混. 1、共混物形态的三种基本类型 (1) 均相体系 (2)两相体系①海—岛结构 ②海—海结构 其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中 ,就好像海岛分散在大海中一样;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿。 2.均相体系的判定 答:如果一种共混物具有类似均相材料所具有的性能,这 种共混物就可以认为是具有均相结构的共混物.在大多数情况下,可以用玻璃化转变温度Tg 作为判定的标准。 ①如果两种聚合物共混后,形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系 . ②部分相容性的聚合物为两相体系,两种聚合物的共混物具有两个 Tg,且两个Tg 峰较每一种聚合物自身的Tg 更为接近。 ③不相容的聚合物的共混物有两个 Tg 峰,其位置与每一种聚合物的 Tg 峰基本相同。 3.分布混合:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的. 分散混合:既增加分散相空间分布的随机性,又减小分散相粒径,改变分散相粒径分布过程. 4 ,一个分散相大粒子(大液滴)分裂成两个较小较小的粒子再进一步分裂。展示的分散过程是逐步进行的重复破裂过程。 (大液滴)先变为细流线,细流线再在瞬间破裂成细小的粒)(毛细管不稳定现象)。其展示的分散过程是在瞬间完成的。 5、影响共混过程的 a.,改变剪切应力,助剂调节,分散相粒径变小;剪切流动,拉伸流动),粒径更均匀. 6 ,使We 值增大,进而使形变增大; ,使We 值增大,易于变形.液滴的变形到达连续相的黏度增大,使We 值增大,进而使液滴(σ下降,使We 值增大,进而使液 ⑥熔体弹性; ⑦液滴破碎的判据:τ(19λ+16)/16(λ+1)>σ/R ,式中τ为剪切应力. ⑧流动场形式的影响 (2)双小球模型:②粒径大的分散相颗粒易破碎分散,发生分散相粒径的自动均化过程; ①剪切应力、分散相内力:增大剪切应力或降低分散相内力有利于分散相颗粒的破碎分散; ③在分散相的破碎分散过程中,分散相颗粒会发生伸长变形和转动.当伸长变形的分散相颗粒转动到剪切应力平行的方向时,就难以进一步破碎了。 7.熔体黏度调控的方法: 调节共混温度,剪切应力;用助剂进行调节;改变相对分子质量. 8、总体均匀性:分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。 分散度:分散相颗粒的破碎程度;用分散相平均粒径表征。 9、共混物组成、共混过程、共混物性能与共混物形态的基本关系 答:共混物的组成、共混工艺条件,都会对共混物的微观形态产生重要影响。与此同时,共混物的微观形态,又与各种宏观性能(如力学性能)之间,有着密切的联系.共混物的微观形态可以成为联结共混物的组成、共混工艺条件和共混材料宏观性能的一个重要的枢纽。 10.分散相粒径的因素 答:熔体黏度与组分配比是影响分散相粒径的重要因素;共混过程中共混体系所受到的外力作用(通常是剪切应力),对分散相粒径也有重要影响;两相之间界面张力对分散相物料的分散过程产生影响,进而影响分散相粒径。 11.简述聚合物表面张力的影响因素 (1)温度 表面张力的本质是分子间相互作用。由于分子间力随温度升高而下降,且与温度呈线性关系。聚合物的表面张力也随温度升高而下降,且与温度呈线性关系。 (2)聚合物物态 结晶性聚合物发生结晶或熔融时,密度发生变化。根据Macled 方程,密度变化会引起表面张力变化,密度增大,表面张力也增大;因而,结晶性聚合物发生相变时,表面张力会发生相应的变化。结晶体的密度高于熔体的密度,相应的,结晶体的表面张力高于熔体的表面张力。这种变化,会使表面张力与温度的线性关系受到影响。 (3)相对分子质量;分子量大,表面张力也大。 (4)溶解度参数 ;表面张力随溶解度参数的增大而增大; 内聚能密度;表面张力和内聚能密度都与分子间相互作用有关,两者彼此有关联。 12、简述共混体系界面张力、界面层厚度与相容性的关系 溶解度参数接近的体系,或者B 参数较小的体系,相容性相应的较好,界面张力较低,界面层厚度也较厚。 13、共混体系的相容剂有哪些类型及其作用机理 非反应性共聚物,反应性共聚物。 作用机理是富集在两相界面处,改善两相之间的界面结合. 14、转矩流变仪:可配置有多套不同的混炼装置,如双转子混炼器、单螺杆挤出机,以转矩值来表征黏度。 15.共混体系熔融流变性能因素:剪切速率,温度,粘弹性,共混物组分含量,第三组分(调节剂). 非弹性体增韧的最大优越性在于脆性塑料在提高材料抗冲击性能的同时,并不会降低材料的刚性,此外,非弹性体(脆性塑料)一般具有良好的加工流动性。 18、表面处理作用机理 (1)提高碳纤维的表面能(实质是提高碳纤维表面的含氧量), 减少纤维与基体、树脂表面能之差值,以达到改善基体与纤维间的浸润性,实现纤维与基体间的有关粘结; (2)通过一定处理后,可在碳纤维表面形成大量可与基体形成化学键及氢键或范德华力结合的活性基团,可明显提高CFRP 层间剪切强度; (3)改善碳纤维表面物理状态,及增加表面粗糙或在纤维表面生成凹凸结构,以通过机械契合或者说“锚固效应”达到好的界面性能. 19、如何提高极性尼龙和非极性聚烯烃弹体的相容性?表征PA/POE 共混物相容性的方法。 (1)采用马来酸酐接枝到聚烯烃单体上作为相容剂,与PA 发生化学反应,改善相容性。 (2)玻璃化转变温度,浊点法(光散射法),扫描电镜法,红外光谱法。固体物性表征:热分析法(DSC),膨胀计法,动态力学分析法.热力学表征:熔点降低法,吸附探针法,反气相色谱法. 17PA 性能的主要因素: 直径,长度,表面处理,含量 (1) 用于PA 增强的玻璃纤维直径在10-20μm 左右。玻纤过细,玻纤容易,没有足够的长径比,玻纤就失去了增强作用;玻纤过粗,,不能得到力学性能优良的改性PA 产品。 (2)PA 增强的玻纤有长玻纤和短玻纤两类,长玻纤是在双螺杆挤出机;短玻纤是和原料从加料口混合加入.短纤维增强的制品中,纤维受剪切严重,其长度较短.理论上讲,纤维越长,增强效果越好,但制品表面粗糙,成型难度增加.玻纤的长双螺杆挤出机的螺杆组合和螺杆转速对玻纤的长度有较大影响。 (3) 市售玻纤一般均已经过表面浸润处理,玻纤浸润剂主要成分为 常用偶联剂均为硅烷类有机化合物,成膜剂主要有丙烯酸、聚氨酯、环氧类缩水甘油醚、聚乙烯醇、聚醋酸乙烯酯等。 在使用玻纤增强PA 时,须根据基体材料的种类及产品性能要求来选择合适的玻纤种类,最好选用聚氨酯、环氧类缩水甘油醚、丙烯酸等成膜剂处理后的纤维。 玻纤生产过程中,偶联剂用量偏小,在与PA 共混挤出时,应适当添加一定量的偶联剂。 (4)玻纤含量的影响 力学性能 玻纤含量对玻纤增强PA6(上表)和PA66(下表)力学性能的影响。随玻纤含量增加,增强PA 的力学性能迅速提高,但玻纤含量过高,增强材料表面粗糙,且加工性能下降,同时玻纤含量的增加会增大设备磨损。 20、试述聚合物表面改性的必要性及其意义。 答:表面改性技术是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等门薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。

相关文档